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ABSTRACT. Let R = k[T1, . . . ,Tf] be a standard graded polynomial ring over the field k and
Ψ be an f× g matrix of linear forms from R, where 1 ≤ g < f. Assume

[
T1 · · · Tf

]
Ψ is

0 and that grade Ig(Ψ) is exactly one short of the maximum possible grade. We resolve R =
R/Ig(Ψ), prove that R has a g-linear resolution, record explicit formulas for the h-vector and
multiplicity of R, and prove that if f−g is even, then the ideal Ig(Ψ) is unmixed. Furthermore,
if f−g is odd, then we identify an explicit generating set for the unmixed part, Ig(Ψ)unm, of
Ig(Ψ), resolve R/Ig(Ψ)unm, and record explicit formulas for the h-vector of R/Ig(Ψ)unm.
(The rings R/Ig(Ψ) and R/Ig(Ψ)unm automatically have the same multiplicity.) These results
have applications to the study of the blow-up algebras associated to linearly presented grade
three Gorenstein ideals.
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1. INTRODUCTION.

It is shown in [4] that, “Determinantal ideals associated to ‘sufficiently general’ matrices
of linear forms are resilient in the sense that they remain of the ‘expected’ codimension, or
prime, even modulo a certain number of linear forms.” The cases where the original matrix is
generic, symmetric generic, catalecticant, or 1-generic have been particularly well-studied;
see for example, [5, 8, 11, 19, 20]. We study a family of resilient determinantal ideals of
matrices of linear forms. The ideals we consider are described by a structure condition and
a grade condition. Each of these ideals has a linear resolution and defines a ring which is
Cohen-Macaulay on the punctured spectrum, but is not Cohen-Macaulay. The previously
studied resilient ideals associated to a matrix of linear forms have all defined rings which are
Cohen-Macaulay.

For the time being, let R be a Noetherian ring, T1, . . . ,Tf an R-regular sequence, and Ψ an
f× g matrix with entries in R, where 2 ≤ g < f. (Throughout most of the paper, g is allowed
to take the value 1; but to simplify the exposition, in the beginning of the introduction, we
insist that g be at least 2.) Assume that the matrix Ψ has two properties. First of all, assume
that [

T1 · · · Tf

]
Ψ = 0 .

It is clear from this property that the ideal Ig(Ψ) generated by the maximal minors of Ψ does
not have the maximum possible grade, f−g+1. The second property of Ψ is that grade Ig(Ψ)

is only one short of the maximum possible grade, that is, grade Ig(Ψ) = f− g. Let R be the
R-algebra R/Ig(Ψ) and let δ = f− g.

For each integer ε in the set {δ−1
2 , δ

2 ,
δ+1

2 }, we construct a complex Mε. When ε is either
δ

2 or δ+1
2 , that is when ε = dδ

2e, then Mε is a resolution of R by free R-modules. Though the
complex Mε may not be minimal, it can be used to see that the projective dimension of R
over R is f−1 or f depending on whether δ is even or odd. We deduce that R is never perfect
as an R-module, but is grade unmixed if δ is even, indeed depth Rp = δ for every associated
prime p of R. In particular, Ig(Ψ) is unmixed whenever δ is even and R is Cohen-Macaulay.
Despite the failure of perfection, the resolution Mε specializes, in the sense that S⊗R Mε is
a resolution of S⊗R R by free S-modules whenever S is a Noetherian R-algebra, T1, . . . ,Tf

forms an S-regular sequence, and δ≤ gradeSIg(Ψ).
We can say more if the ring R is non-negatively graded with R0 a field and T1, . . . ,Tf as

well as the entries of Ψ are linear forms. In this case, the minimal homogeneous free R-
resolution of R is g-linear. The ring R is not Cohen-Macaulay; so the Betti numbers in the
minimal resolution of R and the multiplicity of R are not an obvious consequence of the fact
that the minimal homogeneous free R-resolution of R is g-linear. Nonetheless, we provide
explicit formulas for the h-vector and the multiplicity of R; these results do not depend on
the parity of δ.
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The multiplicity of R and the unmixedness of Ig(Ψ) play critical roles in [16], where we
describe explicitly, in terms of generators and relations, the special fiber ring and the Rees
algebra of linearly presented grade three Gorenstein ideals in polynomial rings of odd Krull
dimension.

On the other hand, if δ is odd, then the ideal Ig(Ψ) is mixed. We identify the grade
unmixed part, Ig(Ψ)gunm, of Ig(Ψ) (see (3.14)), prove that Mε, with ε = δ−1

2 , is a resolution
of R/Ig(Ψ)gunm, and provide explicit formulas for the h-vector of R/Ig(Ψ)gunm. (The rings
R = R/Ig(Ψ) and R/Ig(Ψ)gunm automatically have the same multiplicity.) Ultimately, the
parameter ε takes the value dδ

2e or dδ−1
2 e. If ε = dδ

2e, then Mε resolves R; and if ε = dδ−1
2 e,

then Mε resolves R/Ig(Ψ)gunm. Of course, if δ is even, then dδ−1
2 e and dδ

2e are equal as are
Ig(Ψ) and Ig(Ψ)gunm.

Take ε = dδ

2e. The resolution Mε was obtained in stages. First we identified a fairly stan-
dard complex Tot(B) with H0(Tot(B)) =R. The double complex B is a quotient of of a larger
double complex V: the columns of V are Koszul complexes and the rows of V are trunca-
tions of generalized Eagon-Northcott complexes. Alas, Tot(B) has higher homology. Indeed,
when δ is even, H1(Tot(B)) 6= 0. A long look at H1(Tot(B)) told us that this homology came
from Pfaffians. Macaulay2 experimentation lead us to a complex Tot(Tε) whose homology
is equal to H1≤(Tot(B)). Curiously, Tε is also a quotient of V. We became convinced that
there exists a map of complexes

Tot(Tε)

ξε

��
Tot(B)

which induces an isomorphism on all of the higher homology. Eventually, we were able
to record a formula for ξε. The mapping cone, Lε, of ξε is an infinite resolution of R. The
resolution Mε is a finite subcomplex of Lε of the proper length which has the same homology
as Lε.

After we had found the resolution Md δ

2e of R, and realized that Ig(Ψ) is mixed when δ is
odd, we looked for the generators of Ig(Ψ)gunm/Ig(Ψ). In this search, we were inspired by the
work of Mark Johnson [10] and Susan Morey [18] in the case f= g+1. We illustrate our an-
swer in the context of the motivating situation from [16]. Let R0 be a field, R1 be the polyno-
mial ring R0[T1, . . . ,Tf], and R be the bi-graded polynomial ring R = R0[X1, . . . ,Xg,T1, . . . ,Tf]

where each Xi has bi-degree (1,0) and each Ti has bi-degree (0,1). Let φ be an f× f alter-
nating matrix with bi-homogeneous entries of degree (1,0) and Ψ be an f× g matrix with
bi-homogeneous entries of degree (0,1). Assume that f+ g is odd and

φ

T1
...

Tf

= Ψ

X1
...

Xg

 .
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Consider the (f+ g)× (f+ g) alternating matrix

B =

[
φ Ψ

−Ψt 0

]
.

Let Bi be (−1)i+1 times the Pfaffian of B with row and column i removed. View Bf+g as a
polynomial in R1[X1, . . . ,Xg] and let C = cR1(Bf+g) be the content of Bf+g. It follows that C
is a homogeneous ideal in R1 = R0[T1, . . . ,Tf] generated by forms of degree g− 1. At this
point, we use elementary techniques to show that

(1.0.1) C+ Ig(Ψ)⊆ Ig(Ψ) : (T1, . . . ,Tf).

In this paper we prove that if δ≤ grade Ig(Ψ), then the ideals

C+ Ig(Ψ), Ig(Ψ) : (T1, . . . ,Tf), Ig(Ψ) : (T1, . . . ,Tf)
∞, and Ig(Ψ)gunm

of R1 all are equal. These facts are used in [16] where we describe explicitly, in terms of
generators and relations, the special fiber ring and the Rees algebra of linearly presented
grade three Gorenstein ideals in polynomial rings of even Krull dimension.

To prove (1.0.1), first observe first that the column vector[
T1 · · · Tf −X1 · · · −Xg

]t
is in the null space of B; then use lower order Pfaffians of B to see that for each index i, with
1≤ i≤ f, the row vector

[0, . . . ,0,Bf+g,0, . . . ,0,−Bi],

with Bf+g in position i, is in the row space of B. It follows that Bf+gTi+BiXg = 0 for 1≤ i≤ f.
The definition of Bi shows that Bi is in the ideal Ig(Ψ); hence TiBf+g ∈ Ig(Ψ) and

TicR1(Bf+g) = cR1(TiBf+g)⊆ Ig(Ψ).

This completes the proof of (1.0.1).
The generating set for Ig(Ψ)gunm/Ig(Ψ) that we use throughout most of the paper is almost

coordinate-free; consequently, at first glance, it looks much different than “the content of
Bf+g”; however the generating set that we use has the advantage that only small modifications
of the resolution Md δ

2 e of R produces the resolution Md δ−1
2 e of R/Ig(Ψ)gunm. We return to a

coordinate-dependent matrix version of the results in Section 8.
There are precedents for the resolution of Jgunm to be obtained from the resolution of J

using only small modifications: the modules are changed slightly, the maps are changed
slightly, but the form of the resolution is not really altered. Recall, for example, the type
two almost complete intersection ideals and the deviation two Gorenstein ideals of Huneke-
Ulrich [9]. The Gorenstein ideals are the unmixed part of ideals which have the same form
as the almost complete intersection ideals. Furthermore, the resolutions of the Gorenstein
ideals and the almost complete intersections have the same form; see [13, 14, 15]. Indeed,
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these ideals are the case g = 1 of the ideals Ig(Ψ) and Ig(Ψ)gunm which are resolved in the
present paper.

The main results of the paper, Theorems 2.5 and 2.7, are stated in Section 2. Section 3
consists of conventions, notation, and preliminary results. The maps and modules of Mε,
all of the numerical information about Mε, and examples of Mε are given in Section 4. The
double complexes B, Tε, and V are introduced in Section 5, where we also compute the
homology of Tot(B) and Tot(Tε). The final piece of the puzzle, ξε, is defined in Section 6.
The proofs of Theorem 2.5 and part (b) of Theorem 2.7 appear near the end of Section 6. The
Hilbert series part of Theorem 2.7, assertion (a), is established in Section 7. In Section 8 we
return to the situation of blowup algebras and organize our conclusions in the exact language
of [16]. We also give the complete proof that equality holds in (1.0.1).

2. MAIN RESULTS.

The word “matrix” does not appear in the official data of the paper (Data 2.1). We explain
the transition. Each column of Ψ, from Section 1, is annihilated by the row vector[

T1 . . . Tf

]
.

It follows that each column of Ψ is equal to

an alternating matrix times

T1
...

Tf

 .
In order to understand Ψ one must consider the g relevant alternating matrices. We deal
with Pfaffian identities involving multiple alternating matrices by making use of the divided
power structure on the subalgebra

⊕
n
∧2n F of an exterior algebra

∧•F . In other words, we
work with an R-module homomorphism µ : G∗→

∧2 F , where G and F are free R-module
of rank g and f, respectively. (Notice that if one picks bases for G∗ and F , then µ selects g

alternating matrices, one for each column of Ψ.)
If Ψ only has one column, then the situation has been studied extensively; see, for example

[9, 13, 21, 14, 15]. Curiously, many of the ideas involved in the present project are already
present in the case where Ψ only has one column.

Every construction in sections 2 through 7 is built using Data 2.1 or Data 2.3. (We return
to a coordinate-dependent matrix version of the results in Section 8.) The interesting results
are established after we impose the hypotheses of 2.2.

Data 2.1. Let R be a commutative Noetherian ring, F and G be free R-modules of rank f and
g, respectively, with 1 ≤ g < f, τ be an element of F∗, and µ : G∗→

∧2 F be an R-module
homomorphism. Define Ψ : G∗→ F by Ψ(γ) = τ(µ(γ)) for γ in G∗. Let δ represent f− g, ε

represent an integer with dδ−1
2 e ≤ ε≤ dδ

2e, and R be the R-algebra R/Ig(Ψ).
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Hypotheses 2.2. Adopt Data 2.1. Assume that

(a) δ≤ grade Ig(Ψ), (this bound is one less than the maximal possible grade for Ig(Ψ)), and
(b) f≤ grade I1(τ).

Data 2.3 is more complicated than Data 2.1, is meaningful only when δ is odd, and per-
tains only to the generating set for Ig(Ψ)gunm and the first differential in Mε when ε = δ−1

2 .
(Recall that Ig(Ψ)gunm is the grade unmixed part of Ig(Ψ); see 3.14 for more details.) It is
possible to ignore Data 2.3 and still read most of the paper. The data of 2.1 is coordinate-
free; however the data of 2.3 is not completely coordinate-free; it requires that one pair of
dual basis elements (Y1,X1), in G×G∗ be distinguished. The ideal C of R, as described in
Data 2.3, does not depend on the choice of (Y1,X1). (See the discussion surrounding (1.0.1)
for a completely different description of Ig(Ψ)gunm/Ig(Ψ) in a special case; but do notice that
in (1.0.1) one column of Ψ is treated in a distinguished manner and any other column of Ψ

would work just as well.)

Data 2.3. Adopt Data 2.1.

(a) Assume δ odd. Decompose G and G∗ as

(2.3.1) G = RY1⊕G+ and G∗ = RX1⊕G+
∗

with Y1(X1) = 1, Y1(G+
∗) = 0, and G+(X1) = 0, where Y1 ∈ G, X1 ∈ G∗, G+ and G+

∗ are
free submodules of G and G∗, respectively, of rank g−1. Define an R-module (integration)
homomorphism

∫
X1

: DiG∗→ Di+1G∗ by way of the decomposition (2.3.1); that is,∫
X1

( i
∑
j=0

X ( j)
1 ⊗ γi− j,+

)
=

i
∑
j=0

X ( j+1)
1 ⊗ γi− j,+,

with γi− j,+ ∈ Di− j(G+
∗). Notice that

(2.3.2) Y1(
∫

X1
γi) = γi for all γi ∈ Di(G∗).

Define

(2.3.3) c : D δ−1
2
(G∗)→

∧f F⊗
∧g G

to be the R-module homomorphism

(2.3.4) c(γ δ−1
2
) = [D(µ)](

∫
X1

γ δ−1
2
)∧ (

∧g−1
Ψ)(ωG+

∗)⊗ωG+ ∧Y1.

(b) Define C to be the following ideal of R

(2.3.5) C=

{
annR(cokerc) if δ is odd
0 if δ is even

and define R̃ = R/(Ig(Ψ)+C).

Remarks 2.4. (a) The homomorphism c of (2.3.3) and is defined only when δ is odd.
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(b) If δ is odd, then the target of c is a free R-module of rank one; so our definition of C is a
coordinate-free way of saying that C is “the image of c”.

(c) We show in (6.2.2) that C⊆ Ig(Ψ) : I1(τ).
(d) Some hints about why the generators for Ig(Ψ)gunm/Ig(Ψ) as calculated in (1.0.1) are the

same as the generators of C are given in (4.4.11) and (4.4.12). A complete proof may be
found in Theorem 8.3.a.

Theorems 2.5 and 2.7 are the main results of the paper. The short version of these theorems
is that we resolve R/Ig(Ψ) and R/Ig(Ψ)gunm, where Ig(Ψ)gunm is the grade unmixed part of
the ideal Ig(Ψ) (see, for example, 3.14), and we record the Hilbert series, multiplicity, and
h-vectors of these rings.

Theorem 2.5. Adopt Data 2.1 and 2.3. The following statements hold.

(a) The maps and modules of Mε, given in Definition 4.1, form a complex.

Assume that Hypotheses 2.2 are in effect for the rest of the statements.

(b) If ε = dδ

2e, then the complex Mε is a resolution of R by free R-modules.
(c) If ε = dδ−1

2 e, then the complex Mε is a resolution of R̃ by free R-modules.

Assume that I1(τ) is a proper ideal of R for the rest of the statements.

(d) The projective dimension of the R-module R is equal to{
f−1, if δ is even, and
f, if δ is odd,

and the projective dimension of the R-module R̃ is equal to
f−1, if δ is even,
f−2, if δ is odd, 3≤ δ, and 2≤ g,
f−1, if δ is odd, g= 1, and grade Ig(Ψ)≤ δ, and
1, if δ = 1 and 2≤ g.

(e) If δ is even, then depthRp = δ for every p ∈ AssR(R).
(f) Assume that one of the following three hypotheses is in effect:

(i) δ is even, or
(ii) δ is odd and 2≤ g, or

(iii) δ is odd, g= 1, and grade Ig(Ψ)≤ δ.
Then depthRp = δ for every p ∈ AssR(R̃).

(g) If one of the three hypotheses of (f) is in effect, then the ideals

C+ Ig(Ψ), Ig(Ψ) : I1(τ), Ig(Ψ) : I1(τ)
∞, and Ig(Ψ)gunm

of R are equal; and in particular, R̃ = R/Ig(Ψ)gunm.
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(h) If one of the three hypotheses of (f) is in effect and ε = dδ−1
2 e, then the complex Mε is a

resolution of R/Ig(Ψ)gunm by free R-modules.

Remark 2.6. We comment on Hypothesis 2.5.fiii. We note that if g= 1 and δ is odd, then it
is possible for Ig(Ψ) to have grade δ+1; for example if

Ψ =

[
0 I f

2
−I f

2
0

]T1
...

Tf

 .
In this situation, R̃ is not of any interest. A complete characterization of this situation is
given in Observation 6.8.

Theorem 2.7 gives the Hilbert series of three families of rings because Theorem 2.5 shows
that

H0(Mε) =


R/Ig(Ψ) in the case that Ig(Ψ) is not a grade unmixed ideal, if ε = δ+1

2 ,
R/Ig(Ψ) in the case that Ig(Ψ) is a grade unmixed ideal, if ε = δ

2 ,
R/Ig(Ψ)gunm in the case that Ig(Ψ) is not a grade unmixed ideal, if ε = δ−1

2 .

Theorem 2.7. Adopt Data 2.1 and 2.3. Assume that Hypotheses 2.2 are in effect, that R is
a non-negatively graded ring, and that τ : R(−1)f→ R and µ : Rg→ R(

f

2) are homogeneous
(degree preserving) R-module homomorphisms. Then the following statements also hold.

(a) Assume that 2≤ g, or else, that g= 1 and f is odd. Then the Hilbert series of H0(Mε) is
equal to

HSH0(Mε)(s) = HSR(s) ·HNH0(Mε)(s)

for HNH0(Mε)(s) = (1− s)f−g ·hnH0(Mε)(s) and

hnH0(Mε)(s) =



(1− s)g ∑
j≤ε−1

(−1)δ+1(g+ j−1
j

)
s2 j+2g−f

+
g−2
∑
`=0

(`+f−g−1
`

)
s`

+
f−g−2

∑
`=0

(−1)`+δ
(
g+`−1

`

)
s2g−f+`

=



g−1
∑
`=0

(`+f−g−1
`

)
s`

−χ(ε = δ−1
2 )
(
g+ε−1

ε

)
sg−1

+
q(g,f)

∑
`=g

∑
j≤ε−1

(−1)`+g+1( g

`−2g+f−2 j

)(
g+ j−1

j

)
s`,

where

q(g, f) =


2g−3, if ε = δ−1

2 ,
2g−2, if ε = δ

2 , and
2g−1, if ε = δ+1

2 .
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In particular, if R is a standard graded polynomial ring of Krull dimension dimR over a
field, then

(i)

HSH0(Mε)(s) =
hnH0(Mε)(s)

(1− s)dimR−f+g
,

(ii) the h-vector of H0(Mε) is

hv(H0(Mε)) = (h0, . . . ,hq(g,f)),

with

h` =


(`+f−g−1

`

)
, if 0≤ `≤ g−2,(`+f−g−1

`

)
−χ(ε = δ−1

2 )
(
g+ε−1

ε

)
, if `= g−1, and

∑
j≤ε−1

(−1)`+g+1( g

`−2g+f−2 j

)(
g+ j−1

j

)
, if g≤ `≤ q(g, f),

and
(iii) the multiplicity of H0(Mε) is

e(H0(Mε)) = hnH0(Mε)(1) =
bδ/2c

∑
i=0

(
f−2−2i

δ−2i

)
,

which is equal to{
the number of monomials of even degree at most δ in g−1 variables, if δ is even, or
the number of monomials of odd degree at most δ in g−1 variables, if δ is odd.

(b) If R is a standard graded polynomial ring over a field, then the minimal resolution of R
by free R-modules is g-linear.

Remarks 2.8. (a) In item (a) of Theorem 2.7, we use the notation of [12, 5.4.1] to denote
the Hilbert series HSH0(Mε)(s), the numerator of the Hilbert series HNH0(Mε)(s), the sim-
plified Hilbert numerator hnH0(Mε)(s), and the h-vector hv(H0(Mε)), of H0(Mε). We
gave two formulations for the simplified Hilbert numerator hnH0(Mε)(s): one yields the
h-vector hv(H0(Mε)) quickly and the other yields the multiplicity e(H0(Mε)) quickly.
Recall that the Hilbert series of a Noetherian graded ring S =

⊕
0≤i Si, (with S0 an Ar-

tinian local ring) is the formal power series

HSS(z) = ∑i λS0(Si)zi,

where λS0( ) represents the length of an S0-module, and the multiplicity of S is

e(S) = (dimS)! lim
i→∞

λS(S/miS)
idimS ,

where m is the maximal homogeneous ideal of S and “dim” represents Krull dimension.
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(b) If

(2.8.1) g= 1 and f is even,

then the correct statement which is analogous to (a) of Theorem 2.7 is

HNR(s) = (1− s)f and hnR(s) = 1.

Indeed, the form for HNR(S)
(1−s)f−g , as given in (a), continues to be correct, even in the presence

of the hypotheses (2.8.1); however, in the presence of (2.8.1),

HNR(S)
(1− s)f−g

= 1− s;

consequently, it is not appropriate to call the quotient hnR(s). See Remark 7.2 for more
details.

On the other hand, when the hypothesis of (2.8.1) are in effect, then there is no mean-
ingful statement about HNH0(Mε)(s), with ε = δ−1

2 , which is analogous to (a) of Theo-
rem 2.7. In this situation, Ig(Ψ)gunm = (Ig(Ψ),α) for some homogeneous element α in
R of degree 0; see, for example, Example 4.4.g. Thus, the Hilbert series of H0(Mε),
computed using this grading, is the same as the Hilbert series of 0.

(c) Assertion 2.7.b is not true, in general, for R/Ig(Ψ)gunm, when Ig(Ψ)gunm 6= Ig(Ψ) be-
cause, for example, in general, Ig(Ψ)gunm has generators of different degrees. See Ex-
ample 4.4.c or Example 4.4.d.

3. CONVENTIONS, NOTATION, AND PRELIMINARY RESULTS.

Data 2.1 and 2.3 are in effect throughout this section.

3.1. Unless otherwise noted, all functors will be functors of R-modules; that is, ⊗, Hom,
( )∗, Symi, Di,

∧i, and : mean ⊗R, HomR, HomR( ,R), SymR
i , DR

i ,
∧i

R, and :R respectively.

3.2. If I and J are ideals in a ring R, then the saturation of J by I in R is

J : I∞ =
∞⋃

n=1

J : In = {r ∈ R | rIn ⊆ J for some n}.

3.3. We denote the total complex of the double complex X by Tot(X).

3.4. If z is a cycle in a complex, then we denote the corresponding element of homology by
JzK.

3.5. If δ is odd, then the decomposition of (2.3.1) is used in the description of c from (2.3.3)
and the description of C from (2.3.5); otherwise, our complexes are described in a coordinate-
free manner. We make much use of the divided power structures on the algebras D•(G∗) and
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∧2 F automatically induces a

homomorphism
D(µ) : D•(G∗)→

∧2•F

of divided power algebras and the composition

D•(G∗)
D(µ)−−→

∧2•F inclusion−−−−−→
∧•F,

which we also denote by D(µ), is used extensively in our calculations.
Let Y1, . . . ,Yg be a basis for G and X1, . . . ,Xg be the corresponding dual basis for G∗.

(3.5.1) Let
(

Y
i

)
represent the set of monomials of degree i in Y1, . . . ,Yg.

If m = Y a1
1 · · ·Y

ag
g is in

(Y
i

)
, then let m∗ represent the element X (a1)

1 · · ·X (ag)
g of Di(G∗). Ob-

serve that {m∗ | m ∈
(Y

i

)
} is the basis for Di(G∗) which is dual to the basis

(Y
i

)
of Symi G.

Consider the evaluation map ev : Symi G⊗Di(G∗)→ R and let

ev∗ : R→ Di(G∗)⊗Symi G

be the dual of ev. Both of these R-module homomorphisms are completely independent of
coordinates; and therefore the element

ev∗(1) = ∑
m∈(Y

i)

m∗⊗m ∈ Di(G∗)⊗Symi G

is completely independent of coordinates; this element will also be used extensively in our
calculations.

3.6. In a similar manner, if ωG∗ is a basis for
∧g(G∗) and ωG is the corresponding dual basis

for
∧g G, then the element ωG∗⊗ωG is a canonical element of

∧g(G∗)⊗
∧g G. This element

is also used in our calculations.

3.7. We recall some of the properties of the divided power structure on the subalgebra
∧2•F

of the exterior algebra
∧•F . Suppose that e1, . . . ,ef is a basis for the free R-module F and

f2 = ∑
1≤i1<i2≤f

ai1,i2ei1 ∧ ei2

is an element of
∧2 F , for some ai1,i2 in R. Let A be the f× f alternating matrix with

Ai, j =


ai, j, if i < j,
0, if i = j, and
−ai, j, if j < i.

For each positive integer `, the `-th divided power of f2 is

f (`)2 = ∑
I

AIeI ∈
∧2`F,
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where the 2`-tuple I = (i1, . . . , i2`) roams over all increasing sequences of integers with 1≤ i1
and i2` ≤ f, eI = ei1 ∧ ·· · ∧ ei2` , and AI is the Pfaffian of the submatrix of A which consists
of rows and columns {i1, . . . , i2`}, in the given order. Furthermore,

∧2•F is a DGΓ-module
over

∧•F∗. In particular, if τ ∈ F∗ and v1, . . . ,vs are homogeneous elements of
∧2•F , then

τ

(
v(`1)

1 ∧·· ·∧ v(`s)
s

)
=

s

∑
j=1

τ(v j)∧ v(`1)
1 ∧·· ·∧ v(` j−1)

j ∧·· ·∧ v(`s)
s .

For more details see, for example, [6, Appendix A2.4] or [3, Appendix and Sect. 2].

3.8. If I and J are integers, then VI,J , VT
I,J and VB

I,J all represent the free R-module∧I F⊗DJ(G∗).

Of course the rank of V •I,J is
(
f

I

)(
g+J−1

J

)
for any choice of •; that is •might be T, B, or empty.

3.9. We always use fi for an arbitrary element of
∧i F and γ j for an arbitrary element of

D j(G∗).

3.10. The notation⊕
ε≤J

I+J≤δ−1

means
⊕

{(I,J) | ε≤ J and I + J ≤ δ−1}.

3.11. If S is a statement then

χ(S) =

{
1, if S is true,

0, if S is false.

3.12. If M is a matrix (or a homomorphism of free R-modules), then Ir(M) is the ideal
generated by the r× r minors of M (or any matrix representation of M). We denote the
transpose of a matrix M by Mt.

3.13. The grade of a proper ideal I in a Noetherian ring R is the length of a maximal R-regular
sequence in I. The unit ideal R of R is regarded as an ideal of infinite grade.

3.14. Let I be a proper ideal in a Noetherian ring R. The ideal I is grade unmixed if gradep=
grade I for all associated prime ideals p of R/I. The grade unmixed part of I is the ideal Igunm

which satisfies either of the following two equivalent conditions:

(a) Igunm is the smallest ideal K with I ⊆ K, gradeK = grade I, and K is grade unmixed, or
(b) Igunm is the largest ideal K with I ⊆ K and grade I < grade(I : K).

Furthermore, if K is any grade unmixed ideal of R with I ⊆ K and

gradeK = grade I < grade(I : K),

then K = Igunm. In particular, if I = ∩iQi is a primary decomposition of I, with each Qi a
pi-primary ideal of R, then Igunm is the intersection of the primary components Qi of I which
correspond to prime ideals pi with gradepi = grade I.
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Of course, if R is Cohen-Macaulay, then Igunm is the usual unmixed part of I.
We recall that if I ⊆ p are ideals with p prime, then

grade I ≤ gradep≤ depthRp;

consequently, if depthRp = grade I for all p ∈ Ass R
I , then I is automatically grade unmixed.

Proof of the assertions in 3.14. If K1 and K2 are ideals which both satisfy

grade I < grade(I : Ki),

then grade I < grade(I : (K1+K2)); hence the hypothesis that R is Noetherian guarantees that
an ideal K which satisfies (b) exists. Fix this K. We show that K also has the property of (a).

Let x be a maximal R-regular sequence in I. All of the calculations may be made in R/(x).
So no harm is done if we prove the statement when grade I = 0.

We first show K is grade unmixed of grade 0. Use the primary decomposition of K to
write K = A1∩A2, where every associated prime ideal of R

A1
has grade 0, and, either A2 = R,

or A2 is a proper ideal and every associated prime ideal of R
A2

has positive grade. Observe
that

(I : K)A1A2 ⊆ (I : K)K ⊆ I;

hence, (I : K)A2 ⊆ (I : A1). Observe that (I : K)A2 has positive grade. It follows that K ⊆ A1

and 0 < grade(I : A1). The defining property of K now guarantees that K = A1 and therefore,
K is grade unmixed.

Now we show that K has property (a). We have already shown that K has grade 0 and is
grade unmixed. We prove that K is the smallest such ideal. Let J be any grade unmixed ideal
of R with I ⊆ J and gradeJ = 0. We prove that K ⊆ J. It suffices to show Kp ⊆ Jp for all p in
Ass(R

J ). Let p be in Ass(R
J ). The hypotheses on J guarantees that gradep= 0 and therefore,

(I : K) 6⊆ p. On the other hand, (I : K)K ⊆ I ⊆ J; hence,

Kp = (I : K)pKp ⊂ Ip ⊆ Jp.

With respect to the “furthermore” assertion, Igunm ⊆ K by (a) because K is grade unmixed
and K ⊆ Igunm by (b) because grade I < grade(I : K). The assertion about primary decompo-
sition is now obvious. �

3.15. Let pdR(M) represent the projective dimension of an R-module M.

3.16. Let I be a proper ideal in a Noetherian ring R. Since one can compute Ext•R(R/I,R)
from a projective resolution of R/I, one obviously has

(3.16.1) grade I ≤ pdR R/I;

if equality holds, then I is called a perfect ideal. Recall, for example, that if I is a proper
homogeneous ideal in a polynomial ring R over a field, then I is a perfect ideal if and only
if R/I is a Cohen-Macaulay ring. (This is not the full story. For more information, see, for
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example, [2, Prop. 16.19] or [1, Thm. 2.1.5].) A perfect ideal I of grade g is a Gorenstein
ideal if ExtgR(R/I,R) is a cyclic R-module.

Lemma 3.17. Adopt the notation of 3.5. If A and B are non-negative integers and Γ is an
element of DB(G∗), then

∑
m∈(Y

A)

m∗ ·m(Γ) =

(
B
A

)
Γ.

Proof. It suffices to prove the result for Γ = X (b1)
1 · · ·X (bg)

g where each bi is a nonnegative
integer and ∑i bi = B. Let m = Y a1

1 · · ·Y
ag
g , where each ai is a non-negative integer and

∑i ai = A. Observe that

m∗ ·m(Γ) =

(
b1

a1

)
· · ·
(

bg

ag

)
Γ,

because X (ai)
i · X (bi−ai)

i =
(bi

ai

)
X (bi)

i . (The most recent equation holds for all non-negative
integers ai and bi.) At this point, we have shown that

∑
m∈(Y

A)

m∗ ·m(Γ) = ∑
a1+···+an=A

(
b1

a1

)
· · ·
(

bg

ag

)
Γ.

On the other hand,

(3.17.1) ∑
a1+···+ag=A

(
b1

a1

)
· · ·
(

bg

ag

)
=

(
B
A

)
.

Indeed the left of (3.17.1) is the coefficient of xAyB−A in the left side of the polynomial

(3.17.2) (x+ y)b1 · · ·(x+ y)bg = (x+ y)B,

and the right side of (3.17.1) is the coefficient of xAyB−A in the right side of (3.17.2). �

4. THE MAPS AND MODULES OF Mε.

The object Mε is the focal point of this paper. We introduce the maps and modules of Mε

in Definition 4.1; all of the numerical information about Mε is contained in Remarks 4.2; and
some examples of Mε are given in Examples 4.3 and 4.4. We prove in Remark 6.4 that Mε

is a complex and in Lemma 6.6 that Mε is a resolution when Hypotheses 2.2 are in effect.
Ultimately, Mε is a subcomplex of Lε, Lε is the mapping cone of

Tot(Tε)

ξε

��
Tot(B),

and Tε and B are quotient sub-double complexes of the double complex V. We use Lε, Tε, B,
and V to prove Lemma 6.6; however, Mε is the object of interest in this paper; and therefore,
we introduce it, in complete detail, first.
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The conventions and notation of Section 3 are used throughout this section; in particular,
the modules V •i, j are defined in 3.8, the symbols X`, Y` and

(Y
i

)
are defined in 3.5, the notation⊕

ε≤J
I+J≤δ−1

is explained in 3.10, the function χ is explained in 3.11, and the bases ωG∗ ,ωG are explained
in 3.6. As one reads Definition 4.1, it might be helpful to simultaneously follow Example 4.3
where we record Mε, all of its constituent pieces, and all of its forms, when (g, f) = (3,9)
and ε = δ

2 .

Definition 4.1. Adopt Data 2.1 and 2.3. The maps and modules Mε are described as follows:

(a) As a graded R-module

Mε = (
⊕
ε≤J

I+J≤δ−1

VTε

I,J )⊕ (
⊕
j≤ε−1
δ≤i+ j

VB
i, j)⊕ (

∧f F⊗
∧g G),

with
(i) VTε

I,J in position I +2J−δ+2,
(ii) VB

i, j in position i+2 j−δ+1, and
(iii) (

∧f F⊗
∧g G) in position 0.

(b) The R-module homomorphisms of Mε are described below.
(i) If I+2J−δ+2 = N, 2≤N, 0≤ I, ε≤ J, and I+J ≤ δ−1, then VTε

I,J is a summand
of Mε

N and

d( fI⊗ γJ ∈VTε

I,J ) =



χ(ε≤ J−1)
g

∑
`=1

Ψ(X`)∧ fI⊗Y`(γJ) ∈VTε

I+1,J−1 ⊆Mε
N−1

+τ( fI)⊗ γJ ∈VTε

I−1,J ⊆Mε
N−1

+ ∑
i+2 j=I+2J

δ≤i+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j)

[D(µ)](m∗)∧ fI⊗m(γJ)

∈VB
i, j ⊆Mε

N−1.

(ii) If i+2 j−δ+1 = N, 2≤N, δ≤ i+ j, 0≤ i, j, and j≤ ε−1, then VB
i, j is a summand

of Mε
N and

d( fi⊗ γ j ∈VB
i, j) =


g

∑
`=1

Ψ(X`)∧ fi⊗Y`(γ j) ∈VB
i+1, j−1 ⊆Mε

N−1

+χ(δ≤ i+ j−1)τ( fi)⊗ γ j ∈VB
i−1, j ⊆Mε

N−1.

(iii) The R-module homomorphism

d : Mε
1 =VB

δ,0⊕χ(ε = δ−1
2 )VTε

0,ε →Mε
0 = (

∧f F⊗
∧g G)(4.1.1)

is

d( fδ ∈VB
δ,0) = fδ∧ (

∧g
Ψ)(ωG∗)⊗ωG,
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and, if ε = δ−1
2 , then

d(γε ∈VTε

0,ε) = c(γε) for c as defined in (2.3.3).(4.1.2)

Remarks 4.2. (a) If δ = 1 and ε = δ−1
2 , then Mε does not have any non-zero summands

of the form VB
i, j. Otherwise, the module VB

f,ε−1 is a non-zero summand of Mε
g+2ε−1;

furthermore, if g+2ε−1 < N, then Mε
N does not contain any non-zero summands of

the form VB
i, j. The value of g+2ε−1 is

f−2, if ε = δ−1
2 ,

f−1, if ε = δ

2 , and
f, if ε = δ+1

2 .

(b) If δ = 1 and ε = δ+1
2 , then Mε does not have any non-zero summands of the form VTε

I,J .
Otherwise, VTε

0,δ−1 is a non-zero summand of Mε
δ; furthermore, if δ+1 ≤ N, then Mε

N

does not contain any non-zero summands of the form VTε

I,J .
(c) The largest index N with Mε

N 6= 0 is

(4.2.1) Nmax =



1, if ε = δ−1
2 and δ = 1,

f−1, if ε = δ−1
2 and 1 = g,

f−2, if ε = δ−1
2 , 2≤ δ, and 2≤ g,

f−1, if ε = δ

2 , and
f, if ε = δ+1

2 ;

furthermore, if Nmax is the parameter of (4.2.1), then Mε
Nmax is equal to

VTε

0,δ−1,
if ε = δ−1

2 and 1 = g

or ε = δ−1
2 and 1 = δ,

χ(ε = δ−1
2 )χ(2 = g)VT

0,δ−1⊕χ(ε = δ

2)χ(1 = g)VT
0,δ−1⊕VB

f,ε−1, otherwise.

(d) As noted in (b), Mε does not have any non-zero summands of the form VTε

I,J if δ = 1 and
ε = δ+1

2 . Otherwise, the module VTε

0,ε is a non-zero summand of Mε
N0 for

(4.2.2) N0 = 2ε−δ+2 =


1, if ε = δ−1

2 ,
2, if ε = δ

2 , and
3, if ε = δ+1

2 and 2≤ δ;

furthermore, if N < N0, then Mε
N does not contain any non-zero summands of the form

VTε

I,J .
(e) If R is a bi-graded ring and

τ : R(−1,0)f→ R and µ : R(0,−1)g→ R(
f

2)
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are bi-homogeneous R-module homomorphisms, then the maps and modules of Mε are
bi-homogeneous with

VTε

I,J ' R(f−2g− I−2J,−g− J)rankVTε

I,J ,

VB
i, j ' R(f−2g− i−2 j,−g− j)rankVB

i, j , and

(
∧f F⊗

∧g G)' R.

Indeed, under the given hypotheses,

Ψ : R(−1,−1)g→ Rf and D(µ) : R(0,−J)(
J+g−1

J )→ R(
f

2J)

are also bi-homogeneous R-module homomorphisms.
(f) The hypotheses of (e) are in effect in the generic case where

R = R0[T1, . . . ,Tf,{Ai, j,k | 1≤ i < j ≤ f and 1≤ k ≤ g}],

degTi = (1,0), degAi, j,k = (0,1), τ(ei) = Ti, for 1≤ i≤ f, and

µ(Xk) = ∑
1≤i< j≤f

Ai, j,kei∧ e j,

for 1≤ k ≤ g, with e1, . . . ,ef a basis for F and X1, . . . ,Xg a basis for G∗.
(g) If R is a graded ring and τ : R(−1)f→ R and µ : Rg→ R(

f

2) are homogeneous R-module
homomorphisms, then the maps and modules of Mε are homogeneous with

Mε
N '

{
R if N = 0
R(−g+2−N)β′N ⊕R(−g+1−N)βN if 1≤ N ≤ Nmax, as given in (4.2.1) ,

where

(4.2.3) β
′
N = ∑

I+2J−δ+2=N
ε≤J

I+J≤δ−1

rankVTε

I,J and βN = ∑
i+2 j−δ+1=N

j≤ε−1
δ≤i+ j

rankVB
i, j,

for 1≤ N ≤ Nmax.
(h) The hypotheses of (g) are in effect in the special case where R is the polynomial ring

R = R0[T1, . . . ,Tf],

degTi = 1, degαi, j,k = 0, τ(ei) = Ti, for 1≤ i≤ f, and

µ(Xk) = ∑
1≤i< j≤f

αi, j,kei∧ e j,

for 1≤ k ≤ g, with e1, . . . ,ef a basis for F , and X1, . . . ,Xg a basis for G∗, and αi, j,k ∈ R0.
(i) If ε is equal to δ

2 or δ+1
2 , Mε is a resolution, and the hypotheses of (h) are in effect with

R0 a field, then there is a quasi-isomorphism from Mε to the g-linear minimal resolution

0→ R(−g−Nmax +1)bNmax → ··· → R(−g−1)b2 → R(−g)b1 → R,
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with bN = βN−β′N+1 for βN and β′N as defined in (4.2.3). (This remark is a consequence
of three facts. First of all, the generators of Mε

1 all have degree g; secondly, every
homogeneous R-module homomorphism

R(−a)→ R(−a−1)

is necessarily zero; and thirdly, the image of a homogeneous R-module homomorphism
R(−a)A→ R(−a)B is a free summand of the target.)

However, the analogous statement is not true when ε = δ−1
2 . See Examples 4.4.c and

4.4.d.
(j) In Definition 4.1.bi, it is not necessary to impose the condition j ≤ ε− 1 in the VB

i, j-
component of d(VTε

I,J ); because, if the expression

(4.2.4) ∑
i+2 j=I+2J

δ≤i+ j

(−1)I+ j
(

J−1− j
J− ε

)
∑

m∈( Y
J− j)

[D(µ)](m∗)∧ fI⊗m(γJ) ∈VB
i, j

is non-zero, then the inequality j ≤ ε− 1 is automatically satisfied. Indeed, if (4.2.4)
is non-zero, then j ≤ J. However j can not equal J; because, if j = J, then i = I and
δ≤ i+ j = I + J ≤ δ−1; which is impossible. Thus, 0≤ J− j−1. On the other hand,
the binomial coefficient

(J−1− j
J−ε

)
is not zero; so 0 ≤ J− ε ≤ J−1− j, and j ≤ ε−1, as

claimed. (This remark, which looks technical, is actually the proof of the assertion that
Mε is a subcomplex of Lε; see Remark 6.4.)

Example 4.3. Let (g, f) = (3,9). The parameter δ (which equals f− g) is even, and therefore
the constraint dδ−1

2 e ≤ ε ≤ dδ

2e forces ε to equal δ

2 = 3. In this example, we record Mε, all
of its constituent pieces, and all of its forms. Definition 4.1.a says that

Mε =
⊕
(4.3.1)

VTε

I,J ⊕
⊕
(4.3.2)

VB
i, j⊕ (

∧9 F⊗
∧3 G),

with

(I,J) ∈{(I,3) | 0≤ I ≤ 2}∪{(I,4) | 0≤ I ≤ 1}∪{(0,5)}(4.3.1)

and

(i, j) ∈{(i,0) | 6≤ i≤ 9}∪{(i,1) | 5≤ i≤ 9}∪{(i,2) | 4≤ i≤ 9}.(4.3.2)

It is useful to consider the double complexes of Table 4.3.1. (The double complexes Tε and
B are officially introduced in Definition 5.1; the complex Tot(4.3.3) is a shift (see (6.2.3)) of
a subcomplex of Tot(Tε) and the complex Tot(4.3.4) is a subcomplex of Tot(B).) It is shown
in Lemma 6.2 that there is a map of complexes ξ from a shift of Tot(4.3.3) to Tot(4.3.4),
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VTε

0,5
Ψ // VTε

1,4
Ψ //

τ

��

VTε

2,3

τ

��

VTε

0,4
Ψ // VTε

1,3

τ

��

VTε

0,3

(4.3.3)

and

VB
9,2

τ

��

VB
8,2

τ

��

Ψ // VB
9,1

τ

��

VB
7,2

τ

��

Ψ // VB
8,1

τ

��

Ψ // VB
9,0

τ

��

VB
6,2

τ

��

Ψ // VB
7,1

τ

��

Ψ // VB
8,0

τ

��

VB
5,2

τ

��

Ψ // VB
6,1

τ

��

Ψ // VB
7,0

τ

��

VB
4,2

Ψ // VB
5,1

Ψ // VB
6,0

∧3Ψ // ∧9 F⊗
∧3 G.

(4.3.4)

TABLE 4.3.1. Double complexes which are used in the construction of the
first version (4.3.5) of Mε in Example 4.3.

with ξ(VTε

0,3)⊆VB
6,0, so that Mε is the mapping cone of ξ. As a graded module, Mε is

0→VB
9,2→VB

8,2→

VTε

0,5
⊕

VB
7,2
⊕

VB
9,1

→

VTε

1,4
⊕

VB
6,2
⊕

VB
8,1

→

VTε

0,4
⊕

VTε

2,3
⊕

VB
5,2
⊕

VB
7,1
⊕

VB
9,0

→

VTε

1,3
⊕

VB
4,2
⊕

VB
6,1
⊕

VB
8,0

→

VTε

0,3
⊕

VB
5,1
⊕

VB
7,0

→VB
6,0→

∧9 F⊗
∧3 G,(4.3.5)
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0→ R(−10,−5)6→ R(−9,−5)54→

R(−7,−8)21

⊕
R(−8,−5)216

⊕
R(−8,−4)3

→

R(−6,−7)135

⊕
R(−7,−5)504

⊕
R(−7,−4)27

→

R(−5,−7)15

⊕
R(−5,−6)360

⊕
R(−6,−5)756

⊕
R(−6,−4)108

⊕
R(−6,−3)1

→

R(−4,−6)90

⊕
R(−5,−5)756

⊕
R(−5,−4)252

⊕
R(−5,−3)9

→

R(−3,−6)10

⊕
R(−4,−4)378

⊕
R(−4,−3)36

→ R(−3,−3)84→ R.

TABLE 4.3.2. The complex Mε from Example 4.3 when the data is bi-
homogeneous, as described in Remark 4.2.e.

with
∧9 F ⊗

∧3 G in position zero. (One can use the formulas given in Definition 4.1.a to
calculate the position of each summand VTε

I,J and VB
i, j of Mε; however, if the double com-

plexes (4.3.3) and (4.3.4) are available, then it is easy to read the position of each sum-
mand of Mε from the mapping cone construction.) If the data is bi-homogeneous, as de-
scribed in Remark 4.2.e, then Mε is given in Table 4.3.2. The rank of V •I,J is given in
3.8. The bi-homogeneous twists in Mε are given in Remark 4.2.e or may be read from
the double complexes (4.3.3) and (4.3.4) as soon as one knows that

∧9 F ⊗
∧3 G = R and

VT
0,3 = R(−3,−6)10. If the hypotheses of Remark 4.2.g are in effect, then Mε is

0→ R(−10)6→ R(−9)54→
R(−7)21

⊕
R(−8)219

→
R(−6)135

⊕
R(−7)531

→
R(−5)375

⊕
R(−6)865

→
R(−4)90

⊕
R(−5)1017

→
R(−3)10

⊕
R(−4)414

→ R(−3)84→ R.

If the hypotheses of Remark 4.2.i are in effect, then Mε is quasi-isomorphic to

0→ R(−10)6→ R(−9)54→ R(−8)219→ R(−7)510→ R(−6)730

→ R(−5)642→ R(−4)324→ R(−3)74→ R.(4.3.6)

Examples 4.4. These examples are presented more quickly than Example 4.3.



A MATRIX OF LINEAR FORMS WHICH IS ANNIHILATED BY A VECTOR OF INDETERMINATES 21

(a) Let (g, f) = (2,6) and ε = δ

2 = 2. The modules of Mε are

0→VB
6,1→

VTε

0,3
⊕

VB
5,1

→

VTε

1,2
⊕

VB
4,1
⊕

VB
6,0

→

VTε

0,2
⊕

VB
3,1
⊕

VB
5,0

→VB
4,0→

∧6 F⊗
∧2 G.

If the hypotheses of Remark 4.2.e are in effect, then Mε is

0→ R(−6,−3)2→
R(−4,−5)4

⊕
R(−5,−3)12

→

R(−3,−4)18

⊕
R(−4,−3)30

⊕
R(−4,−2)1

→

R(−2,−4)3

⊕
R(−3,−3)40

⊕
R(−3,−2)6

→ R(−2,−2)15→ R.

If the hypotheses of Remark 4.2.g are in effect, then Mε is

0→ R(−6)2→
R(−4)4

⊕
R(−5)12

→
R(−3)18

⊕
R(−4)31

→
R(−2)3

⊕
R(−3)46

→ R(−2)15→ R.

If the hypotheses of Remark 4.2.i are in effect, then Mε is quasi-isomorphic to

(4.4.1) 0→ R(−6)2→ R(−5)12→ R(−4)27→ R(−3)28→ R(−2)12→ R.

(b) Let (g, f) = (3,6) and ε = δ+1
2 = 2. The modules of Mε are

0→VB
6,1→VB

5,1→
VB

4,1
⊕

VB
6,0

→

VTε

0,2
⊕

VB
3,1
⊕

VB
5,0

→
VB

2,1
⊕

VB
4,0

→VB
3,0→

∧6 F⊗
∧3 G.

If the hypotheses of Remark 4.2.e are in effect, then Mε is

0→ R(−8,−4)3→ R(−7,−4)18→
R(−6,−4)45

⊕
R(−6,−3)1

→

R(−4,−5)6

⊕
R(−5,−4)60

⊕
R(−5,−3)6

→
R(−4,−4)45

⊕
R(−4,−3)15

→ R(−3,−3)20→ R.(4.4.2)
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If the hypotheses of Remark 4.2.g are in effect, then Mε is

0→ R(−8)3→ R(−7)18→ R(−6)46→
R(−4)6

⊕
R(−5)66

→ R(−4)60→ R(−3)20→ R.

If the hypotheses of Remark 4.2.i are in effect, then Mε is quasi-isomorphic to

(4.4.3) 0→ R(−8)3→ R(−7)18→ R(−6)46→ R(−5)66→ R(−4)54→ R(−3)20→ R.

(c) Let (g, f) = (3,6) and ε = δ−1
2 = 1. The modules of Mε are

0→VB
6,0→

VT1

0,2
⊕

VB
5,0

→
VT1

1,1
⊕

VB
4,0

→
VT1

0,1
⊕

VB
3,0

→
∧6 F⊗

∧3 G.

If the hypotheses of Remark 4.2.e are in effect, then Mε is

(4.4.4) 0→ R(−6,−3)1→
R(−4,−5)6

⊕
R(−5,−3)6

→
R(−3,−4)18

⊕
R(−4,−3)15

→
R(−2,−4)3

⊕
R(−3,−3)20

→ R.

If the hypotheses of Remark 4.2.g are in effect, then Mε is

0→ R(−6)1→
R(−4)6

⊕
R(−5)6

→
R(−3)18

⊕
R(−4)15

→
R(−2)3

⊕
R(−3)20

→ R.

In the present example, ε = dδ−1
2 e and ε 6= dδ

2e. If the rest of the hypotheses of Re-
mark 4.2.i, other than the hypothesis ε = dδ

2e, are in effect, then we do not know the
graded Betti numbers in a minimal homogeneous resolution of H0(Mε); indeed, we do
not know if these Betti numbers can be determined from the data (ε, f,g) or if more
information about the R-module µ (of Data 2.1) is required.

(d) Let (g, f) = (4,7) and ε = δ−1
2 = 1. The modules of Mε are

0→VB
7,0→VB

6,0→
VT1

0,2
⊕

VB
5,0

→
VT1

1,1
⊕

VB
4,0

→
VT1

0,1
⊕

VB
3,0

→
∧7 F⊗

∧4 G.

If the hypotheses of Remark 4.2.e are in effect, then Mε is

0→ R(−8,−4)1→ R(−7,−4)7→
R(−5,−6)10

⊕
R(−6,−4)21

→
R(−4,−5)28

⊕
R(−5,−4)35

→
R(−3,−5)4

⊕
R(−4,−4)35

→ R.

If the hypotheses of Remark 4.2.g are in effect, then Mε is

(4.4.5) 0→ R(−8)1→ R(−7)7→
R(−5)10

⊕
R(−6)21

→
R(−4)28

⊕
R(−5)35

→
R(−3)4

⊕
R(−4)35

d1−→ R.
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Notice that the graded Betti numbers show that it is not possible for (4.4.5) to be quasi-
isomorphic to a pure complex; indeed, the image of d1 is generated in two different
degrees.

(e) One can use Macaulay2 [7] to verify the graded Betti numbers of (4.3.6), (4.4.1), (4.4.3),
and (4.4.4), when the Hypotheses 2.2 are in effect.

(f) When f= 2n+1 is odd, g= 1, and ε = δ

2 , then Mε is isomorphic to the complex

(4.4.6) M′ =
⊕
i+ j≤n

0≤ j

∧i F∗h( j)⊕
⊕

p+q≤n−1
0≤q

∧p Fλ(q)

of [15, Def. 2.15]. In M′,
∧i F∗h( j) is in position i + 2 j and

∧p Fλ(q) in position
p+2q+2. The module

∧f F⊗
∧g G in Mε corresponds to

∧0 F∗h(0) in M′, the module
VB

i, j in Mε corresponds to
∧f−i F∗h(i+ j−δ) in M′, and the module VTε

I,J in Mε corresponds
to

∧I Fλ(J−n) in M′.
(g) When f= 2n is even, g= 1, and ε = δ−1

2 , then Mε is isomorphic to the complex

(4.4.7) M′ =
⊕

i+ j≤n−1
0≤ j

∧i F∗h( j)⊕
⊕

p+q≤n−1
0≤q

∧p Fλ(q)

of [14, Thm. 2.4]. (Earlier versions of the complex may be found in [13, 21].) In
M′,

∧i F∗h( j) is in position i+ 2 j and
∧p Fλ(q) in position p+2q+1. The module∧f F⊗

∧g G in Mε corresponds to
∧0 F∗h(0) in M′, the module VB

i, j in Mε corresponds to∧f−i F∗h(i+ j−δ) in M′, and the module VTε

I,J in Mε corresponds to
∧I Fλ(J+1−n) in M′.

(h) Let δ = 1. If ε = δ+1
2 = 1, then Mε is

(4.4.8) 0→VB
f,0

τ−→VB
f−1,0

τ−→ ·· · →VB
2,0

τ−→VB
1,0

(4.1.1)−−−−→
∧f F⊗

∧g G.

The subcomplex 0→Mε
f → ··· →Mε

1 of Mε is a truncation of the Koszul complex
associated to τ. If ε = δ−1

2 = 1, then Mε is

(4.4.9) 0→VTε

0,0
(4.1.2)−−−−→

∧f F⊗
∧g G.

Once we prove Theorem 2.5, then the exactness of (4.4.8) gives that Ig(Ψ) = αI1(τ) for
some element α in R and the exactness of (4.4.9) identifies α as a generator of the image
of

(4.4.10) c(1) = µ(X1)∧ (
∧g−1

Ψ)(X2∧·· ·∧Xg)⊗Yg∧·· ·∧Y1

under any isomorphism from
∧f F ⊗

∧g G to R. (We use the notation of 3.5.) These
ideas, but not this phrasing, are already known by Mark Johnson [10] and Susan Morey
[18].
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A more concrete version of (4.4.10) is obtained as follows. Let X1, . . . ,Xg be a basis
for G∗, e1, . . . ,ef a basis for F ,

µ(Xk) = ∑
1≤i< j≤f

ai, j,k ei∧ e j ∈
∧2 F, T be the column vector [τ(e1), . . . ,τ(ef)]

t,

and, for 1 ≤ k ≤ g, let Ak be the f× f alternating matrix with ai, j,k in position i, j when
i < j. In R, c(1) is a unit times the Pfaffian of

(4.4.11)


A1 A2T . . . AgT

T tA2
... 0

T tAg

 .
It is useful to observe that (4.4.11) is also the coefficient of Z1 in the Pfaffian of

Z1A1 +Z2A2 + · · ·+ZgAg A2T . . . AgT
T tA2

... 0
T tAg

 .
In this discussion, Z1, . . . ,Zg are indeterminates over R; they play the role of place hold-
ers.

(i) Take f to be odd and g= 2. If the hypotheses of Theorem 2.5 are in effect, then the ideal
Ig(Ψ)gumn is perfect of grade f−2 = δ and R/Ig(Ψ)gumn is resolved by Mε, for ε = δ−1

2 .
To describe a generating set for this ideal, let A1 and A2 be f× f alternating matrices
with entries in R and let T be a f× 1 column vector, again with entries in R. The ideal
Ig(Ψ)gumn is generated by

(4.4.12) (the coefficients of Z2
1 and Z1Z2 in the Pfaffian of

[
Z1A1 +Z2A2 A2T
T transposeA2 0

]
)

+I2(
[
A1T A2T

]
),

provided (4.4.12) has grade at least δ and I1(τ) has grade at least f. Once again, Z1 and
Z2 are indeterminates over R; they play the role of place holders.

4.5. The final non-zero map of M is of considerable interest. For most choices of (g, f), this
map is

τ : VB
f,ε−1→VB

f−1,ε−1.

If this map is written as a matrix, then it looks like the matrix of Table 4.5.1, where e1, . . .ef

is a basis for F and Ti = τ(ei). The matrix has f
(
g+ε−2
g−1

)
rows and

(
g+ε−2
g−1

)
columns. For small

values of g or δ this general form is perturbed slightly. The complete form of the last map is
given in Observation 4.6.
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T1
T2
... 0 0 0

Tf

T1
T2

0
... 0 0

Tf

0 0 . . . 0
T1
T2

0 0 0
...

Tf


TABLE 4.5.1. The last non-zero map of Mε for most (g, f). See 4.5, Obser-
vation 4.6, and (4.6.6).

Observation 4.6. Adopt Data 2.1 and 2.3. Retain the description of Mε as given in Defini-
tion 4.1 and Remarks 4.2; in particular, the value of Nmax is given in (4.2.1). Then the final
non-zero map of Mε is

dNmax : Mε
Nmax →Mε

Nmax−1

and this map is

VTε

0,0
(4.1.2)−−−−→

∧f F⊗
∧g G, if δ = 1 and ε = δ−1

2 ,(4.6.1)

VB
f,0

[
τ
]

−−→VB
f−1,0, if δ = 1 and ε = δ+1

2 ,(4.6.2)

VTε

0,δ−1

[
Ψ

ξ

]
−−−→

VTε

1,δ−2
⊕

VB
f,ε−1,

if 2≤ δ and (ε,g) = (δ−1
2 ,1),(4.6.3)

VTε

0,δ−1
⊕

VB
f,ε−1

[
Ψ 0
ξ τ

]
−−−−−→

χ(3≤ δ)VTε

1,δ−2
⊕

VB
f−1,ε−1,

if 2≤ δ and (ε,g) equals (δ−1
2 ,2) or (δ

2 ,1),(4.6.4)

VB
f,ε−1

[
0
τ

]
−−→

VTε

0,δ−1
⊕

VB
f−1,ε−1,

if 2≤ δ and (ε,g) equals (δ−1
2 ,3), or (δ

2 ,2),
or (δ+1

2 ,1)
(4.6.5)
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VB
f,ε−1

[
τ
]

−−→VB
f−1,ε−1,

if 2≤ δ and (ε,g) satisfy one of the following:
ε = δ−1

2 and 4≤ g, or ε = δ

2 and 3≤ g,
or ε = δ+1

2 and 2≤ g.
(4.6.6)

The map ξ : VTε

0,δ−1→VB
2(δ−ε),ε−1, which appears in (4.6.3) and (4.6.4), is given by

(4.6.7) ξ(γδ−1) = (−1)ε−1
∑

m∈( Y
δ−ε)

[D(µ)](m∗)⊗m(γδ−1) ∈VB
2(δ−ε),ε−1 ⊆Mε

δ−1;

furthermore,

2(δ− ε) =

{
f, if (ε,g) = (δ−1

2 ,1), and
f−1, if (ε,g) = (δ−1

2 ,2) or (δ

2 ,1).

Proof. If δ = 1, then Mε is recorded in (4.4.8) and (4.4.9). Henceforth, we assume 2 ≤ δ.
The differential dNmax is given in Definition 4.1.b. We need only deal with the modules. The
module Mε

Nmax is given in Remark 4.2.c. One easily calculates the summands of Mε
Nmax−1.

For example, if ε = δ+1
2 and VB

i, j is a summand of Mε
Nmax−1 =Mε

f−1, then

i+2 j−δ+1 = f−1 and j ≤ ε−1 = δ+1
2 −1;

hence,

f−2− i+δ = 2 j ≤ δ−1.

It follows that f−1≤ i. On the other hand, f − i and δ have the same parity; so i = f−1. A
similar argument works in the remaining cases. �

5. THE DOUBLE COMPLEXES Tε AND B.

Adopt Data 2.1 and 2.3. The double complexes Tε and B, which are used in the construc-
tion of Mε, both are quotients of the double complex V. In Definition 5.1, we introduce all
three double complexes V, Tε, and B; we also introduce the sub-double-complex U of V with
V/U equal to B. (We have no need for the subcomplex of V which defines Tε.) Please keep
in mind that, for our purposes, Tε and B are the important complexes. We have introduced V
and U in order to calculate the homology of B; see Lemma 5.7. (It is not difficult to compute
the homology of Tε; see Lemma 5.3.)

Definition 5.1. Adopt Data 2.1 and 2.3. Define V, Tε, B and U to be the double complexes
which are given in Tables 5.1.1 and 5.1.2. The double complexes Tε and B are quotients of
V and U is the subcomplex of V with V/U= B. The modules are indexed in such a way that

Tot(V)0 = (
∧f F⊗

∧g G)⊕
⊕

i+2 j=δ−1
Vi, j.

(a) The module Vi, j is the free R-module
∧i F⊗D j(G∗), see 3.8.
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V :
...

τ

��

...

τ

��

...

��
· · · Ψ // Vδ,1

Ψ //

τ

��

Vδ+1,0
//

τ

��

0

��
· · · Ψ // Vδ−1,1

Ψ //

τ

��

Vδ,0

∧
g

Ψ //

τ

��

∧f F⊗
∧g G

τ

��

· · · Ψ // Vδ−2,1
Ψ //

τ��

Vδ−1,0

∧
g

Ψ//

τ��

∧f−1 F⊗
∧g G

τ��
...

τ

��

...

τ

��

...

τ

��

· · · // V0,1
Ψ //

��

V1,0

∧
g

Ψ//

τ

��

∧g+1 F⊗
∧g G

τ

��
· · · // 0 // V0,0

∧
g

Ψ // ∧g F⊗
∧g G

Tε :
...

τ

��

...

τ

��

...

τ

��
. . . // V0,ε+2

Ψ //

��

V1,ε+1

τ

��

Ψ // V2,ε

τ

��
. . . // 0 //

��

V0,ε+1
Ψ //

��

V1,ε

τ

��
. . . // 0 // 0 // V0,ε,

TABLE 5.1.1. The double complexes V and Tε from Definition 5.1.

(b) The R-module homomorphism

Vi, j

τ

��
Vi−1, j

sends fi⊗ γ j to τ( fi)⊗ γ j. (Recall the convention 3.9.)
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B :
...

τ

��

...

τ

��

...

τ

��

...

��
. . .

Ψ // Vδ,2
Ψ //

τ

��

Vδ+1,1
Ψ //

τ

��

Vδ+2,0
//

τ

��

0

��
. . .

Ψ // Vδ−1,2
Ψ //

τ

��

Vδ,1
Ψ //

τ

��

Vδ+1,0
//

τ

��

0

��
. . .

Ψ // Vδ−2,2
Ψ // Vδ−1,1

Ψ // Vδ,0
// ∧f F⊗

∧g G,

U : · · · Ψ // Vδ−2,1
Ψ //

τ��

Vδ−1,0

∧
g

Ψ//

τ��

∧f−1 F⊗
∧g G

τ��
...

τ

��

...

τ

��

...

τ

��

· · · // V0,1
Ψ //

��

V1,0

∧
g

Ψ//

τ

��

∧g+1 F⊗
∧g G

τ

��
· · · // 0 // V0,0

∧
g

Ψ // ∧g F⊗
∧g G

TABLE 5.1.2. The double complexes B and U from Definition 5.1.

(c) The R-module homomorphism Vi, j
Ψ // Vi+1, j−1 sends fi⊗γ j to ∑

`
Ψ(X`)∧ fi⊗Y`(γ j).

(The element
g

∑
`=1

X`⊗Y` of G∗⊗G is explained in 3.5.)

(d) The R-module homomorphism Vi,0

∧
g

Ψ−−−→
∧g+i F⊗

∧g G is

fi 7→ fi∧ (
∧g

Ψ)(ωG∗)⊗ωG.

(The symbols ωG∗ and ωG are explained in 3.6.)

Remarks 5.2. (a) We always use fi for an arbitrary element of
∧i F and γ j for an arbitrary

element of D j(G∗); see 3.9.
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(b) Recall from the definition of Ψ in Data 2.1 that τ◦Ψ = 0. Observe that the squares

Vi, j //

��

Vi+1, j−1

��
Vi−1, j // Vi, j−1

from the complexes of Definition 5.1 anti-commute and the squares

Vi,0 //

��

∧i+g F⊗
∧g G

��

Vi−1,0 // ∧i−1+g F⊗
∧g G

commute on-the-nose.
(c) Let N be an integer.

(i) The module Tot(V)N is equal to(
∧f+NF⊗

∧g G)⊕ ∑
(5.2.1)

Vi, j, if −δ≤ N, and

0, if N <−δ,

where the sum is taken over

(5.2.1) {(i, j) | i+2 j−δ+1 = N, and 0≤ i, j} .

(ii) The module Tot(Tε)N is equal to0, if N ≤ 0, and
∑

(5.2.2)
Vi, j, if 1≤ N,

where the sum is taken over

(5.2.2) {(i, j) | i+2 j−δ+1 = N, 0≤ i, and ε≤ j}.

(iii) The module Tot(B)N is equal to
0, if N ≤−1,∧f F⊗

∧g G, if N = 0, and
∑

(5.2.3)
Vi, j, if 1≤ N,

where the sum is taken over

(5.2.3) {(i, j) | i+2 j−δ+1 = N, δ≤ i+ j, and 0≤ i, j} .
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(iv) The module Tot(U)N is equal to
∑

(5.2.4)
Vi, j, if 0≤ N,

(
∧f+NF⊗

∧g G)⊕ ∑
(5.2.4)

Vi, j, if −δ≤ N ≤−1, and

0, if N <−δ.

where the sum is taken over

(5.2.4) {(i, j) | i+2 j−δ+1 = N, i+ j ≤ δ−1 and 0≤ i, j} .

Lemma 5.3. Adopt Data 2.1. Assume Hypothesis 2.2.b holds. Recall the double complexes
Tε and V of Definition 5.1.

(a) If N is an integer, then

HN(Tot(Tε))'

{
R

I1(τ)
⊗D δ+N−1

2
(G∗), if δ+N−1 is even and 2ε−δ+1≤ N, and

0, otherwise.

Furthermore, if δ+N−1 is even and 2ε−δ+1≤ N, then

(5.3.1) {Jzm∗K | m ∈
( Y

δ+N−1
2

)
}

is a basis for the free R/I1(τ)-module HN(Tot(Tε)). (See Remark 5.4 and (3.5.1).)
(b) If 1≤ δ and 1≤ N, then

HN(Tot(V))'

{
R/I1(τ)⊗D δ+N−1

2
(G∗), if δ+N−1 is even, and

0, otherwise.

Furthermore, if δ+N−1 is even and 1≤ N, then

(5.3.2) {JZm∗K | m ∈
( Y

δ+N−1
2

)
}

is a basis for the free R/I1(τ)-module HN(Tot(V)). (See Remark 5.4 and (3.5.1).)

Remarks 5.4. (a) We explain the notation in (5.3.1) and (5.3.2). For each element γ of
D δ+N−1

2
(G∗), cycles zε

γ in Tot(Tε) δ+N−1
2

and Zγ in Tot(V) δ+N−1
2

are defined in Lemma 5.5.
In particular, the homology class Jzm∗K of (5.3.1) refers to the homology class of the cycle
zm∗ in Tot(Tε) δ+N−1

2
which corresponds to the element m∗ of D δ+N−1

2
(G∗) as described in

Lemma 5.5.

(b) A less technical statement of Lemma 5.3.a is that the non-zero homology of Tot(Tε) is
“caused by” the external corners V0, j0 in Tε. Furthermore, the corner V0, j0 contributes

R/I1(τ)⊗D j0(G
∗)

to H2 j0−δ+1(Tot(Tε)). We use (5.2.2) to read that V0, j0 sits in position 2 j0−δ+1 of Tot(Tε).
Also, it is immediate that if N is 2 j0−δ+1, then j0 = (N +δ−1)/2.
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Proof of Lemma 5.3. (a) Each column of Tε is the tensor product of a free R-module with
the Koszul complex associated to a regular sequence. Consequently, the homology of each
column of Tε is well understood. We view Tot(Tε) as the limit of a sequence of mapping
cones; each mapping cone adjoins one more column from Tε. The columns are arranged in
such a way that the homology of the new column does not interfere with the homology of
the total complex of the previous columns. We provide some details. Let j0 be an integer
with ε≤ j0; and A and P be the subcomplexes

A= Tot(
⊕

V∗,≤ j0−1) and P= Tot(
⊕

V∗,≤ j0)

of Tot(Tε). We assume by induction that

HN(A) 6= 0 only if δ+N−1 is even, and 2ε−δ+1≤ N ≤ 2 j0−δ−1.

We see that P/A is the column
⊕

iVi, j0 of Tε; thus P/A is the tensor product of the Koszul
complex associated to τ with D j0(G

∗). Hypothesis 2.2.b ensures that

HN(P/A)'

{
R/I1(τ)⊗D j0(G

∗), if N = 2 j0−δ+1, and
0, otherwise.

The long exact sequence of homology which is induced by the short exact sequence of com-
plexes

0→ A→ P→ P/A→ 0

yields that

HN(P)'


0, if 2 j0−δ+2≤ N,

R/I1(τ)⊗D j0(G
∗), if N = 2 j0−δ+1,

HN(A), if N ≤ 2 j0−δ.

Furthermore, the cycles that represent HN(A) continue to represent HN(P) for N ≤ 2 j0−δ.
Also, it is not difficult to identify a basis for the free R/I1(τ)-module H2 j0−δ+1(P). One takes
a basis for D j0(G

∗). Each element of this basis is a cycle in the complex P/A. One lifts the
cycle in P/A to a cycle in P and then takes the homology class. In 3.5, we identified the
basis {m∗ | m ∈

(Y
j0

)
} for D j0(G

∗). In Lemma 5.5 we lift m∗ to the cycle zm∗ in P⊆ Tot(Tε).

(b) The proof is similar to the proof of (a). The only difference is that the stair-case pattern
involving exterior lower left-hand corners starts with the second column instead of the first
column. That is, H−δ+1(Tot(V)) and H−δ(Tot(V)) are not calculated using the method of
the proof of (a). On the other hand, the statement of the result makes no claim about these
homologies because −δ < −δ+ 1 ≤ 0 < N. Once 1 ≤ N, then the module HN(Tot(V)) is
non-zero if and only if Tot(V)N contains one of the corners V0, j0 of V. Furthermore, (5.2.1)
shows that V0, j0 is a summand of Tot(V)N if and only if 2 j0− δ+ 1 = N. The rest of the
proof is identical to the proof of (a).
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Lemma 5.5. Adopt Data 2.1 and recall the double complexes V, Tε, and B of Definition 5.1.
Let N be a positive integer with δ+N−1 even and let γ be an element of D δ+N−1

2
(G∗). Define

Zγ to be the following element of V :

(5.5.1) Zγ =

δ+N−1
2

∑
j=0

∑
m∈(Y

j)

(−1) j[D(µ)](m(γ))⊗m∗ ∈Vδ+N−1−2 j, j ⊂ V

and define zε
γ and ζγ to be the images of Zγ in the quotient double complexes Tε and B,

respectively. Then

(a) Zγ, zε
γ, and ζγ are elements Tot(V)N , Tot(Tε)N , and Tot(B)N , respectively,

(b) Zγ, zε
γ, and ζγ are cycles in Tot(V), Tot(Tε), and Tot(B), respectively,

(c) zε
γ =

δ+N−1
2
∑

J=ε

∑

m1∈(
Y

δ+N−1
2 −J)

(−1)J[D(µ)](m∗1)⊗m1(γ) ∈Vδ+N−1−2J,J ⊆ Tot(Tε)N , and

(d) ζγ =
N−1
∑
j=0

∑

m1∈(
Y

δ+N−1
2 − j)

(−1) j[D(µ)](m∗1)⊗m1(γ) ∈Vδ+N−1−2 j, j ⊆ Tot(B)N .

Proof.
(a) Observe that [D(µ)](m(γ))⊗m∗, in the notation of (5.5.1), is an element of Vδ+N−1−2 j, j,
which, according to (5.2.1), is a summand of Tot(V)N .

(c,d) According to (5.2.2) and (5.2.3), Vδ+N−1−2 j, j is a non-zero summand of Tε if and only
if ε≤ j; and Vδ+N−1−2 j, j is a non-zero summand of B if and only if j ≤ N−1. Observe that

∑
m∈(Y

J)

m(γ)⊗m∗ = ∑
m1∈(

Y
δ+N−1

2 −J)

m∗1⊗m1(γ) ∈ D δ+N−1
2 −J(G

∗)⊗DJ(G∗).

(b) It suffices to show that Zγ is a cycle in Tot(V). The differential d of Tot(V) takes Tot(V)N

to

Tot(V)N−1 =

δ+N−3
2

∑
j=0

Vδ+N−2−2 j, j.

Fix j0 with 0≤ j0 ≤ δ+N−3
2 . Observe that the component of d(Zγ) in Vδ+N−2−2 j0, j0 is A+B,

where A is the horizontal contribution and B is the vertical contribution. In other words,
A =

g

∑
`=1

∑

m∈( Y
j0+1)

(−1) j0+1Ψ(X`)∧ [D(µ)](m(γ))⊗Y`(m∗) and

B = ∑

m∈(Y
j0
)
(−1) j0τ([D(µ)](m(γ)))⊗m∗.
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The elements

(5.5.2)
g

∑
`=1

∑
m∈( Y

j0+1)

X`⊗m⊗Y`(m∗) and
g

∑
`=1

∑
m∈(Y

j0
)

X`⊗Y`m⊗m∗

of G∗⊗Sym j0+1 G⊗D j0(G
∗) are equal; so,

A =
g

∑
`=1

∑
m∈(Y

j0
)

(−1) j0+1
Ψ(X`)∧ [D(µ)]((Y`m)(γ))⊗m∗.

If γ′ is an arbitrary element of D•(G∗), then

(5.5.3) τ([D(µ)](γ′)) =
g

∑
`=1

τ(µ(X`))∧ [D(µ)](Y`(γ′)).

(It suffices to test this assertion when γ′ = X (a1)
1 X (a2)

2 · · ·X (a`)
` .) It follows that

A = ∑
m∈(Y

j0
)

(−1) j0+1
τ([D(µ)](m(γ)))⊗m∗ =−B.

�

Proposition 5.6. Adopt Data 2.1. Assume Hypotheses 2.2 holds. Recall the double complex
U of Definition 5.1. Then Hi(Tot(U)) = 0, for 0≤ i.

Proof. Each row of U is isomorphic to a truncation of a generalized Eagon-Northcott com-
plex. Recall that, for each R-module homomorphism

Φ : G∗→ F

(or equivalently Φ∗ : F∗→ G), there is a family of generalized Eagon-Northcott complexes
{C i

Φ∗} (see, for example, [6, Appendix A.2]). If

(5.6.1) −1≤ i≤ δ+1,

then C i
Φ∗ has length δ+ 1; and, if δ+ 1 ≤ grade Ig(Φ), then C i

Φ∗ is acyclic for i satisfying
(5.6.1). Furthermore, the complexes C i

Φ∗ , for i satisfying (5.6.1), exhibit depth-sensitivity. In
particular, if δ≤ grade Ig(Φ), then H j(C i

Φ∗) = 0 for 2≤ j and i satisfying (5.6.1). Hypothe-
sis 2.2.a guarantees that δ≤ grade Ig(Ψ); thus, H j(C i

Ψ∗) = 0 for 2≤ j and i satisfying (5.6.1).
The rows of U are isomorphic to truncations of the complexes C i

Ψ∗ , for 1≤ i≤ δ. In partic-
ular, the top row of U, which is also the longest row of U, is isomorphic to the truncation
of

C 1
Ψ∗ : 0→

∧f F∗⊗Dδ−1G→ ·· · →
∧g+2 F∗⊗D1G→

∧g+1 F∗⊗D0G→ F∗ Ψ∗−→ G

at F∗. The resulting truncation is an acyclic complex of length δ; so we use the full force
of Hypothesis 2.2.a to conclude that the top row of U acyclic. In the lower rows of U, the
truncation of the corresponding generalized Eagon-Northcott complex C i

Ψ∗ is more severe,
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consequently, the row is shorter than the top row of U and one need not use all of Hypothe-
sis 2.2.a to conclude that the row is acyclic. We observe that the complex C 1 is also called
the Buchsbaum-Rim complex.

At any rate, each row of U has non-zero homology only at the right hand boundary. We ob-
serve that the modules from the right hand column of U all are summands of

⊕
i≤−1 Tot(U)i.

In particular,
∧f−1 F ⊗

∧g G, which is the right-most module in the top row of U, is a sum-
mand of Tot(U)−1. Standard results about total complexes now yield that HN(Tot(U)) = 0,
for 0≤ N. �

Lemma 5.7. Adopt Data 2.1. Assume Hypotheses 2.2 hold. Recall the double complex B of
Definition 5.1. If N is an integer, then

HN(Tot(B))'


R

I1(τ)
⊗D δ+N−1

2
(G∗), if δ+N−1 is even and 1≤ N,

R, if N = 0, and
0, otherwise.

Furthermore, if δ+N−1 is even and 1≤ N, then

(5.7.1) {Jζm∗K | m ∈
( Y

δ+N−1
2

)
}

is a basis for the free R/I1(τ)-module HN(Tot(B)), where the formula for ζm∗ is given in
Lemma 5.5.

Proof. The value of HN(Tot(B)) for N ≤ 0 is clear from the definition of B. For positive N,
the short exact sequence of complexes

0→ Tot(U)→ Tot(V)→ Tot(B)→ 0,

combined with Proposition 5.6, yields that HN(Tot(V)) ' HN(Tot(B)) for 1 ≤ N; hence,
Lemma 5.3.b completes the calculation of the isomorphism class of Hi(Tot(B)). Further-
more, according to Lemma 5.5, (5.7.1) is the basis for HN(Tot(B)) that corresponds to the
basis (5.3.2) of HN(Tot(V)). �

6. THE MAP OF COMPLEXES ξε : Tot(Tε)→ Tot(B).

Data 2.1 and 2.3 are in effect throughout this section. The double complexes Tε and B are
defined in 5.1 and the maps and modules of Mε are given in Definition 4.1.

In this section we define a map of complexes ξε : Tot(Tε)→ Tot(B). Once ξε is defined,
we let Lε be the mapping cone of ξε. We prove that when Hypotheses 2.2 are in effect, then
Lε is a resolution, Mε is a subcomplex of Lε, and Lε/Mε is split exact; so, in particular, Mε

is a resolution of {
R, if ε = dδ

2e, and
R̃, if ε = dδ−1

2 e.
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The most recent statement is assertion (b) of Theorem 2.5. The section concludes with the
proof of Theorem 2.5 and item (b) of Theorem 2.7. Theorems 2.5 and 2.7 are the main results
of the paper.

Ideas from 3.5 are used in the definition of ξε.

Definition 6.1. Adopt Data 2.1 and 2.3. Recall the double complexes Tε and B from Defini-
tion 5.1. Define the R-module homomorphism ξε : Tot(Tε)→ Tot(B) as follows.

(a) If N = 0 and ε = δ−1
2 , then

ξε
N : V0,ε = Tε

0→ B0 =
∧f F⊗

∧g G

is given by ξε
0(γε) = c(γε), where c is the map of (2.3.3).

(b) If 1≤ N and I and J are parameters with I +2J−δ+1 = N, 0≤ I, and ε≤ J, then

ξ
ε
N( fI⊗ γJ ∈VI,J ⊆ Tot(Tε)N)

=(−1)N
∑

i+2 j=I+2J
δ≤i+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j)

[D(µ)](m∗)∧ fI⊗m(γJ) ∈Vi, j ⊆ Tot(B)N .

Lemma 6.2. Adopt Data 2.1 and 2.3. Then the R-module homomorphism

ξ
ε : Tot(Tε)→ Tot(B)

of Definition 6.1 is a map of complexes.

Proof. We verify that each square

(6.2.1) Tot(Tε)N
dTε

//

ξε
N
��

Tot(Tε)N−1

ξε
N−1
��

Tot(B)N
dB
// Tot(B)N−1

commutes. The differential dB is special when N = 1; so we treat N = 1 first. In this case,

Tot(Tε)N =


V1, δ−1

2
, if ε = δ−1

2 ,

V0, δ

2
, if ε = δ

2 , and

0, if ε = δ+1
2 ,

and Tot(Tε)N−1 =


V0, δ−1

2
, if ε = δ−1

2 ,

0, if ε = δ

2 , and
0, if ε = δ+1

2 ,

If ε = δ−1
2 and f1⊗ γε ∈V1,ε, then

(dB ◦ξ
ε
1)( f1⊗ γε) = dB( f1∧ [D(µ)](γε)

)
= f1∧ [D(µ)](γε)∧ (

∧g
Ψ)(ωG∗)⊗ωG

and

(ξε
0 ◦dTε

)( f1⊗ γε)

= c(τ( f1) · γε)

= τ( f1) · [D(µ)](
∫

X1
γε)∧ (

∧g−1
Ψ)(ωG+

∗)⊗ωG+ ∧Y1
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= f1∧ τ

(
[D(µ)](

∫
X1

γε)∧ (
∧g−1

Ψ)(ωG+
∗)
)
⊗ωG+ ∧Y1,

because
∧•F is a DG-module over

∧•F∗,

= f1∧ τ

(
[D(µ)](

∫
X1

γε)
)
∧ (

∧g−1
Ψ)(ωG+

∗)⊗ωG+ ∧Y1,

because τ◦Ψ = 0,

= f1∧Ψ(X1)∧
(
[D(µ)](γε)

)
∧ (

∧g−1
Ψ)(ωG+

∗)⊗ωG+ ∧Y1,

because of (5.5.3), (2.3.2), and the fact that (
∧g

Ψ)(
∧g G+

∗) = 0,

= f1∧
(
[D(µ)](γε)

)
∧Ψ(X1)∧ (

∧g−1
Ψ)(ωG+

∗)⊗ωG+ ∧Y1

= f1∧
(
[D(µ)](γε)

)
∧ (

∧g
Ψ)(ωG∗)⊗ωG,

because X1⊗ωG+
∗ and ωG+ ∧Y1 are dual bases for

∧g G∗ and
∧g G, see (3.6),

= (dB ◦ξε
1)( f1⊗ γε).

The calculation we just completed shows that im(τ) · im(c)⊆ im(dB
1 ), in other words,

(6.2.2) I1(τ) ·C⊆ Ig(Ψ).

If ε = δ

2 and γ δ

2
∈V0, δ

2
= Tot(Tε)1, then

(dB ◦ξ
ε
1)(γ δ

2
) =−dB([D(µ)](γ δ

2
)) =−[D(µ)](γ δ

2
)∧ (

∧g
Ψ)(ωG∗)⊗ωG.

Observe that [D(µ)](γ δ

2
)∧ (

∧g
Ψ)(ωG∗) is an element of τ(

∧f+1 F) = 0. Indeed, if ωG∗ is

X1∧·· ·∧Xg and γ δ

2
= X (a1)

1 . . .X (ag)
g , then

[D(µ)](γ δ

2
)∧ (

∧g
Ψ)(ωG∗)

=τ

(
(µ(X1))

(a1+1)∧ (µ(X2))
(a2)∧·· ·∧ (µ(Xg))

(ag)∧ τ(µ(X2))∧·· ·∧ τ(µ(Xg))
)
∈ τ(

∧f+1F).

This completes the proof that (6.2.1) commutes when N = 1.
Now we consider 2 ≤ N. Fix I and J with I + 2J− δ+ 1 = N, 0 ≤ I, and ε ≤ J and fix

fI⊗ γJ ∈VI,J ⊆ Tot(Tε)N . Observe that

(ξε
N−1 ◦dTε

)( fI⊗ γJ) = S1 +S2 and (dB ◦ξ
ε
N)( fI⊗ γJ) = S3 +S4

with

S1 = ξε
N−1

(
χ(ε≤ J−1)

g

∑
`=1

Ψ(X`)∧ fI⊗Y`(γJ) ∈VI+1,J−1 ⊆ Tot(Tε)N−1

)
,

S2 = ξε
N−1 (τ( fI)⊗ γJ ∈VI−1,J ⊆ Tot(Tε)N−1) ,
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S3 = (−1)N
∑

i+2 j=I+2J
δ≤i+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j)

g

∑
`=1

Ψ(X`)∧ [D(µ)](m∗)∧ fI⊗Y`(m(γJ))

∈Vi+1, j−1 ⊆ Tot(B)N−1,

S4 = (−1)N
∑

i+2 j=I+2J
δ≤i+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j)

χ(δ≤ i+ j−1)τ([D(µ)](m∗)∧ fI)⊗m(γJ)

∈Vi−1, j ⊆ Tot(B)N−1.

We compute

S1 =


χ(ε≤ J−1)

g

∑
`=1

(−1)N−1
∑

i+2 j=I+2J−1
δ≤i+ j

(−1)I+1+ j(J−2− j
J−1−ε

)
∑

m∈( Y
J−1− j)

[D(µ)](m∗)∧Ψ(X`)∧ fI⊗m(Y`(γJ)) ∈Vi, j ⊆ Tot(B)N−1.

The binomial coefficient renders the factor χ(ε≤ J−1) redundant. Apply the trick of (5.5.2),
followed by (5.5.3), to see that

S1 =


g

∑
`=1

(−1)N−1
∑

i+2 j=I+2J−1
δ≤i+ j

(−1)I+1+ j(J−2− j
J−1−ε

)
∑

m∈( Y
J− j)

[D(µ)](Y`(m∗))∧Ψ(X`)∧ fI⊗m(γJ) ∈Vi, j ⊆ Tot(B)N−1

=


(−1)N−1

∑
i+2 j=I+2J−1

δ≤i+ j

(−1)I+1+ j(J−2− j
J−1−ε

)
∑

m∈( Y
J− j)

τ([D(µ)](m∗))∧ fI⊗m(γJ)

∈Vi, j ⊆ Tot(B)N−1.

It is immediate that

S2 =


(−1)N−1

∑
i+2 j=I−1+2J

δ≤i+ j

(−1)I−1+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j)

[D(µ)](m∗)∧ τ( fI)⊗m(γJ)

∈Vi, j ⊆ Tot(B)N−1

Our approach to S3 is similar to our approach to S1. We obtain

S3 =


(−1)N

∑
i+2 j=I+2J

δ≤i+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j+1)

g

∑
`=1

Ψ(X`)∧ [D(µ)](Y`(m∗))∧ fI⊗m(γJ)

∈Vi+1, j−1 ⊆ Tot(B)N−1

=


(−1)N

∑
i+2 j=I+2J

δ≤i+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j+1)

τ([D(µ)](m∗))∧ fI⊗m(γJ)

∈Vi+1, j−1 ⊆ Tot(B)N−1

Replace i with i−1 and j with j+1 and conclude that
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S3 =


(−1)N

∑
i+2 j+1=I+2J

δ≤i+ j

(−1)I+ j+1(J−2− j
J−ε

)
∑

m∈( Y
J− j)

τ([D(µ)](m∗))∧ fI⊗m(γJ)

∈Vi, j ⊆ Tot(B)N−1.

Replace i with i+1 in S4 to obtain

S4 =


(−1)N

∑
i+1+2 j=I+2J

δ≤i+1+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j)

χ(δ≤ i+ j)τ([D(µ)](m∗)∧ fI)⊗m(γJ)

∈Vi, j ⊆ Tot(B)N−1

=


(−1)N

∑
i+1+2 j=I+2J

δ≤i+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j)

τ([D(µ)](m∗)∧ fI)⊗m(γJ)

∈Vi, j ⊆ Tot(B)N−1.

The action of F∗ on
∧•F now gives S4 = S′4 +S′′4 with

S′4 =


(−1)N

∑
i+1+2 j=I+2J

δ≤i+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j)

τ([D(µ)](m∗))∧ fI⊗m(γJ)

∈Vi, j ⊆ Tot(B)N−1 and

S′′4 =


(−1)N

∑
i+1+2 j=I+2J

δ≤i+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j)

[D(µ)](m∗)∧ τ( fI)⊗m(γJ)

∈Vi, j ⊆ Tot(B)N−1.

We see that S1 = S3 +S′4 and S2 = S′′4 . The square (6.2.1) commutes for all N and the proof
is complete. �

Let Lε be the mapping cone of ξε; so dLε

: Lε
N → Lε

N−1 is

Tot(Tε)[−1]N
⊕

Tot(B)N


dTε

N−1 0

(−1)N−1ξε
N−1 dB

N


−−−−−−−−−−−−−−−−→

Tot(Tε)[−1]N−1
⊕

Tot(B)N−1.

We write VTε

I,J for the image of VI,J in Tot(Tε)[−1] ⊆ Lε and VB
i, j for the image of Vi, j in

Tot(B)⊆ Lε. So, in particular,

(6.2.3) VTε

I,J ⊆ Lε
I+2J−δ+2 and VB

i, j ⊆ Lε
i+2 j−δ+1.

It is useful to gather the definition of Lε in one place.

Definition 6.3. Adopt Data 2.1 and 2.3. The complex Lε is described as follows:

(a) As a graded R-module

Lε = (
⊕
ε≤J

VTε

I,J )⊕ (
⊕

δ≤i+ j

VB
i, j)⊕ (

∧f F⊗
∧g G),

with
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(i) VTε

I,J in position I +2J−δ+2,
(ii) VB

i, j in position i+2 j−δ+1, and
(iii) (

∧f F⊗
∧g G) in position 0.

(b) The R-module homomorphisms of Lε are described below.
(i) If I +2J−δ+2 = N, 2≤ N, 0≤ I, and ε≤ J, then VTε

I,J is a summand of Lε
N and

d( fI⊗ γJ ∈VTε

I,J ) =



χ(ε≤ J−1)
g

∑
`=1

Ψ(X`)∧ fI⊗Y`(γJ) ∈VTε

I+1,J−1 ⊆ Lε
N−1

+τ( fI)⊗ γJ ∈VTε

I−1,J ⊆ Lε
N−1

+ ∑
i+2 j=I+2J

δ≤i+ j

(−1)I+ j(J−1− j
J−ε

)
∑

m∈( Y
J− j)

[D(µ)](m∗)∧ fI⊗m(γJ)

∈VB
i, j ⊆ Lε

N−1.

(ii) If i+2 j−δ+1 = N, 2≤ N, δ≤ i+ j, and 0≤ i, j, then VB
i, j is a summand of Lε

N

and

d( fi⊗ γ j ∈VB
i, j) =


g

∑
`=1

Ψ(X`)∧ fi⊗Y`(γ j) ∈VB
i+1, j−1 ⊆ Lε

N−1

+χ(δ≤ i+ j−1)τ( fi)⊗ γ j ∈VB
i−1, j ⊆ Lε

N−1.

(iii) The R-module homomorphism

d : Lε
1 =VB

δ,0⊕χ(ε = δ−1
2 )VTε

0,ε → Lε
0 = (

∧f F⊗
∧g G)

is

d( fδ ∈VB
δ,0) = fδ∧ (

∧g
Ψ)(ωG∗)⊗ωG

and, if ε = δ−1
2 , then d(γε ∈VTε

0,ε) = c(γε) for c as defined in (2.3.3).

Remark 6.4. A quick comparison of Definitions 4.1 and 6.3 shows that Mε is a complex,
and indeed a subcomplex of Lε. The only tricky part of this assertion is already contained in
Remark 4.2.j.

Lemma 6.5. Adopt Data 2.1 and 2.3. Retain the complexes Mε ⊆ Lε of Remark 6.4. Then
the complex Lε/Mε is split exact. So, in particular,

HN(Lε) = HN(Mε)

for all N.

Proof. The complex Lε/Mε, which is⊕
ε≤J

δ≤I+J

VTε

I,J ⊕
⊕
ε≤ j

δ≤i+ j

VB
i, j,
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is the mapping cone of ⊕
ε≤J

δ≤I+J

VTε

I,J

ξε ′

��⊕
ε≤ j

δ≤i+ j

VB
i, j,

where ξε ′ is the map induced by ξε. It suffices to show that ξε ′ is an isomorphism. We show
that if I+2J = i+2 j, then ξε ′ : VTε

I,J →VB
i, j is an isomorphism if J = j and is the zero map if

J < j. The second assertion is obvious because the sum

∑
m∈( Y

J− j)

over the empty set (there are no monomials of negative degree) is zero. The first assertion is
also obvious because the component ξε ′ : VTε

I,J →VB
I,J of ξε ′ sends fI⊗ γJ ∈VTε

I,J to

(−1)N(−1)I+J(−1
J−ε

)
∑

m∈(Y
0)
[D(µ)](m∗)∧ fI⊗m(γJ) = (−1)N+I+ε fI⊗ γJ ∈VB

I,J,

because
(−1

b

)
= (−1)b for all non-negative integers b, where N = I +2J−δ+1. Thus,⊕

ε≤J
δ≤I+J

I+2J=N

VTε

I,J

ξε ′
N

��⊕
ε≤ j

δ≤i+ j
i+2 j=N

VB
i, j

is represented by a square triangular matrix with isomorphisms on the main diagonal. �

Lemma 6.6. Adopt Data 2.1 and 2.3. Recall the map of complexes ξε : Tot(Tε)→ Tot(B)
from Lemma 6.2 and the complexes Lε and Mε from Lemma 6.5.

(a) If N is a positive integer with δ+N−1 even and γ is an element of D δ+N−1
2

(G∗),

zε
γ ∈ Tot(Tε)N and ζγ ∈ Tot(B)N

are the cycles of Lemma 5.5, then ξε(zε
γ) = (−1)ε+Nζγ.

(b) If Hypotheses 2.2 are in effect, then Lε and Mε are resolutions of{
R, if ε = δ

2 or ε = δ+1
2 , and

R̃, if ε = δ−1
2 .

by free R-modules.
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Proof. (a) We compute

ξ
ε(zε

γ) =

δ+N−1
2

∑
J=ε

∑
m1∈(

Y
δ+N−1

2 −J)

(−1)J
ξ

ε
(
[D(µ)](m∗1)⊗m1(γ) ∈Vδ+N−1−2J,J ⊆ Tot(Tε)N

)

=


δ+N−1

2
∑

J=ε

∑

m1∈(
Y

δ+N−1
2 −J)

∑
i+2 j=δ+N−1

δ≤i+ j

∑

m∈( Y
J− j)

(−1)J+N+ j(J−1− j
J−ε

)
×[D(µ)](m∗)∧ [D(µ)](m∗1)⊗m(m1(γ)) ∈Vi, j ⊆ Tot(B)N

=


δ+N−1

2
∑

J=ε

∑
i+2 j=δ+N−1

δ≤i+ j

∑

m1∈(
Y

δ+N−1
2 − j)

∑

m∈( Y
J− j)

(−1)J+N+ j(J−1− j
J−ε

)
×[D(µ)](m∗)∧ [D(µ)](m(m∗1))⊗m1(γ) ∈Vi, j ⊆ Tot(B)N .

The parameters i and j satisfy i+ 2 j = δ+N− 1 and δ ≤ i+ j if and only if they satisfy
i = δ+N−1−2 j and j ≤ N−1. It follows that

ξ
ε(zε

γ) =


N−1
∑
j=0

∑

m1∈(
Y

δ+N−1
2 − j)

(−1) j+N
δ+N−1

2
∑

J=ε

(−1)J(J−1− j
J−ε

)
× ∑

m∈( Y
J− j)

[D(µ)](m∗)∧ [D(µ)](m(m∗1))⊗m1(γ) ∈Vδ+N−1−2 j, j ⊆ Tot(B)N

=


N−1
∑
j=0

∑

m1∈(
Y

δ+N−1
2 − j)

(−1) j+N
δ+N−1

2
∑

J=ε

(−1)J(J−1− j
J−ε

)
×[D(µ)]( ∑

m∈( Y
J− j)

m∗ ·m(m∗1))⊗m1(γ) ∈Vδ+N−1−2 j, j ⊆ Tot(B)N .

Apply Lemma 3.17 to see that

(6.6.1) ξ
ε(zε

γ) =


N−1
∑
j=0

∑

m1∈(
Y

δ+N−1
2 − j)

(−1) j+N
δ+N−1

2
∑

J=ε

(−1)J(J−1− j
J−ε

)( δ+N−1
2 − j
J− j

)
×[D(µ)](m∗1)⊗m1(γ) ∈Vδ+N−1−2 j, j ⊆ Tot(B)N .

We simplify

E =

δ+N−1
2
∑

J=ε

(−1)J(J−1− j
J−ε

)( δ+N−1
2 − j
J− j

)
in the context of (6.6.1). Let k = J− ε. The expression is

E = (−1)ε

δ+N−1
2 −ε

∑
k=0

(−1)k(k+ε−1− j
k

)( δ+N−1
2 − j

k+ε− j

)
.
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We need only consider 0 ≤ δ+N−1
2 − j (otherwise, the monomial m1 of (6.6.1) has negative

degree and (6.6.1) is zero); so(
δ+N−1

2 − j
k+ ε− j

)
=

( δ+N−1
2 − j

δ+N−1
2 − ε− k

)
.

It is always true for all integers a and b that
(b

a

)
= (−1)a(a−b−1

a

)
; so in particular,

(−1)k
(

k+ ε−1− j
k

)
=

(
j− ε

k

)
,

and

E = (−1)ε

δ+N−1
2 −ε

∑
k=0

( j−ε

k

)( δ+N−1
2 − j

δ+N−1
2 −ε−k

)
= (−1)ε

∑
k∈Z

( j−ε

k

)( δ+N−1
2 − j

δ+N−1
2 −ε−k

)
Now use the identity

∑
k∈Z

(
b

c− k

)(
a
k

)
=

(
a+b

c

)
,

see, for example, [15, Obs. 1.2.i], with a = j−ε, b = δ+N−1
2 − j, and c = δ+N−1

2 −ε to learn
that

E = (−1)ε

(δ+N−1
2 − ε

δ+N−1
2 − ε

)
.

The hypotheses that N is positive and δ+N−1 is even force

(6.6.2) δ+N−1
2 − ε

to be non-negative. (If ε = δ−1
2 , then (6.6.2) is at least N

2 . If ε = δ

2 , then (6.6.2) is at least
N−1

2 . If ε = δ+1
2 , then 2≤ N and (6.6.2) is at least N−2

2 .) Thus E = (−1)ε; and

ξ
ε(zε

γ)

=(−1)N+ε
N−1

∑
j=0

∑
m1∈(

Y
δ+N−1

2 − j)

(−1) j[D(µ)](m∗1)⊗m1(γ) ∈Vδ+N−1−2 j, j ⊆ Tot(B)N

=(−1)N+ε
ζγ.

This completes the proof of (a).

(b) Assertion (a), together with Lemmas 5.3 and 5.7, shows that ξε induces an isomorphism
HN(Tot(Tε))→ HN(Tot(B)) for all positive N. The complex Lε is the mapping cone of
ξε; so, the long exact sequence of homology associated to a mapping cone of complexes
guarantees that HN(Lε) = 0 for all positive N. In other words, Lε is a resolution of H0(Lε).
Apply Lemma 6.5 to conclude that Mε is also a resolution of H0(Mε) = H0(Lε). �
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The following remark does not use any of the machinery of the paper and could appear
almost anywhere. It provides the connection between the assertions in Theorem 2.5 about
resolutions and projective dimension and the assertions about grade unmixedness. The un-
mixedness assertions (e) and (g) of Theorem 2.5 play a critical role in [16].

Remark 6.7. Adopt Data 2.1 and 2.3. Assume that Hypothesis 2.2.a is in effect. Let p ∈
V (Ig(Ψ)) \V (I1(τ)). Then the ideals Ig(Ψ)p and (Ig(Ψ)+ C)p are equal and are perfect of
grade δ.

Proof. It follows immediately from the definition of Ψ, as given in Data 2.1, that

τ◦Ψ = 0;

therefore, τp ◦Ψp = 0 and imΨp ⊂ kerτp. On the other hand, the choice of p yields that the
map τp : Fp −→ Rp is surjective and hence splits. Thus kerτp is a free summand of Fp of
rank f−1. Therefore we may replace the target Fp of the map Ψp by kerτp ' Rf−1

p without
changing Ig(Ψp) = Ig(Ψ)p. By the choice of p the ideal Ig(Ψ)p is proper and has grade at
least δ = (f−1)− g+1, therefore Ig(Ψ)p is perfect of grade δ.

If δ is even, then C = 0. If δ is odd, then the inclusion Cp ⊆ Ig(Ψ)p is an immediate
consequence of the fact I1(τ) ·C⊆ Ig(Ψ); see (6.2.2). �

The proof of Theorem 2.5 (a, b, c). (a) Remark 6.4 explains why Lemma 6.2, together with
Remark 4.2.j, shows that Mε is a complex.

(b,c) Apply Lemma 6.6 to conclude that Mε is a resolution. It is clear that

H0(Mε) =

{
R, if ε is δ

2 or δ+1
2 , and

R̃, if ε = δ−1
2 .

Of course, if δ is even, then dδ−1
2 e= d

δ

2e and R = R̃. �

In Remark 2.6 we promised to explain why the hypothesis grade Ig(Ψ)≤ δ, which appears
in Theorem 2.5.fiii, corresponds to quotients R̃ = R/(C+ Ig(Ψ)) which are of no interest. In
Observation 6.8, we show that if grade Ig(Ψ) ≤ δ fails (in the context of Theorem 2.5.fiii),
then R̃ = 0. We notice that Theorem 2.5.c remains correct and meaningful in this situation:
Mε is a resolution of 0; in other words, Mε is split exact.

Observation 6.8. Adopt Data 2.1 and 2.3 with g = 1 and δ odd. Assume that Hypothe-
sis 2.2 are in effect and that I1(τ) is a proper ideal of R. Then the following statements are
equivalent:

(a) C+ Ig(Ψ) is a proper ideal of R,
(b) grade Ig(Ψ)≤ δ, and
(c) Ig(Ψ) 6= I1(τ).
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Proof. Assume (a) holds. Then Hypothesis 2.2.a, (3.16.1), and Theorem 2.5.c together with
(4.2.1) give

δ≤ grade Ig(Ψ)≤ grade(C+ Ig(Ψ))≤ pd R̃≤ f−1 = δ;

hence grade Ig(Ψ) = δ and (b) holds. At this point,

grade Ig(Ψ) = δ = f−1 < f= grade I1(τ)

and (c) holds.
Assume (a) does not hold. Then, according to (6.2.2),

R = C+ Ig(Ψ)⊆ Ig(Ψ) : I1(τ),

so I1(τ) ⊆ Ig(Ψ). The other inclusion always holds (because of the definition of Ψ in
Data 2.1); hence Ig(Ψ) = I1(τ) and (c) does not hold. At this point, Hypothesis 2.2.b gives

δ < f≤ grade I1(τ) = grade Ig(Ψ),

and (b) does not hold. �

The proof of Theorem 2.5 (d, e, f, g, h). (d) The length of Mε, which is given in Re-
mark 4.2.c, is an upper bound on the projective dimension of H0(Mε). On the other hand,
the last non-zero map of Mε is recorded in Observation 4.6. We show that in each case there
is at least one basis elements u in Mε

Nmax and a proper ideal J of R with with

dNmax(u) ∈ J ·Mε
Nmax−1;

and therefore, there is no shorter projective resolution of H0(Mε). The last maps (4.6.2),
(4.6.4), (4.6.5), and (4.6.6) all have the desired property because of the hypothesis that I1(τ)

is a proper ideal of R. Consider the last map (4.6.3) with the additional hypothesis that
grade Ig(Ψ) ≤ δ. Observation 6.8 shows that C+ Ig(Ψ) is a proper ideal of R. The image of
(4.6.3) is contained in (C+ Ig(Ψ))Mε

f−2, since, according to (4.6.7),

ξ(Xδ−1
1 ) = (−1)ε−1[D(µ)](X

( δ+1
2 )

1 )⊗X
( δ−1

2 )
1 ∈ C ·VB

f,ε−1;

see (2.3.4) for the final inclusion. Now consider the last map (4.6.1). We treat the cases 2≤ g

and g = 1 separately. If 2 ≤ g, then (4.4.10) shows that the image of (4.6.1) is contained in
I1(Ψ) ·Mε

0; and this is sufficient because I1(Ψ) ⊆ I1(τ). If g = 1, then we must impose the
additional hypothesis that grade Ig(Ψ) ≤ δ. Once the hypothesis is imposed, then Observa-
tion 6.8 again shows that C+ Ig(Ψ) is a proper ideal of R; and this is sufficient because the
image of (4.6.1) is (C+ Ig(Ψ))Mε

0.

(e,f) Let M be the R-module R, if δ is even; or else R̃, if δ is odd. Fix p ∈ AssR M. Asser-
tion (d) shows that

pdR M ≤ f−1 < grade I1(τ)
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and so the Auslander-Buchsbaum formula

depthRp = pdRp
Mp+depthMp

yields that depthRp = pdRp
Mp < grade I1(τ); hence, I1(τ) cannot be contained in p. Remark

6.7 now shows that the ideals Ig(Ψ)p and (Ig(Ψ)+C)p of Rp are perfect of grade δ. It follows
that depthRp = δ.

(g) If δ is even, then we proved in (e) that Ig(Ψ) is grade unmixed; so the present assertions
are obvious. Let δ be odd. In light of (6.2.2) and 3.14.b we have

C+ Ig(Ψ) ⊆ Ig(Ψ) : I1(τ) ⊆ Ig(Ψ) : I1(τ)
∞ ⊆ Ig(Ψ)gunm.

On the other hand, assertion (f), together with (6.2.2), shows that K = C+ Ig(Ψ) is a grade
unmixed ideal with Ig(Ψ)⊆ K and

gradeK = grade Ig(Ψ)< grade(Ig(Ψ) : K).

So, according to 3.14, once again, K = Ig(Ψ)gunm.

(h) This assertion follows immediately from (c) and (g). �

Proof of Theorem 2.7 (b). Fix ε equal to either δ

2 or δ+1
2 . Remark 4.2.i explains why

there is a quasi-isomorphism from Mε to a g-linear resolution when the component R0 (of
homogeneous elements of degree zero) in R is a field. This completes the proof of (b). �

Remark 6.9. The proper ideal I in a Noetherian ring R is perfect if pdR
R
I ≤ grade I. (See

3.16 for a brief discussion of perfect ideals including their connection to the Cohen-Macaulay
quotient rings.) It follows that, when all of the hypotheses of Theorem 2.5 are in effect, then

(a) Ig(Ψ) is a perfect ideal if and only if g= 1 and δ is even, and
(b) Ig(Ψ)gunm is a perfect ideal if and only if

(i) Ig(Ψ) is a perfect ideal, or
(ii) g= 1, δ is odd, and grade Ig(Ψ)≤ δ, or

(iii) g= 2 and δ is odd, or
(iv) 2≤ g and δ = 1.

The ideals of (a) (and (bi)) are called Huneke-Ulrich type two almost complete intersections;
they had previously been resolved in [15]; see also (4.4.6). The ideals of (bii) are called
Huneke-Ulrich deviation two Gorenstein ideals; they had previously been resolved in [13,
21, 14]; see also, (4.4.7). The ideals of (biii) are discussed in (4.4.12). The ideals of (biv)
are studied in [10, 18] (see also (4.4.9)); these ideals are principal. Most of the ideals Ig(Ψ)

and Ig(Ψ)gunm that are resolved in Theorem 2.5 are not perfect. None of these non-perfect
ideals had been resolved previously.
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7. THE h-VECTOR OF H0(Mε).

In this section we prove item (a) of Theorem 2.7. The proof is contained in Claims 7.1 and
7.3; see, in particular, Remark 7.4. Two identities (Lemmas 7.5 and 7.6) involving binomial
coefficients are used in this proof. The proof of these identities is self-contained and may
be found at the end of the section. We often consider binomial coefficients with negative
parameters; see, for example, [15, 1.1 and 1.2] for a list of the elementary properties of these
objects.

We begin by establishing the first form of the simplified Hilbert numerator hnH0(Mε)(s),
as given in Theorem 2.7.a. Simultaneously, we calculate hnH0(Mε)(1) as given in Theo-
rem 2.7.aiii.

Claim 7.1. Adopt the notation and hypotheses of Theorem 2.7.a. Then

hnH0(Mε)(s) =



(1− s)g ∑
j≤ε−1

(−1)δ+1(g+ j−1
j

)
s2 j+2g−f

+
g−2
∑
`=0

(`+f−g−1
`

)
s`

+
f−g−2

∑
`=0

(−1)`+δ
(
g+`−1

`

)
s`+2g−f

and

hnH0(Mε)(1) =
bδ/2c

∑
i=0

(
f−2−2i

δ−2i

)
,

which is equal to{
the number of monomials of even degree at most δ in g−1 variables, if δ is even, or
the number of monomials of odd degree at most δ in g−1 variables, if δ is odd.

Proof. If 0→ Fp→ ··· → F1→ F0→M→ 0 is a homogeneous resolution of the graded R-
module M by finitely generated free R-modules, with Fi =

⊕rankFi
j=1 R(−βi, j), then the Hilbert

Series of M is HSM(s) = HSR(s) ·HNM(s), for

HNM(s) =
p

∑
i=0

(−1)i
rankFi

∑
j=1

sβi, j .

Use the resolution of H0(Mε) given in Definition 4.1.a and Remark 4.2.e to see that

HNH0(Mε)(s) =1+


∑

j≤ε−1
δ≤i+ j

(−1)i−δ+1 rankVB
i, js

i+2 j+2g−f

+ ∑
ε≤ j

i+ j≤δ−1

(−1)i−δ rankVT
i, js

i+2 j+2g−f
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=1+


∑

j≤ε−1
δ≤i+ j

(−1)i−δ+1(f
i

)(
g+ j−1

j

)
si+2 j+2g−f

+ ∑
ε≤ j

i+ j≤δ−1

(−1)i−δ
(
f

i

)(
g+ j−1

j

)
si+2 j+2g−f.

(7.1.1)

Add

(7.1.2) ∑{
i, j
∣∣∣ j≤ε−1

i+ j<δ

}(−1)i−δ+1
(
f

i

)(
g+ j−1

j

)
si+2 j+2g−f

to the top summand on the far right side of (7.1.1) and subtract (7.1.2) from the bottom
summand on the far right side of (7.1.2) to see that

(7.1.3) HNH0(Mε)(s) = 1+


∑

{i, j| j≤ε−1}
(−1)i−δ+1(f

i

)(
g+ j−1

j

)
si+2 j+2g−f

+ ∑
{i, j|i+ j≤δ−1}

(−1)i−δ
(
f

i

)(
g+ j−1

j

)
si+2 j+2g−f.

It is clear that the top summand on the far right side of (7.1.3) is

(1− s)f(−1)δ+1
[

∑
{ j| j≤ε−1}

(
g+ j−1

j

)
s2 j
]
s2g−f;

and therefore,

(7.1.4) HNH0(Mε)(s) = 1+


(1− s)f ∑

{ j| j≤ε−1}
(−1)δ+1(g+ j−1

j

)
s2 j+2g−f

+ ∑
{i, j|i+ j≤δ−1}

(−1)i−δ
(
f

i

)(
g+ j−1

j

)
si+2 j+2g−f.

We next prove that

(7.1.5)

1+ ∑
i+ j≤δ−1

(−1)i−δ
(
f

i

)(
g+ j−1

j

)
si+2 j+2g−f

= (1− s)f−g

( g−2
∑
`=0

(`+f−g−1
`

)
s`+

f−g−2
∑
`=0

(−1)`+δ
(
g+`−1

`

)
s`+2g−f

)
.

Once (7.1.5) is accomplished, then we will have shown that

(7.1.6) HNH0(Mε)(s) = (1− s)f−g



(1− s)g ∑
{ j| j≤ε−1}

(−1)δ+1(g+ j−1
j

)
s2 j+2g−f

+
g−2
∑
`=0

(`+f−g−1
`

)
s`

+
f−g−2

∑
`=0

(−1)`+δ
(
g+`−1

`

)
s`+2g−f.



48 ANDREW R. KUSTIN, CLAUDIA POLINI, AND BERND ULRICH

Observe that

(7.1.5) ⇐⇒ 1 =



(1− s)f−g
g−2
∑
`=0

(`+f−g−1
`

)
s`

+(1− s)f−g
f−g−2

∑
`=0

(−1)`+δ
(
g+`−1

`

)
s`+2g−f

− ∑
i+ j≤δ−1

(−1)i−δ
(
f

i

)(
g+ j−1

j

)
si+2 j+2g−f

⇐⇒ 1 =


∑
k

∑
`≤g−2

(−1)k(f−g

k

)(`+f−g−1
`

)
sk+`

+∑
k

∑
`≤f−g−2

(−1)k+`+δ
(
f−g

k

)(
g+`−1

`

)
sk+`+2g−f

+ ∑
k+`≤f−g−1

(−1)k+δ+1(f
k

)(
g+`−1

`

)
sk+2`+2g−f

⇐⇒ 1 =


∑

0≤L≤f−2
∑

`≤g−2
(−1)L−`(f−g

L−`
)(`+f−g−1

`

)
sL

+ ∑
2g−f≤L≤f−2

∑
`≤f−g−2

(−1)L+g
(

f−g

L−2g+f−`
)(

g+`−1
`

)
sL

+ ∑
2g−f≤L≤f−2

∑
L−g+1≤`

(−1)L+g+1( f

L−2`−2g+f

)(
g+`−1

`

)
sL

⇐⇒ 1 =


∑

L≤f−2
∑

`≤g−2
(−1)L−`(f−g

L−`
)(`+f−g−1

`

)
sL

+ ∑
L≤ f−2

∑
`≤f−g−2

(−1)L+g
(

f−g

L−2g+f−`
)(

g+`−1
`

)
sL

+ ∑
L≤ f−2

∑
L−g+1≤`

(−1)L+g+1( f

L−2`−2g+f

)(
g+`−1

`

)
sL.

Look at one coefficient at a time, multiply both sides of the equation by (−1)L, and recall
the meaning of χ(S) from (3.11), in order to see that

(7.1.5) ⇐⇒ χ(L = 0) =


∑

`≤g−2
(−1)`

(
f−g

L−`
)(`+f−g−1

`

)
+ ∑

`≤f−g−2
(−1)g

(
f−g

g−L+`

)(
g+`−1

`

)
+ ∑

L−g+1≤`
(−1)g+1( f

2`+2g−L

)(
g+`−1

`

)
,

for each integer L, with L≤ f−2. Observe that

∑
`≤g−2

(−1)`
(
f−g

L−`
)(`+f−g−1

`

)
= ∑

`≤g−2
(−1)`

(`+f−g−1
`

)(
f−g

f−g−L+`

)
, because 0≤ f− g,

=(−1)g+L+f
∑

m≤f−L−2
(−1)m( L−1+m

g+L−f+m

)(
f−g

m

)
, where m = f− g−L+ `,

=(−1)g+L+f(−1)f−L(L−1
g−2

)(
f−2

f−L−2

)
,

by (7.5.2) with J = f−L−1,
G = g−1 and F = f−2,

=(−1)g
(
f−2

L

)(L−1
g−2

)
, because 0≤ f−2.
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Formula (7.5.2) requires that 1≤ L. On the other hand, it is easy to see that

∑
`≤g−2

(−1)`
(
f−g

L−`
)(`+f−g−1

`

)
= (−1)g

(
f−2

L

)(L−1
g−2

)
,

whenever L≤ 0. It follows that

(7.1.5) ⇐⇒ χ(L = 0) =


(−1)g

(
f−2

L

)(L−1
g−2

)
+ ∑

`≤f−g−2
(−1)g

(
f−g

g−L+`

)(
g+`−1

`

)
+ ∑

L−g+1≤`
(−1)g+1( f

2`+2g−L

)(
g+`−1

`

)
,

for each integer L with L ≤ f− 2. According to Lemma 7.6, the right side of the previous
display holds. It follows that (7.1.5) and (7.1.6) also hold. We finish the proof of Claim 7.1
by calculating the value of

(7.1.7)
HNH0(Mε)(s)
(1− s)f−g

=



(1− s)g ∑
{ j| j≤ε−1}

(−1)δ+1(g+ j−1
j

)
s2 j+2g−f

+
g−2
∑
`=0

(`+f−g−1
`

)
s`

+
f−g−2

∑
`=0

(−1)`+δ
(
g+`−1

`

)
s`+2g−f

at s = 1 and observing that this value is not zero. The value is
g−2
∑
`=0

(`+f−g−1
`

)
+

f−g−2
∑
`=0

(−1)`+δ
(
g+`−1

`

)
=
(
f−2
g−2

)
+

f−g−2
∑
`=0

(−1)`+δ
(
g+`−1

`

)
=

f−g

∑
`=0

(−1)`+δ
(
g+`−1

`

)
, because

(
f−2
g−2

)
=−

(
f−2

f−g−1

)
+
(
f−1
f−g

)
,

=
δ

∑
k=0

(−1)k(f−1−k
δ−k

)
, where k = δ− `,

= ∑
0≤k

(−1)k(f−1−k
δ−k

)
, because

(
f−1−k

δ−k

)
= 0 for δ < k,

= ∑
0≤i

[(
f−1−2i

δ−2i

)
−
(
f−1−(2i+1)

δ−(2i+1)

)]
, write k = 2i or k = 2i+1,

= ∑
0≤i

(
f−2−2i

δ−2i

)
=
bδ/2c

∑
i=0

(
f−2−2i

δ−2i

)
,

which equals{
the number of monomials of even degree at most δ in g−1 variables, if δ is even, or
the number of monomials of odd degree at most δ in g−1 variables, if δ is odd.
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This completes the proof of Claim 7.1. �

Remark 7.2. This remark is a continuation of Remark 2.8.b. If g= 1 and f is even, then there
are no monomials of odd degree in 0 variables. On the other hand, one can easily verify that
the right side of (7.1.7) is 1− s.

Claim 7.3. The polynomial hnH0(Mε)(s), as calculated in Claim 7.1, is also equal to

g−1
∑
`=0

(`+f−g−1
`

)
s`−χ(ε = δ−1

2 )
(
g+ε−1

ε

)
sg−1 +

q(g,f)
∑
`=g

∑
j≤ε−1

(−1)`+g+1( g

`−2g+f−2 j

)(
g+ j−1

j

)
s`,

for

q(g, f) =


2g−3, if ε = δ−1

2 ,
2g−2, if ε = δ

2 , and
2g−1, if ε = δ+1

2 .

Remark 7.4. Once Claim 7.3 is established, then the proof of Theorem 2.7.a is complete. In-
deed, the first form of hnH0(Mε)(s) is established in Claim 7.1, the second form in Claim 7.3,
Theorem 2.7.ai is a routine statement which is included to set the meaning of the notation in
the reader’s mind, Theorem 2.7.aii maybe read directly from Claim 7.3, and Theorem 2.7.aiii
is established in Claim 7.1.

Proof. Expand (1− s)g and observe that

(1− s)g ∑
j≤ε−1

(−1)δ+1(g+ j−1
j

)
s2 j+2g−f

=
q(g,f)

∑
`=2g−f

∑
j≤ε−1

(−1)`+g+1( g

`−2g+f−2 j

)(
g+ j−1

j

)
s`.

The difference between the two formulations for hnH0(Mε)(s) is{
the formulation of Claim 7.1
−the formulation of Claim 7.3

=



q(g,f)
∑

`=2g−f

∑
j≤ε−1

(−1)`+g+1( g

`−2g+f−2 j

)(
g+ j−1

j

)
s`

+
g−2
∑
`=0

(`+f−g−1
`

)
s`

+
g−2
∑

`=2g−f

(−1)`+g
(`−g+f−1
`−2g+f

)
s`

−
g−1
∑
`=0

(`+f−g−1
`

)
s`

+χ(ε = δ−1
2 )
(
g+ε−1

ε

)
sg−1

−
q(g,f)

∑
`=g

∑
j≤ε−1

(−1)`+g+1( g

`−2g+f−2 j

)(
g+ j−1

j

)
s`
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=



g−1
∑

`=2g−f

∑
j≤ε−1

(−1)`+g+1( g

`−2g+f−2 j

)(
g+ j−1

j

)
s`

+χ(ε = δ−1
2 )
(
g+ε−1

ε

)
sg−1

+
g−2
∑

`=2g−f

(−1)`+g
(`−g+f−1
`−2g+f

)
s`

− ∑
`=g−1

(`+f−g−1
`

)
s`.

(7.4.1)

The bottom two summands of (7.4.1) combine to form
g−1
∑

`=2g−f

(−1)`+g
(`−g+f−1
`−2g+f

)
s`.

Keep in mind that ε is equal to either δ−1
2 or dδ

2e. We split the top summand of (7.4.1) into
two pieces and see that (7.4.1) is

=



g−1
∑

`=2g−f

∑

j≤d δ

2e−1
(−1)`+g+1( g

`−2g+f−2 j

)(
g+ j−1

j

)
s`

−χ(ε = δ−1
2 )

g−1
∑

`=2g−f

∑
j=ε

(−1)`+g+1( g

`−2g+f−2 j

)(
g+ j−1

j

)
s`

+χ(ε = δ−1
2 )
(
g+ε−1

ε

)
sg−1

+
g−1
∑

`=2g−f

(−1)`+g
(`−g+f−1
`−2g+f

)
s`.

(7.4.2)

The second and third summands of (7.4.2) add to zero because in the second summand if
` ≤ g−2, then `−2g+ f−2 j ≤ −1 and

(
g

`−2g+f−2 j

)
= 0. Thus, the difference between the

two formulations of for hnH0(Mε)(s) is

(7.4.3)
g−1
∑

`=2g−f

(−1)`+g

[
− ∑

j≤d δ

2e−1

(
g

`−2g+f−2 j

)(
g+ j−1

j

)
+
(`−g+f−1
`−2g+f

)]
s`.

The constraint j ≤ dδ

2e−1 in (7.4.3) is redundant because if dδ

2e ≤ j, then

`−2g+ f−2 j ≤ (g−1)−2g+ f− (f− g) =−1

and
(

g

`−2g+f−2 j

)
= 0. It follows that

∑

j≤d δ

2 e−1

(
g

`−2g+f−2 j

)(
g+ j−1

j

)
= ∑

j∈Z

(
g

`−2g+f−2 j

)(
g+ j−1

j

)
;

and this number is the coefficient of x`−2g+f in

(1+ x)g
1

(1− x2)g
=

1
(1− x)g

=
∞

∑
j=0

(
g+ j−1

j

)
x j.

This coefficient is
(`−g+ f−1
`−2g+ f

)
; the quantity in (7.4.3) is zero; and the proof is complete. �
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We used the identities (7.5.2) and (7.6.1) in the proof of Claims 7.1 and 7.3. We now
prove these identities. Recall that we often consider binomial coefficients with negative
parameters and that [15, 1.1 and 1.2] contains a list of the elementary properties of these
objects. In particular, we often use [15, 1.2.g], which says that if a, b, and c are integers,
then

(7.4.4) 0≤ a =⇒ ∑
k∈Z

(−1)k(b+k
c+k

)(a
k

)
= (−1)a( b

a+c

)
.

Lemma 7.5. If F, G, and J are integers with 0≤ G≤ F and 0≤ J ≤ F, then

(−1)J(F−J
G−1

)( F
J−1

)
=

F−G+1
∑

m=J
(−1)m(F−J+m

G−J+m

)(F−G+1
m

)
(7.5.1)

and

(−1)J−1(F−J
G−1

)( F
J−1

)
=

J−1
∑

m=0
(−1)m(F−J+m

G−J+m

)(F−G+1
m

)
.(7.5.2)

Proof. We first prove (7.5.1). Let L(F,G,J) and R(F,G,J) represent the left and right sides
of (7.5.1), respectively. In other words,

L(F,G,J) = (−1)J(F−J
G−1

)( F
J−1

)
and

R(F,G,J) =
F−G+1

∑
m=J

(−1)m(F−J+m
G−J+m

)(F−G+1
m

)
.

The proof is by induction.
First consider J = 0 and 0 ≤ G ≤ F . Observe that L(F,G,0) = 0 and apply (7.4.4) to see

that

R(F,G,0) =
F−G+1

∑
m=0

(−1)m(F+m
G+m

)(F−G+1
m

)
= (−1)F−G+1( F

F+1

)
= 0.

Thus, L(F,G,0) = R(F,G,0) for all F and G with 0≤ G≤ F .
Next consider G = 0 and 0≤ J ≤ F . Observe that L(F,0,J) = 0. Apply (7.4.4) once again

to see that

R(F,0,J) =
F+1
∑

m=J
(−1)m(F−J+m

m−J

)(F+1
m

)
= (−1)F+1( F−J

F+1−J

)
= 0.

Thus, L(F,0,J) = R(F,0,J) for all F and J with 0≤ J ≤ F .
Also, notice that if F + 1 < G+ J, then L(F,G,J) and R(F,G,J) are both zero. Indeed,

0≤ F− J < G−1 forces
(F−J

G−1

)
= 0; hence L(F,G,J) = 0. Also, F−G+1 < J; so the sum

involved in R(F,G,J) is empty and R(F,G,J) = 0.
Now we consider the main case: 1≤ J, 1≤ G, and G+ J ≤ F +1. Observe that

R(F,G,J) = R(F−1,G−1,J−1)+(−1)J(F−1
G−1

)(F−G+1
J−1

)
= L(F−1,G−1,J−1)+(−1)J(F−1

G−1

)(F−G+1
J−1

)
, by induction,

= (−1)J−1(F−J
G−2

)(F−1
J−2

)
+(−1)J(F−1

G−1

)(F−G+1
J−1

)
.
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One may now quickly verify that L(F,G,1) = R(F,G,1) for all F and G with 0≤G≤ F and
L(F,1,J) = R(F,1,J) for all F and J with 0≤ J ≤ F . Henceforth, we assume that

(7.5.3) 2≤ J, 2≤ G, and G+ J ≤ F +1.

The ambient hypotheses, together with hypotheses (7.5.3), ensure that

0≤ G−2≤ F− J, 0≤ J−2≤ F−1, 0≤ G−1≤ F−1, 0≤ J−1≤ F−G+1,
0≤ G−1≤ F− J, 0≤ J−1≤ F

and therefore, each of the relevant binomial coefficients
(a

b

)
is equal to a!

b!(b−a)! . In order to
show that R(F,G,J) = L(F,G,J) it suffices to show

(−1)J−1(F−J
G−2

)(F−1
J−2

)
+(−1)J(F−1

G−1

)(F−G+1
J−1

)
= (−1)J(F−J

G−1

)( F
J−1

)
.

In other words, it suffices to show

(7.5.4)
(F−1

G−1

)(F−G+1
J−1

)
=
(F−J

G−2

)(F−1
J−2

)
+
(F−J

G−1

)( F
J−1

)
.

The right side of (7.5.4) is

(F−1)!(F−J)!
(G−1)!(F−J−G+2)!(J−1)!(F+1−J)!

(
(G−1)(J−1)+F(F− J−G+2)

)
= (F−1)!(F−J)!

(G−1)!(F−J−G+2)!(J−1)!(F+1−J)!(F− J+1)(F−G+1)

=
(F−1

G−1

)(F−G+1
J−1

)
,

which is the left side of (7.5.4). This completes the proof of (7.5.1).
Apply (7.4.4) to see that

(7.5.5)
F−G+1

∑
m=0

(−1)m(F−J+m
G−J+m

)(F−G+1
m

)
= (−1)F−G+1( F−J

F−J+1

)
= 0.

(The right-most equality in (7.5.5) holds since 0≤ F− J < F− J +1.) The formula (7.5.2)
follows readily because, if F −G+ 1 < J, then the right side of (7.5.2) is equal to the left
side of (7.5.5), and, if J ≤ F −G+ 1, then (7.5.2) is obtained by subtracting (7.5.1) from
(7.5.5). �

Lemma 7.6. If f, g, and L are integers with 1≤ g≤ f, then

(7.6.1) (−1)gχ(L = 0)χ(2≤ f ) =


+
(
f−2

L

)(L−1
g−2

)
+ ∑

`≤f−g−2

(
f−g

g−L+`

)(
g+`−1

`

)
− ∑

L−g+1≤`

(
f

2`+2g−L

)(
g+`−1

`

)
.

Proof. The proof is by induction. The base cases are treated in Claims 7.7, 7.8, 7.9, and 7.10.

Claim 7.7. Lemma 7.6 holds if g= 1.
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Proof. Let θ(L, f) be the right side of (7.6.1), after g has been set equal to 1. In other words,

θ(L, f) = ∑
0≤`≤f−3

(
f−1

1−L+`

)
− ∑

max{L,0}≤`

(
f

2−L+2`

)
.

Observe that θ(L,1) = 0 for all L. We complete the proof of Claim 7.7 by showing that
θ(L, f) =−χ(L = 0) for all f with 2≤ f.

A short calculation gives

(7.7.1) θ(L, f+1) = θ(L, f)+θ(L+1, f)+ [χ(2≤ f)−χ(0≤ L)]
(

f

L+1

)
,

for all f and L. Apply (7.7.1), with f = 1, to conclude that θ(L,2) = −χ(L = 0). For 2 ≤ f,
apply induction and (7.7.1) to see that

θ(L, f+1) = −χ(L = 0)−χ(L =−1)+ [1−χ(0≤ L)]
(

f

L+1

)
= −χ(L = 0)−χ(L =−1)+χ(L =−1)
= −χ(L = 0).

The proof of Claim 7.7 is complete. �

Claim 7.8. Lemma 7.6 holds if L≤ g−2.

Proof. In light of Claim 7.7, we may assume that 2≤ g. Let

A =
(
f−2

L

)(L−1
g−2

)
,

B = ∑
`≤f−g−2

(
f−g

g−L+`

)(
g+`−1

`

)
, and

C = ∑
L−g+1≤`

(
f

2`+2g−L

)(
g+`−1

`

)
.

Observe first that

A =


0, if L≤−1, because

(
f−2

L

)
= 0,

(−1)g, if L = 0,
0, if 1≤ L≤ g−2, because

(L−1
g−2

)
= 0;

thus,

(−1)gχ(L = 0) = A, when L≤ g−2.

It remains to show that

(7.8.1) L≤ g−2 =⇒ B =C.

Notice that if L≤ g−2, then the constraint `≤ f− g−2 is redundant in B and the constraint
L− g+1≤ ` is redundant in C. Indeed, if f− g−1≤ `, then

f− g+1 = 2+(f− g−1)≤ (g−L)+ `

and
(

f−g

g−L+`

)
= 0. In a similar manner, if `≤ L− g, then

`≤ L− g≤−2
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and
(
g+`−1

`

)
= 0. When L≤ g−2, then

B = ∑
`∈Z

(
f−g

g−L+`

)(
g+`−1

`

)
= ∑

`∈Z

(
f−g

f−2g+L−`
)(

g+`−1
`

)
is equal to the coefficient of xf−2g+L in (1+ x)f−g · 1

(1−x)g ; and

C = ∑
`∈Z

(
f

2`+2g−L

)(
g+`−1

`

)
= ∑

`∈Z

(
f

f−2g+L−2`

)(
g+`−1

`

)
is equal to the coefficient of xf−2g+L in (1+ x)f · 1

(1−x2)g
. The two coefficients are equal;

(7.8.1) has been established, and the proof of Claim 7.8 is complete. �

Claim 7.9. Lemma 7.6 holds if g= f.

Proof. In light of Claims 7.7 and 7.8, it suffices to assume that 1≤ g−1≤ L. We show that
A+B+C = 0 for

A =
(
g−2

L

)(L−1
g−2

)
,

B = ∑
`≤−2

( 0
g−L+`

)(
g+`−1

`

)
, and

C =− ∑
L−g+1≤`

(
g

2`+2g−L

)(
g+`−1

`

)
.

The fact that 0 ≤ g− 2 < L, ensures that
(
g−2

L

)
= 0; and therefore, A = 0. The sum B is

zero because the parameter ` in the binomial coefficient
(
g+`−1

`

)
is negative. Suppose that

the parameter ` makes a non-zero contribution to C. Then 0 ≤ ` because of the binomial
coefficient

(
g+`−1

`

)
. It follows that ` ≤ 2`. On the other hand, ` also satisfies L− g+ 1 ≤ `

and 0≤ L− g−2`. Thus,

L− g+1≤ `≤ 2`≤ L− g,

which is impossible, and C is zero. This completes the proof of Claim 7.9. �

Claim 7.10. Lemma 7.6 holds if f−1≤ L.

Proof. The hypothesis 1 ≤ g ≤ f, combined with Claim 7.7, allows us to assume that 2 ≤ f.
In this case, each of the constituent pieces of (7.6.1) is zero. It is clear that χ(L = 0) and(
f−2

L

)
are both zero. The summand ∑

`≤f−g−2

(
f−g

g−L+`

)(
g+`−1

`

)
is zero because,

`≤ f− g−2 =⇒ g−L+ `≤ f−2−L≤−1 =⇒
(

f− g

g−L+ `

)
= 0.

The summand ∑
L−g+1≤`

(
f

2`+2g−L

)(
g+`−1

`

)
is zero because, if L− g+1≤ `, then

f+1≤ (L+1)+1≤ (`+ g)+(`+ g−L) = 2`+2g−L

and
(

f

2`+2g−L

)
= 0. This completes the proof of Claim 7.10. �



56 ANDREW R. KUSTIN, CLAUDIA POLINI, AND BERND ULRICH

We now carry out the induction step in the proof of Lemma 7.6. We assume that (7.6.1)
holds at (f,g,L) and (f,g,L+ 1) and we prove that (7.6.1) holds at (f+ 1,g,L). In light of
Claims 7.7, 7.8, 7.9, and 7.10, we may assume that

(7.10.1) 2≤ g≤ f and g−1≤ L≤ f−1.

Let
θ(f,g,L) = ∑

`≤f−g−2

(
f−g

g−L+`

)(
g+`−1

`

)
− ∑

L−g+1≤`

(
f

2`+2g−L

)(
g+`−1

`

)
.

To complete the proof, we must prove that

(7.10.2)
(
f−1

L

)(L−1
g−2

)
+θ(f+1,g,L) = 0.

Write θ(f+1,g,L) = A+B for

A = ∑
`≤f−g−1

(
f+1−g

g−L+`

)(
g+`−1

`

)
and B =− ∑

L−g+1≤`

(
f+1

2`+2g−L

)(
g+`−1

`

)
.

Observe that A = A1 +A2 with

A1 = ∑
`≤f−g−2

(
f+1−g

g−L+`

)(
g+`−1

`

)
and A2 = ∑

`=f−g−1

(
f+1−g

g−L+`

)(
g+`−1

`

)
=
(
f+1−g

f−L−1

)(
f−2

f−g−1

)
.

Use Pascal’s identity to write A1 = A′1 +A′′1 and B = B1 +B2 with

A′1 = ∑
`≤f−g−2

(
f−g

g−L+`

)(
g+`−1

`

)
, A′′1 = ∑

`≤f−g−2

(
f−g

g−L+`−1

)(
g+`−1

`

)
,

B1 = − ∑
L−g+1≤`

(
f

2`+2g−L

)(
g+`−1

`

)
, and B2 = − ∑

L−g+1≤`

(
f

2`+2g−L−1

)(
g+`−1

`

)
.

Separate B2 = B′2 +B′′2 with

B′2 = − ∑
L−g+2≤`

(
f

2`+2g−L−1

)(
g+`−1

`

)
and B′′2 = − ∑

L−g+1=`

(
f

2`+2g−L−1

)(
g+`−1

`

)
= −

(
f

L+1

)( L
L−g+1

)
.

Thus, we apply induction to see that

the left side of (7.10.2)

=
(
f−1

L

)(L−1
g−2

)
+θ(f+1,g,L)

=
(
f−1

L

)(L−1
g−2

)
+(A′1 +A′′1 +A2)+(B1 +B′2 +B′′2)

=
(
f−1

L

)(L−1
g−2

)
+(A′1 +B1)+(A′′1 +B′2)+A2 +B′′2

=
(
f−1

L

)(L−1
g−2

)
+θ(f,g,L)+θ(f,g,L+1)+A2 +B′′2

=
((

f−1
L

)(L−1
g−2

)
−
(
f−2

L

)(L−1
g−2

))
−
(
f−2
L+1

)( L
g−2

)
+
(
f+1−g

f−L−1

)(
f−2

f−g−1

)
−
(

f

L+1

)( L
L−g+1

)
=
(
f−2
L−1

)(L−1
g−2

)
−
(
f−2
L+1

)( L
g−2

)
+
(
f+1−g

f−L−1

)(
f−2

f−g−1

)
−
(

f

L+1

)( L
L−g+1

)
(7.10.3)

If L = f−1 or L = f−2, then
(
f−2
L+1

)
= 0 and (7.10.3) is equal to(

f−2
f−2

)(
f−2
g−2

)
+
(
f+1−g

0

)(
f−2

f−g−1

)
−
(
f

f

)(
f−1
f−g

)
= 0
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or (
f−2
f−3

)(
f−3
g−2

)
+(f+1− g)

(
f−2
g−1

)
− f
(
f−2
g−1

)
= 0,

respectively. If g = f, then the constraint g− 1 ≤ L ≤ f− 1 from (7.10.1) forces L = g− 1;
and therefore, (7.10.3) is equal to(

g−2
g−2

)(
g−2
g−2

)
−
(
g−2
g

)(
g−1
g−2

)
+
(1

0

)(
g−2
−1

)
−
(
g

g

)(
g−1

0

)
= 0.

We now evaluate (7.10.3) in the remaining cases. That is, we assume L ≤ f− 3, g ≤ f− 1,
and the constraints of (7.10.1) are in effect. In this case, every binomial coefficient

(a
b

)
which

appears in (7.10.3) satisfies 0≤ b≤ a and may be evaluated as
(a

b

)
= a!

b!(a−b)! . It follows that
(7.10.3) is equal to

(f−2)!
(f−L−1)!(L+1)(g−1)!(L−g+2)!


(L+1)(g−1)(L− g+2)
−(f−L−2)(f−L−1)(g−1)
+(L+1)(f− g)(f− g+1)
−f(f−1)(L− g+2),

and this is zero. The proof of Lemma 7.6 is complete. �

Related techniques are used in [17] to give an explicit formula for the Hilbert Series of
an algebra defined by a linearly presented, standard graded, residual intersection of a grade
three Gorenstein ideal.

8. APPLICATION TO BLOWUP ALGEBRAS.

Our original motivation for this paper was to find the defining equations for linearly pre-
sented height three Gorenstein ideals. We conclude the paper by summarizing the relevant
results of the present paper in the language of [16]. The integers f and g from the present
paper become n and d in [16].

Data 8.1. Let k be a field and let n and d be positive integers. Let ϕ be an n×n alternating
matrix with linear entries from the polynomial ring R= k[x1, . . . ,xd] and B be the d×n matrix
with linear entries from T = k[T1, . . . ,Tn] such that the matrix equation

(8.1.1) [T1, . . . ,Tn] ·ϕ = [x1, . . . ,xd] ·B

holds.

Definition 8.2. Adopt Data 8.1. We define a homogeneous ideal C(ϕ) in T . Consider the
(n+d)× (n+d) alternating matrix

B=

[
ϕ −Bt

B 0

]
,

with entries in the polynomial ring k[x1, . . . ,xd,T1, . . . ,Tn]. Let B′ be the matrix which is
obtained from B by deleting the final row and column. View the Pfaffian Pf(B′) of B′ as a
polynomial in T [x1, . . . ,xd] and let C(ϕ) = cT (Pf(B′)) be the content of Pf(B′).
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Remarks. Retain the notation of Definition 8.2.

(a) If n+d is even then C(ϕ) = 0.
(b) The ideal C(ϕ) of T is generated by homogeneous forms of degree d−1.

Theorem 8.3. Adopt Data 8.1 with 3 ≤ d < n and n odd. If n− d ≤ grade Id(B), then the
following statements hold.

(a) The unmixed part of Id(B) is equal to Id(B)unm = Id(B)+C(ϕ).
(b) The multiplicity of T/Id(B)unm is

b(n−d)/2c

∑
i=0

(
n−2−2i
n−d−2i

)
.

(c) The ring T/Id(B)unm is Cohen-Macaulay on the punctured spectrum and

depth(T/Id(B)unm) =


1, if d is odd,
2, if d is even and d +3≤ n, and
n−1, if d +1 = n.

(d) If d is odd, then the ideal Id(B) is unmixed; furthermore, Id(B) has a linear minimal
resolution and reg(T/Id(B)) = d.

(e) The Hilbert series of T/Id(B)unm is
d−2
∑
`=0

(`+n−d−1
` )z`+

n−d−2
∑
`=0

(−1)`+d+1(d+`−1
` )z2d−n+`

(1−z)d +(−1)d
∑

j≤d n−d−3
2 e

(d+ j−1
j

)
z2 j+2d−n.

Remark. The conclusions of assertion (d) do not hold when d is even: the ideal Id(B) is
mixed and the minimal resolution of Id(B)unm is not linear; see for example, (4.4.5).

Proof. We begin working in the polynomial ring S = k[x1, . . . ,xd,T1, . . . ,Tn]. Write ϕ as
∑

d
`=1 x`ϕ`, where ϕ1, . . . ,ϕd are n×n alternating matrices with entries from the field k. Ob-

serve that the equation (8.1.1) gives rise to

[x1, . . . ,xd]B = [T1, . . . ,Tn]ϕ = [T1, . . . ,Tn](x1ϕ1 + · · ·+ xdϕd)(8.3.1)

= [x1, . . . ,xd]

[T1, . . . ,Tn]ϕ1
...

[T1, . . . ,Tn]ϕd

 .
The entries of B and the entries of the final matrix in the previous display are linear forms
from the polynomial ring T = k[T1, . . . ,Tn]; and therefore the equation (8.3.1) can occur only
if

(8.3.2) B =

[T1, . . . ,Tn]ϕ1
...

[T1, . . . ,Tn]ϕd

 .
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In other words, the entry of B in row a and column b is

(8.3.3) Ba,b = ∑
i

Ti(ϕa)i,b

for all a and b.
Now we work in the polynomial ring T = k[T1, . . . ,Tn] and we convert the data of 8.1 into

Data 2.1. Let F and G be free T -modules with bases e1, . . . ,en and h1, . . . ,hd , respectively;
and let e∗1, . . . ,e

∗
n and h∗1, . . . ,h

∗
d be the corresponding dual bases for F∗ and G∗, respectively.

Define

τ : F → T and µ : G∗→
∧2 F

by

τ(ei) = Ti and µ(h∗`) = ∑
1≤i< j≤n

(ϕ`)i, j ei∧ e j.

Notice that

Ψ(h∗`) = τ(µ(h∗`)) = ∑
1≤i< j≤n

(ϕ`)i, jτ(ei∧ e j) = ∑
1≤i< j≤n

(ϕ`)i, j(Tie j−Tjei)

= ∑
1≤i, j≤n

(ϕ`)i, jTie j =
n

∑
j=1

B`, je j,

where the final equality is due to (8.3.3). Therefore, Bt is the matrix for Ψ, with respect to
the chosen bases. It follows that Id(Ψ) = Id(B) and both hypothesis of 2.2 are satisfied and
we may apply the results of the present paper. Assertion (b) is Theorem 2.7.aiii. The fact
that T/(Id(B))umn is Cohen-Macaulay on the punctured spectrum is contained in Remark 6.7.
Theorem 2.5.d gives the projective dimension of T/(Id(B))umn as a T -module; and hence the
depth of T/(Id(B))umn by way of the Auslander-Buchsbaum formula. Both assertions in (c)
have been established. Assertion (d) is Theorem 2.5.e and Theorem 2.7.b; and assertion (e)
is Theorem 2.7.a.

Now we prove (a). Theorem 2.5.g shows that Id(B)unm = Id(B)+C, for C from (2.3.5). We
prove that the T -ideals C and C(ϕ) are equal. If Z is a free T -module of rank one and z ∈ Z,
then let o(z) represent the annihilator of Z/(z). According to (2.3.4), the T -ideal C of (2.3.5)
is generated by

(8.3.4)

{
o
(
(µ(h∗1))

(u1)∧·· ·∧ (µ(h∗d))(ud)∧ (
∧d−1

Ψ)(h∗1∧·· ·∧h∗d−1)
)}

where u1 + · · ·+ud = n−d+1
2 and 1≤ ud.

(Actually (2.3.4) treats 1 as the distinguished index and we have treated d as the distinguished
index. This switch makes no difference, only a sign is changed and even the sign change
disappears as soon as we look at the order ideal.)
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The homomorphism Ψ : G∗→ F , with Ψ(h∗`) = ∑
n
j=1 B`, je j, for 1≤ `≤ d, is naturally the

same as the element

(8.3.5) ∑
1≤ j≤n
1≤`≤d

B`, je j⊗h` ∈ F⊗G,

which we call Ψ. Let G′ represent the submodule
⊕d−1

`=1 T h′` of G, G′∗ represent the submod-
ule

⊕d−1
`=1 T h′∗` of G∗, Ψ′ : G′∗→ F represent the restriction of Ψ : G∗→ F to G′∗, and Ψ′ be

the element of F ⊗G′ which corresponds to Ψ′ : G′∗→ F . Notice that B′ is the alternating
matrix which is associated to the element

Φ =
d

∑
`=1

x`µ(h∗`)+Ψ
′+0 ∈ S⊗T (

∧2 F⊕ (F⊗G′)⊕
∧2 G′) = S⊗T

∧2(F⊕G′).

So Φ
( n+d−1

2 ) = Pf(B′) ·ω, where ω is a basis element of S⊗T
∧n+d−1(F ⊕G′). In other

words,

(8.3.6) o(Φ( n+d−1
2 )) = (Pf(B′)).

The r-th divided power of Φ is given by

Φ
(r) =

( d

∑
`=1

x`µ(h∗`)+Ψ
′
)(r)

=
r

∑
i=0

[( d

∑
`=1

x`µ(h∗`)
)(i)
∧ (Ψ′)(r−i)

]
∈ S⊗T

r

∑
i=0

[∧2i F ∧
∧r−i(F⊗G′)

]
;

hence, rank considerations yield

Φ
( n+d−1

2 ) =
( d

∑
`=1

x`µ(h∗`)+Ψ
′
)( n+d−1

2 )
=
( d

∑
`=1

x`µ(h∗`)
)( n−d+1

2 )
∧ (Ψ′)(d−1)(8.3.7)

∈ S⊗T
∧n−d+1 F ∧

∧d−1(F⊗G′)

= S⊗T
∧n+d−1(F⊕G′).

Combine (8.3.6) and (8.3.7), use the rules of divided powers, and use the fact that if M is a
square matrix, then

Pf
(

0 M
−Mt 0

)
= detM,

to see that

(Pf(B′))

=o
[( d

∑
`=1

x`µ(h∗`)
)( n−d+1

2 )
∧ (Ψ′)(d−1)

]
=o
[

∑
u1+···+ud=

n−d+1
2

xu1
1 · · ·x

ud
d (µ(h∗1))

(u1)∧·· ·∧ (µ(h∗d))(ud)∧ (
∧d−1

Ψ′)(h∗1∧·· ·∧h∗d−1)
]
.
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If ud = 0, then

(µ(h∗1))
(u1)∧·· ·∧ (µ(h∗d−1))

(ud−1)∧ (
∧d−1

Ψ′)(h∗1∧·· ·∧h∗d−1)

=τ

(
(µ(h∗1))

(u1+1)∧ (µ(h∗2))(u2)∧·· ·∧ (µ(h∗d−1))
(ud−1)∧ (

∧d−2
Ψ′)(h∗2∧·· ·∧h∗d−1)

)
∈τ(

∧n+1 F) = 0.

So, (Pf(B′)) is equal to

o
[

∑
u1+···+ud=

n−d+1
2

1≤ud

xu1
1 · · ·x

ud
d (µ(h∗1))

(u1)∧·· ·∧ (µ(h∗d))(ud)∧ (
∧d−1

Ψ′)(h∗1∧·· ·∧h∗d−1)
]
.

The ideal C(ϕ) of Definition 8.2 is the content of Pf(B′), when Pf(B′) is viewed as an
element of T [x1, . . . ,xd]; hence, C(ϕ) is the T -ideal generated by{

o
(
(µ(h∗1))

(u1)∧·· ·∧ (µ(h∗d))(ud)∧ (
∧d−1

Ψ′)(h∗1∧·· ·∧h∗d−1)
)∣∣∣∣ ∑

d
`=1 u` = n−d+1

2
1≤ ud

}
.

A quick comparison with (8.3.4) shows that C=C(ϕ). The proof is complete. �
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