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ABSTRACT. The core of an ideal is defined as the intersection of all of its reductions. In this paper we provide
an explicit description for the core of a monomial ideal I satisfying certain residual conditions, showing that
core(I) coincides with the largest monomial ideal contained in a general reduction of I. We prove that the class
of lex-segment ideals satisfies these residual conditions and study the core of lex-segment ideals generated in
one degree. For monomial ideals that do not necessarily satisfy the residual conditions and that are generated
in one degree, we conjecture an explicit formula for the core, and make progress towards this conjecture.

1. INTRODUCTION

The core of an ideal I in a Noetherian ring is the intersection of all reductions of I, i.e., all ideals over
which I is integral. Since reductions, even minimal ones, are highly non-unique, one uses the core to encode
information about all of them. The core appears naturally in the context of Briançon-Skoda theorems that
compare the integral closure filtration with the adic filtration of an ideal [41, 25, 40, 39]. It is also related to
adjoints and multiplier ideals [40, 30], to Kawamata’s conjecture on the non-vanishing of sections of certain
line bundles [34, 35], and to the Cayley-Bacharach property of finite sets of points in projective space [18].
Knowing the core, say of a zero-dimensional ideal in a local Cohen-Macaulay ring, can be helpful in proofs
via reduction to the Artinian case; for the elements of I \ core(I) are exactly those elements in I that remain
non-zero when reducing modulo some general system of parameters inside I, see for instance [15, 29].

Being an apriori infinite intersection of reductions, the core is difficult to compute. Explicit formulas for
the core have been found, but they require strong hypotheses [30, 10, 34, 44, 32, 45, 55, 17, 18, 50, 16, 37,
38, 12, 52]. Without such hypotheses, the best one could hope for is that the core is a finite intersection
of general reductions. This was proved in the local case assuming fairly weak residual conditions [9],
see Section 2 for definitions. The first main theorem, Theorem 3.9, in the current article generalizes this
result to the non-local setting, a non-trivial generalization as the core is not known to be compatible with
localization. In fact, our result shows aposteriori that the core does localize in the setting of the theorem,
see Corollary 3.10. If in addition I is generated by homogeneous polynomials of the same degree, we also
prove that the core coincides with the graded core, the intersection of all homogeneous reductions of I,
see Corollary 3.12; the question of when this equality holds was also considered by Hyry and Smith in
connection with their work on Kawamata’s conjecture [34]. Without a result as in Theorem 3.9, the core
is essentially uncomputable as one does not know how to identify the special reductions needed in the
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intersection. In this paper we propose a method for finding such reductions in the case of monomial ideals,
see Section 5.

With the same weak residual conditions as in Theorem 3.9 we come close to proving a formula for the
core in the monomial case, by expressing the core of a monomial ideal in terms of a single general reduction.
This result is based on the fact that the core of a monomial ideal I is again monomial, and hence contained
in the largest monomial ideal mono(K) contained in any reduction K. When the reduction K is general, it
is highly non-monomial and hence mono(K) is as close to the core as possible. In Theorem 4.7 we prove
that in fact core(I) = mono(K) if the aforementioned residual conditions are satisfied. This generalizes a
result from [45] for the case of zero-dimensional monomial ideals. The mono of any ideal can be computed
using an algorithm by Saito, Sturmfels, and Takayama [48], and this is implemented in Macaulay2 and can
be accessed with the command monomialSubideal [20].

Examples show that the results described above do not hold without any residual conditions, see
Example 4.8 and Example 4.9. In Section 5 we treat the graded core of monomial ideals that are generated
in a single degree but do not satisfy any further assumptions. Whereas the graded core is always contained
in mono(K) for K a general reduction, in Theorem 5.4 we come up with a monomial ideal A contained in
the graded core, and we conjecture that in fact gradedcore(I) = A, see Conjecture 5.5. We also propose a
way to find the special reductions required in the intersection that gives the graded core, see Discussion 5.8.
These results use, in an essential way, the ideal J generated by d linear combinations of the monomial
generators of I ⊂ R = k[x1, . . . ,xd ] with new variables z = zi j as coefficients. Considering k[z][x1, . . . ,xd ] as
a polynomial ring in the variables x1, . . . ,xd , we form the ideal mono(J), which is generated by monomials
m ∈ k[x1, . . . ,xd ] times ideals Cm ⊂ k[z]. Due to the variation of the ideals Cm, the ideal mono(J) carries
considerably more information than mono(K) for a general reduction K ⊂ R, which only records the
monomials m and does not suffice to determine gradedcore(I). As an application we prove that if the ideals
Cm are constant up to radical then the graded core is the mono of a general minimal reduction without any
residual conditions, see Theorem 5.10.

In the last section of the article we focus on the special class of lex-segment ideals. We first show that
these ideals satisfy the residual conditions as in Theorem 3.9. We conjecture that the core of a lex-segment
ideal I generated in a single degree is equal to I times a certain power of the maximal homogeneous ideal,
see Conjecture 6.1. We prove one inclusion in full generality and establish the conjecture for a large number
of cases, see Theorem 6.9 and Remark 6.2. We also show that the core of I is contained in the adjoint of
Ig, where g = ht(I). The connection between cores and adjoints is particularly attractive in the context
of monomial ideals, since there is an explicit combinatorial description for adjoints in terms of Newton
polyhedra [26], a description that is lacking for cores, even in the zero-dimensional case.

2. BACKGROUND

In this section we provide some background information and fix notations needed in the rest of the
article, including the residual conditions mentioned in the Introduction. For further information we refer to
[53, 8, 31].

Let R be a Cohen-Macaulay ring and I an ideal. A subideal J ⊆ I is a reduction of I if I and J have the
same integral closure, or equivalently, if

(1) In+1 = JIn for n ≫ 0 .
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The reduction number of I with respect to J, denoted by rJ(I), is the smallest non-negative integer n for
which (1) holds true.

Suppose either R is local with maximal ideal m and residue field k, or R is positively graded over a field
k with maximal homogeneous ideal m and I is homogeneous generated in a single degree. We denote by
ℓ(I) the analytic spread of I, i.e., the dimension of the special fiber ring F (I) =⊕n⩾0 In/m In. If k is an
infinite field, then ℓ(I) is equal to the minimal number of generators µ(J) of any minimal reduction J of
I. Recall that a minimal reduction is a reduction that is minimal with respect to inclusion. The reduction
number of I is r(I) = min{rJ(I) | J is a minimal reduction of I}.

In [4], Artin and Nagata defined the notion of s-residual intersection that generalizes the notion of
linkage when the linked ideals may not have the same height. To be precise, an R-ideal K in an arbitrary
Cohen-Macaulay ring R is an s-residual intersection of I if K = a : I for some s generated ideal a⊊ I such
that ht(K)⩾ s. We say K is a geometric s-residual intersection of I if in addition we have ht(I +K)> s.
The ideal I is said to be weakly s-residually S2 if the ring R/K satisfies Serre’s condition S2 for every
0 ⩽ i ⩽ s and for every geometric i-residual intersection K of I. We say that I satisfies Gs if µ(Ip)⩽ ht(p)
for every p ∈V (I) such that ht(p)⩽ s−1.

In this article we deal with ideals that satisfy the residual conditions Gd and weakly (d −2)-residually
S2, where d = dim(R). Classes of ideals that satisfy these two conditions include ideals of dimension
one that are generically complete intersections. Moreover, if an ideal I satisfies Gd , then I is weakly
(d−2)-residually S2 if it is strongly Cohen-Macaulay or, more generally, if after localizing it has the sliding
depth property, see [28, Theorem 3.1] and [24, Theorem 3.3]. Examples of strongly Cohen-Macaulay ideals
are Cohen-Macaulay almost complete intersections, Cohen-Macaulay ideals in a Gorenstein ring generated
by ht(I)+2 elements [3, p. 259], and ideals in the linkage class of a complete intersection [27, Theorem
1.11], such as perfect ideals of height 2 [1, 19] and perfect Gorenstein ideals of height 3 [56]. In this article
we add to this list by proving that lex-segment ideals satisfy both residual conditions, see Proposition 6.5.

3. THE CORE AND GENERAL REDUCTIONS

In this section we define a notion of general reductions for homogeneous ideals that are not necessarily
generated in one degree, and we use this new notion to show a homogeneous version of [9, Theorem 4.5]
for ideals of maximal analytic spread (see Theorem 3.9). We begin by setting up some notation.

Notation 3.1. Let k be an infinite field, R a Noetherian k-algebra, and I ⊂ R an ideal. Fix a positive integer
s and f = f1, . . . , fu a generating sequence for I. Consider an s× u matrix of variables [z ] = [zi, j] with
1 ⩽ i ⩽ s and 1 ⩽ j ⩽ u. An ideal Js,z := Js,z( f ) of R[z] is said to be generated by s generic elements of I
(with respect to f ), if it is generated by the entries of the column vector [z ] [ f ]T .

For every λ = (λi j) ∈ Asu
k we define πλ : R[z]→ R to be the evaluation map given by zi, j 7→ λi, j. For a

positive integer n we say that the R-ideals J1, . . . ,Jn are generated by s general elements (with respect to f )
of I, if Ji = πλi(Js,z) and (λ1, . . . ,λn) ranges over a Zariski dense open subset of Ansu

k .

Remark 3.2. Using Notation 3.1, let A ∈ GLu(R) and consider the R-automorphism φ of R[z ] that sends
the matrix [z ] to [z ]A. If [g ]T := A [ f ]T , then φ(Js,z( f )) = Js,z(g).

The following lemma shows that saturating the ideal Js,z with respect to I is the same as saturating it
with respect to any non-zero element f ∈ I.
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Lemma 3.3. We use Notation 3.1. Let f ∈ I be a non-zero element. If R is a domain, then

Js,z :R[z ] I∞ = Js,z :R[z ] f ∞

and this is a prime ideal of height s.

Proof. We clearly have Js,z : I∞ ⊆ Js,z : f ∞. To prove the equality it suffices to show that the ideal on the
left is a prime ideal of height s and the one on the right has height at most s. Notice that ht

(
Js,z : f ∞

)
⩽

ht
((

Js,z : f ∞
)

f

)
= ht

((
Js,z
)

f

)
⩽ s. The last inequality follows by Krull’s Altitude Theorem; notice that(

Js,z
)

f is a proper ideal as f /∈
√

Js,z.
Since I contains a non-zerodivisor modulo Js,z : I∞, a general k-linear combination of f1, . . . , fu is a

non-zerodivisor modulo Js,z : I∞. Hence there exists A ∈ GLu(k) such that
[
g1 · · ·gu

]T
= A

[
f1 · · · fu

]T
with

g1 a non-zerodivisor modulo Js,z : I∞. By Remark 3.2 we may replace f1, . . . , fu by g1, . . . ,gu to assume f1

is a non-zerodivisor modulo Js,z : I∞. Notice that

(
Js,z : I∞

)
f1
=
(
Js,z
)

f1
=

(
{zi,1 + f−1

1

u

∑
j=2

zi, j f j | 1 ⩽ i ⩽ s}

)
R[z] f1 ,

which is a prime ideal of height s. Since f1 is a non-zerodivisor modulo Js,z : I∞, it follows that Js,z : I∞ is
a prime ideal of height s. □

The following lemma is needed in the proof of Proposition 3.5, which in turn provides a way to construct
general reductions of ideals.

Lemma 3.4. Let k be an infinite field, R a finitely generated k-algebra, and I an ideal. If J is an ideal
generated by s general elements of I, then

dim(R/(J :R I∞))⩽ dim(R)− s

and
dim(R/((J :R I∞)+ I))⩽ dim(R)− s−1.

Proof. The first inequality is [17, Lemma 2.2]. The second inequality follows from the first because I
contains a non-zerodivisor modulo J : I∞. □

If either the ambient ring R is local or the ideal I is generated by forms of the same degree and R is a
positively graded k-algebra, then d general elements of I generate a reduction, where d = dim(R). The
following proposition gives a method to construct finite sets of general reductions for arbitrary ideals in any
Noetherian k-algebra (see Definition 3.6).

Proposition 3.5. Let k be an infinite field, R a finitely generated k-algebra of dimension d, and I an ideal
of positive height. If R is positively graded and I is generated by forms of the same degree, set f := 0 ∈ R.
Otherwise, let f ∈ I be an element not contained in any minimal prime ideal of R of dimension d. If J is an
ideal generated by d general elements of I, then J+( f ) is a reduction of I.

Proof. Set H = J+( f ) and let denote the images in R = R/( f ). Applying Lemma 3.4 to the images of
H and I in R we observe that H :R I∞

= R, and hence H and I have the same radical. Since HIn−1 : In ⊆
HIn : In+1 for every n ∈ N, this sequence of ideals stabilizes for n ≫ 0. Therefore, it suffices to prove that
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Hp is a reduction of Ip for every p ∈V (I). By Lemma 3.4 we have (J : I∞)+ I = R and therefore In
p ⊆ Jp

for n ≫ 0 and every p ∈V (I). Let grI(R) =⊕n⩾0In/In+1. We can proceed as in [57, Proposition 2.3] to
show that the images in I/I2 = [grI(R)]1 of the d generators of J form a filter regular sequence with respect
to grI(R)+ =⊕n>0In/In+1. Therefore, J is generated by a superficial sequence of I. Then, J∩ In+1 = JIn

for n ≫ 0 by [31, Lemma 8.5.11]. Thus, Jp is a reduction of Ip for every p ∈V (I). Thus, Hp is a reduction
of Ip, which finishes the proof. □

Definition 3.6. With assumptions and notations as in Proposition 3.5, we say that K1, . . . ,Kn are general
reductions of I, if Ki = Ji +( f ), where J1, . . . ,Jn are n ideals generated by d general elements of I as in
Notation 3.1.

Remark 3.7. Notice that for each r > 0 we have K′
i := Ji +( f r) is a reduction of I by Proposition 3.5.

Furthermore, for m ∈V (I) a fixed maximal ideal we have (Ji)m is a reduction of Im and (K′
i )m = (Ji)m if

r > r(Im) [31, Theorem 8.6.6]. If in addition ℓ(Im) = d, then (K′
i )m is a minimal reduction of Im. In case

Rm is regular and dim(Rm) = d, we also have (K′
i )m = (Ji)m for r ⩾ d by [31, Corollary 13.3.4]. We also

call the ideals K′
i general reductions of I for any choice of r.

Lemma 3.8. Let R be a Cohen-Macaulay ring, s a non-negative integer, and I an ideal satisfying Gs+1.
Then I is weakly s-residually S2 if and only if Ip is weakly s-residually S2 for every p ∈V (I).

Proof. The property of being weakly s-residually S2 localizes (see [9, Lemma 2.1(a)]). For the converse,
let i ⩽ s, let K = J : I be a geometric i-residual intersection of I, and let p ∈V (K). If p ∈V (I), then Rp/Kp

is S2 by our assumption. If p ̸∈ V (I), then Kp = Jp is a complete intersection, and therefore Rp/Kp is
Cohen-Macaulay. □

Theorem 3.9 extends [9, Theorem 4.5] from local rings to finitely generated algebras over a field. We
recall that an ideal I is of linear type if the natural map between its symmetric algebra and Rees algebra is
an isomorphism. If I is of linear type it has no proper reductions and hence core(I) = I.

Theorem 3.9. Let k be an infinite field, R a Cohen-Macaulay finitely generated k-algebra of dimension d,
and I an ideal of positive height. Assume that I satisfies Gd and is weakly (d −2)-residually S2. Let f ∈ I
be as in Definition 3.6. Then there exist positive integers n and r such that

core(I) = K1 ∩·· ·∩Kn ,

where Ki = Ji +( f r) for 1 ⩽ i ⩽ n are general reductions of I as in Remark 3.7. If in addition R is regular,
then r can be chosen to be d.

Proof. For every p ∈ V (I) the ideal Ip is Gd and from Lemma 3.8 it follows that Ip is weakly (d − 2)-
residually S2. Hence [8, Corollary 3.6 (b)] and [54, Theorem 2.3.2] show that Ip is of linear type for every
p ∈V (I) with ht(p)< d. Clearly, Ip is of linear type for every prime p ̸∈V (I).

Let Sym(I) and R(I) be the symmetric algebra and the Rees algebra of I, respectively. Consider the
following exact sequence

0 → A → Sym(I)→ R(I)→ 0 .

The ideal A is generated by homogeneous elements of degree at most e, for some non-negative integer e.

Therefore, SuppR(A ) =
e⋃

i=0
SuppR(Ai) is a closed subset of Spec(R). It follows that the set of prime ideals
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p such that Ip is not of linear type consists only of finitely many maximal ideals, say m1, . . . ,mt . Notice that
ℓ(Imi) = d for each 1 ⩽ i ⩽ t; indeed, if ℓ(Imi)< d, then Imi is generated by d −1 elements according to [9,
Lemma 2.1(g)] and hence Imi would be of linear type by [8, Corollary 3.6 (b)] and [54, Theorem 2.3.2].

The ideals Imi have analytic spread d, satisfy Gd , and are weakly (d−2)-residually S2, hence are weakly
(d−1)-residually S2 (see [8, Proposition 3.4 (a)]). Applying [9, Theorem 4.5] and Remark 3.7 to the finitely
many ideals Imi , we obtain that core(Imi) = (K1)mi ∩·· ·∩ (Kn)mi for some integer n, where K1, . . . ,Kn are
general reductions of I with r = 1+max{r(Imi) | 1 ⩽ i ⩽ t} or with r = d in case R is regular.

We claim that core(I) = K1∩·· ·∩Kn. Clearly, core(I)⊆ K1∩·· ·∩Kn, because K1, . . . ,Kn are reductions
of I by Proposition 3.5. To show the reverse inclusion, let K be any reduction of I. We need to show that
K1 ∩ ·· · ∩Kn ⊆ K, or equivalently (K1)p ∩ ·· · ∩ (Kn)p ⊆ Kp for every p ∈ Spec(R). If p ̸∈ {m1, . . . ,mt},
then Ip is of linear type. Hence Kp = Ip and the assertion holds trivially. Otherwise, (K1)p∩·· ·∩ (Kn)p =

core(Ip)⊂ Kp. □

Theorem 3.9 and its proof allows us to show that under the assumptions therein the core of I localizes
(cf. [9, Theorem 4.8]).

Corollary 3.10. If the hypotheses of Theorem 3.9 hold, then core(Ip) = (core(I))p for every p ∈ Spec(R).

Proof. In the proof of Theorem 3.9 we showed that core(Imi) = (K1)mi ∩·· ·∩ (Kn)mi , which is (core(I))mi

by Theorem 3.9. If p ̸∈ {m1, . . . ,mt}, then Ip is of linear type, therefore core(Ip) = Ip and (core(I))p =
(K1)p∩·· ·∩ (Kn)p = Ip. □

Remark 3.11. If in addition to the assumptions of Theorem 3.9 the ring R is a positively graded k-algebra
with maximal homogeneous ideal m and the ideal I is homogeneous, then we can replace the assumption
that I is weakly (d −2)-residually S2 by the hypothesis that Im is weakly (d −2)-residually S2. In addition,
r can be chosen to be 1+ r(Im).

Proof. Following the proof of Theorem 3.9, it suffices to show that Ip is of linear type whenever p ∈V (I)
and p ̸=m. Since I is homogeneous, the minimal prime ideals of SuppR(A ) are homogeneous and hence
are all contained in m. On the other hand, if p⊊m, then Ip is of linear type by our assumption on Im (see
[8, Corollary 3.6 (b)] and [54, Theorem 2.3.2]). □

In the case of ideals generated by forms of the same degree, we have the following simpler version of
Theorem 3.9.

Corollary 3.12. Let k be an infinite field, R a Cohen-Macaulay positively graded k-algebra of dimension d,
and m the homogeneous maximal ideal of R. Let I be an ideal of positive height generated by homogeneous
elements of the same degree δ . If I satisfies Gd and Im is weakly (d −2)-residually S2, then there exists a
positive integer n such that

core(I) = J1 ∩·· ·∩ Jn ,

where J1, . . . ,Jn are generated by d general elements of I with respect to a generating set of I contained in
Iδ (see Notation 3.1). In particular,

core(I) = gradedcore(I).

Proof. We choose f = 0 as in Proposition 3.5, so that Ji = Ki. Now the assertion follows by Theorem 3.9
and Remark 3.11. □
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Remark 3.13. The proof of Theorem 3.9 shows that under the assumptions of Corollary 3.12 either
ℓ(I) = d or core(I) = I.

Question 3.14. Is it possible to replace the assumptions in Corollary 3.12 that I satisfies Gd and Im is
weakly (d −2)-residually S2 by the hypotheses that I satisfies Gℓ and Im is weakly (ℓ−1)-residually S2 for
ℓ= ℓ(I), to say that

core(I) = J1 ∩·· ·∩ Jn ,

where J1, . . . ,Jn are generated by ℓ general elements of I with respect to a generating set of I contained in
Iδ ?

4. THE CORE AND THE MONO

In this section we generalize the main result of [45] to monomial ideals of higher dimension. We show
that under suitable residual conditions, the core of a monomial ideal I coincides with the largest monomial
ideal in a general reduction of I, provided I is of maximal analytic spread.

Proposition 4.1. Let k be an infinite field, x = x1, . . . ,xr, y = y1, . . . ,ys, and z = z1, . . . ,zt be three sets of
variables. Let H be an ideal of k[x,y,z]. For every λ = (λi) ∈ At

k let πλ : k[x,y,z]→ k[x,y] denote the
evaluation map given by zi 7→ λi. Then for general λ we have πλ (H ∩k[x,z]) = πλ (H)∩k[x].

Proof. It is straightforward to see that πλ (H ∩k[x,z])⊆ πλ (H)∩k[x].
To prove the reverse inclusion, we consider the lexicographic monomial order < on the two polynomial

rings k[z][x,y] and A := k(z)[x,y] in the variables x,y with xi < y j. Let G = {g1, . . . ,gm} ⊂ H be a Gröbner
basis of HA with respect to <.

Clearly πλ (G) is a generating set of πλ (H) for general λ . We claim that for general λ the set πλ (G)

is also a Gröbner basis. By Buchberger’s criterion it suffices to show that for every i ̸= j the S-pair
Si j := S(πλ (gi),πλ (g j)) is equal to an expression

(2) h1πλ (g1)+ · · ·+hmπλ (gm),

where hk ∈ k[x,y] and the initial monomials satisfy in<(hkπλ (gk))⩽ in<(Si j) for every 1 ⩽ k ⩽ m. Since
G is a Gröbner basis of HA, there is an expression

(3) S(gi,g j) = h̃1g1 + · · ·+ h̃mgm,

where h̃k ∈ A and in<(h̃kgk)⩽ in<(S(gi,g j)) for every 1 ⩽ k ⩽ m.
If cgk ∈ k[z] is the coefficient of in<(gk), then πλ (cgk) is the coefficient of in<(πλ (gk)) for general λ .

Hence in<(πλ (gk)) = in<(gk) and Si j = πλ (S(gi,g j)) since S(gi,g j) ∈ k[x,y,z]. Therefore, after clearing
denominators in (3) and applying πλ for general λ , the desired expression for Si j as in (2) follows.

Since πλ (G) is a Gröbner basis of πλ (H) for general λ and < is an elimination order, it follows that
πλ (H)∩k[x] is generated by πλ (G)∩k[x]. Finally, for general λ we have

πλ (G)∩k[x] = πλ (G∩k[x,z])⊆ πλ (H ∩k[x,z]) ,

and the conclusion follows. □

The goal in this section is to show that under suitable assumptions on a monomial ideal I, the core of I
can be obtained as the mono of a general reduction of I, namely core(I) = mono(K), where K is a general
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reduction of I as in Definition 3.6 and mono(K) denotes the largest monomial ideal contained in K. In order
to compute mono(K) we follow an algorithm due to Saito, Sturmfels, and Takayama [48, Algorithm 4.4.2].

For the proof of our main result we need a notion of mono of an ideal in a polynomial ring over an
arbitrary Noetherian ring. Let A be a Noetherian ring. For an ideal L in the polynomial ring A[x1, . . . ,xd ],
the multihomogenization of L, denoted by L̃, is the ideal of the polynomial ring A[x1, . . . ,xd ,y1, . . . ,yd ]

generated by {
g̃ = g

(
x1

y1
, . . . ,

xd

yd

)
y

degx1
(g)

1 · · ·y
degxd

(g)
d

∣∣∣ g ∈ L
}
.

We consider A[x1, . . . ,xd ,y1, . . . ,yd ] with the Nd-grading induced by deg(xi) = deg(yi) = ei. We note that g̃
is indeed multihomogeneous with deg(g̃) =

(
degx1

(g), . . . ,degxd
(g)
)
∈ Nd .

The next example illustrates the process of multihomogenization of an element.

Example 4.2. Let g= c1x2
1x2+c2x1x2

3+c3x3
2x3 ∈A[x1,x2,x3] for some c1,c2,c3 ∈A. Then g̃= c1x2

1x2y2
2y2

3+

c2x1x2
3y1y3

2 + c3x3
2x3y2

1y3.

To obtain the multihomogenization of an ideal L ⊂ A[x1, . . . ,xd ] it is enough to multihomogenize a given

generating set g1, . . . ,gu of L and to saturate with respect to Y =
d
∏
j=1

y j, that is

(4) L̃ = (g̃1, . . . , g̃u) : Y ∞.

Definition 4.3. Let A be a Noetherian ring and let L be an ideal in the polynomial ring A[x1, . . . ,xd ]. We
define mono(L) to be the ideal generated by the elements in L of the form am, where a ∈ A and m is a
monomial.

Following [48, Algorithm 4.4.2], we obtain

(5) mono(L) = L̃ ∩ A[x1, . . . ,xd ].

Proposition 4.4. Let A = k[z1, . . . ,zt ] be a polynomial ring over an infinite field k and L a proper ideal in
the polynomial ring A[x1, . . . ,xd ]. For λ ∈ At

k let πλ : A[x1, . . . ,xd ]→ k[x1, . . . ,xd ] be the evaluation map
given by zi 7→ λi. For general λ ∈ At

k we have the following

(a) π̃λ (L) = πλ (L̃)
(b) mono(πλ (L)) = πλ (mono(L))
(c) mono(πλ (L)) does not depend on λ .

Proof. We begin with the proof of (a). We first notice that for any g ∈ A[x1, . . . ,xd ] and general λ we have

π̃λ (g) = πλ (g̃). Write L = (g1, . . . ,gu), then(
π̃λ (g1), . . . , π̃λ (gu)

)
=
(
πλ (g̃1), . . . ,πλ (g̃u)

)
= πλ (g̃1, . . . , g̃u).

Therefore,
π̃λ (L) =

(
π̃λ (g1), . . . , π̃λ (gu)

)
: Y ∞ = πλ (g̃1, . . . , g̃u) : Y ∞.

On the other hand,
πλ (L̃) = πλ ((g̃1, . . . , g̃u) : Y ∞).

Notice that
πλ (g̃1, . . . , g̃u)⊆ πλ ((g̃1, . . . , g̃u) : Y ∞)⊆ πλ (g̃1, . . . , g̃u) : Y ∞.
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Thus to prove that π̃λ (L) = πλ (L̃) it suffices to show that πλ ((g̃1, . . . , g̃u) : Y ∞) is saturated with respect to
Y , for this it suffices to show that Y is a non-zerodivisor on k[x,y]/πλ ((g̃1, . . . , g̃u) : Y ∞) = k[x,y]/πλ (L̃).
The image of Y is not a unit in k[x,y]/πλ (L̃), hence k[x,y]/(πλ (L̃),Y ) ̸= 0.

Set

T =
k[z](z−λ )[x,y]

L̃
and notice that T/(z−λ ) = k[x,y]/πλ (L̃). By generic freeness [14, Theorem 14.4], for general λ the map
k[z](z−λ ) → T/(Y ) is flat and hence the elements z−λ form a regular sequence on T/(Y ). For this also
recall that

T/(Y,z−λ ) = k[x,y]/(Y,πλ (L̃)) ̸= 0 .

Since Y is a non-zerodivisor on T it follows that Y,z−λ is a T -regular sequence. As this sequence consists
of homogeneous elements in T , and T is a positively graded ring over a local ring, we obtain that z−λ ,Y
is also a regular sequence [42, Theorem 16.2 and Theorem 16.3]. We conclude that Y is a non-zerodivisor
on T/(z−λ ) = k[x,y]/πλ (L̃).

Part (b) is a direct consequence of (a) and Proposition 4.1.
Finally, part (c) follows from (b) because πλ (mono(L)) does not depend on λ for general λ . Indeed, if

{ai mi} is a finite generating set of mono(L), where ai ∈ k[z] and mi are monomials in x1, . . . ,xd , then for
any λ ∈ D(∏i ai) the ideal πλ

(
mono(L)

)
is independent of λ . □

Corollary 4.5. Let k be an infinite field, R = k[x1, . . . ,xd ] a polynomial ring, and I a monomial ideal. For
any n ∈ N let K and K1, . . . ,Kn be general reductions of I as in Remark 3.7. We have

core(I)⊆ mono(K)⊆ K1 ∩·· ·∩Kn .

Proof. Clearly, core(I)⊆mono(K), since K is a reduction of I by Proposition 3.5 and core(I) is a monomial
ideal by [9, proof of Remark 5.1]. For the second inclusion, notice that mono(K) = mono(Ki) for all
1 ⩽ i ⩽ n according to Proposition 4.4(c). □

Remark 4.6. If in Corollary 4.5, the ideal I is generated by monomials of degree δ and the elements
f1, . . . , fu of Notation 3.1 are chosen to be homogeneous polynomials of degree δ and f = 0, then K is a
homogeneous reduction of I. Therefore

gradedcore(I)⊆ mono(K).

We now prove the main theorem of this section.

Theorem 4.7. Let k be an infinite field, R = k[x1, . . . ,xd ] a polynomial ring, m := (x1, . . . ,xd), and I a
monomial ideal. If I satisfies Gd and Im is weakly (d −2)-residually S2, then

core(I) = mono(K)

for K a general reduction of I with r = d as in Remark 3.7.

Proof. The proof follows by Corollary 4.5, Theorem 3.9, and Remark 3.11. □

The following example shows that Theorem 3.9 and Theorem 4.7 do not hold without the assumption
that I is Gd .
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Example 4.8. Let R = Q[x1,x2,x3] and I = (x3
1,x

2
1x2,x1x2

3,x
3
3). The ideal I has height 2 and analytic spread

3. It is weakly 2-residually S2 because every link of I is unmixed and hence Cohen-Macaulay. However, I
does not satisfy G3. Computation with Macaulay2 [20] shows that there exist non-zero polynomials h and
g in Q[z] such that

mono(J3,z) = (h)
(
x2

1,x1x2,x1x3,x2x3,x2
3
)

I +(hg)
(
x2

1x3
2,x1x2

2x2
3,x

2
2x3

3
)
=: (h)A+(hg)B.

For general λ we have A+B= πλ (mono(J3,z)) = mono(K), where K := πλ (J3,z) (see Proposition 4.4).
Therefore core(I)⊆ gradedcore(I)⊆A+B= Im2 (see Remark 4.6). The ideal H = (x3

1,x
2
1x2,x1x2

3+x3
3) is

a minimal reduction of I, since I3 = HI2. On the other hand, mono(K) = Im2 ̸⊆ H. Hence, gradedcore(I)
is not equal to mono(K) for a general reduction K and thus core(I) is not a finite intersection of general
reductions of I (see Corollary 4.5). In particular, neither Theorem 3.9 nor Theorem 4.7 hold.

The ideal in the next example is Gd (in fact G∞), but ℓ(I)< d and Im is not weakly (d −2)-residually
S2 (see Remark 3.13 and Corollary 3.12). Again, core(I) is not a finite intersection of general minimal
reductions of I and it is not the mono of a general minimal reduction of I.

Example 4.9. Let

R = Q[x1,x2,x3,x4,x5,x6] and I = (x1x2,x2x3,x3x4,x4x1,x4x5,x5x6).

One easily verifies that the height of I is 3 and that it satisfies G∞. However, ℓ(I) = 5 and Im is not weakly
3-residually S2. In [16, Example 4.8] it is shown that core(I) ̸= m I. Using Macaulay2 [20] one verifies
that mono(J) =m I, for J a general minimal reduction of I, i.e., an ideal generated by 5 general elements
of I with respect to the six monomial generators of I. Therefore core(I) is not equal to mono(J).

5. THE CORE OF MONOMIAL IDEALS GENERATED IN ONE DEGREE

There is no known method to compute the core of a given ideal if the residual conditions required in the
previous sections do not hold. Our goal in this section is to propose an approach to compute the core of
monomial ideals generated in a single degree without any further assumptions.

In the previous section we established that for a monomial ideal I, core(I) and gradedcore(I) are
contained in mono(K) for a general reduction K of I. This containment holds in general and it is an equality
under appropriate residual conditions (see Corollary 4.5, Remark 4.6, Theorem 4.7). For a monomial ideal
I generated in a single degree we construct an ideal that is contained in gradedcore(I) and we conjecture
that equality holds in general (see Theorem 5.4 and Conjecture 5.5). We verify the conjecture for a specific
ideal in Example 5.9. Furthermore, under the same residual conditions core(I) can be obtained as the
intersection of finitely many general reductions Corollary 3.12. However, as seen in Example 4.8, special
reductions are needed in the absence of the residual conditions. In this section we provide a method to find
these special reductions.

Notation 5.1. Let k be an infinite field, R = k[x1, . . . ,xd ] a polynomial ring, and m = (x1, . . . ,xd) its
homogeneous maximal ideal. Let I be a non-zero ideal generated by homogeneous elements of the same
degree δ . Let F := F (I) be the special fiber ring of I and F+ the ideal generated by the elements
of F of positive degree. Notice that F ∼= k[Iδ ] ⊆ R because I is generated in a single degree. Let
ℓ := ℓ(I) = dim(F ) be the analytic spread of I.
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Fix a generating sequence f = f1, . . . , fu of I contained in Iδ . Consider ℓu variables z = {zi j | 1 ⩽ i ⩽
ℓ and 1 ⩽ j ⩽ u}. Write bi = ∑

u
j=1 zi, j f j. Let H ⊆ J := Jℓ,z( f ) be the ideals generated by b1, . . . ,bℓ in the

rings F [z]⊆ R[z], respectively. For λ ∈ Aℓu
k , we write Hλ = πλ (H )⊆ F and Jλ = πλ (J)⊆ R, where πλ

denotes the evaluation map.
Notice that F+R = I, H R[z] = J, and Hλ R = Jλ . Moreover, Jλ is a reduction of I if and only if

Ir+1 = Jλ Ir for some r ⩾ 0 if and only if F r+1
+ = Hλ F r

+ for some r ⩾ 0 if and only if F+ ⊆
√

Hλ .

The following result describes the locus of the points λ for which Jλ is not a reduction of I. We also
show that this locus is determined by a single irreducible polynomial of k[z]. We note that here we only
assume I is homogeneous and not necessarily generated by monomials.

Proposition 5.2. With assumptions as in Notation 5.1 let A = (H :F [z] F
∞
+ )∩k[z].

(a) The k[z]-ideal A defines the locus where Jλ is not a reduction of I.
(b) The ideal A is a prime ideal of height one. Thus A = (h), where h an irreducible polynomial in k[z].

Proof. To prove (a) we write T =F [z]/H and consider the natural map φ : Proj(T )→ Spec(k[z]). Clearly
Im(φ)⊆V (A ); we claim that V (A ) = Im(φ). For this, we first note that H :F [z] F

∞
+ is a prime ideal of

height ℓ by Lemma 3.3. Therefore, we have an inclusion of domains

U := k[z]/A ↪−→V := F [z]/(H :F [z] F
∞
+ ).

Since

(6) dim(V ⊗U Quot(U)) = ht(F+V )⩾ 1,

by semicontinuity of fiber dimension [14, Theorem 14.8 (b)] we have that dim(V ⊗U κ(P))⩾ 1 for every
P ∈ Spec(U). Therefore P ∈ Im(φ) for every P ∈ Spec(U), whence the claim follows.

A point λ ∈ Aℓu
k belongs to Im(φ) if and only if dim

(
T ⊗k[z] (k[z]/(z−λ ))

)
> 0. Since

T ⊗k[z] (k[z]/(z−λ ))∼= F/Hλ ,

the last condition is equivalent to F+ ̸⊆
√

Hλ , which means that Jλ is not a reduction of I.
For part (b), it remains to show that ht(A ) = 1. We first observe that

dim(V ) = dim(F [z])−ht
(
H :F [z] F

∞
+

)
= (ℓ+dim(k[z]))− ℓ= dim(k[z]).

We think of points in Aℓu
k as ℓ×u matrices. If λ 0 ∈ Aℓu

k is a matrix whose first ℓ−1 rows are general and
whose last row consists of zeros, then ht

(
Hλ 0

)
= ℓ− 1. Therefore, F/Hλ 0

= V ⊗U (U/(z−λ 0)) has
dimension one, which shows that dim(V ⊗U Quot(U)) = 1 by [14, Theorem 14.8 (b)] and (6). Thus,

1 = trdegU(V ) = trdegk(V )− trdegk(U) = dim(V )−dim(U) = dim(k[z])−dim(U) = ht(A ),

completing the proof. □

Following Notation 5.1, one can see that every homogeneous reduction of I contains a reduction
generated by ℓ homogeneous elements of degree δ , which is necessarily of the form Jλ for some λ ∈ Aℓu

k .

Corollary 5.3. With assumptions as in Notation 5.1 and Proposition 5.2, we have

gradedcore(I) =
⋂

λ ̸∈V (A )

Jλ .
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In the following result we show that for a monomial ideal I,
(
mono(J) :R[z] (h)∞

)
∩R is contained in

every homogeneous reduction of I. In fact, we conjecture that this ideal is equal to gradedcore(I) (see
Conjecture 5.5). Here we think of J as an ideal in the polynomial ring A[x1, . . . ,xd ] with A = k[z] (see
Definition 4.3). For a vector w = (w1, . . . ,wd) ∈ Nd we denote by xw the monomial xw1

1 · · ·xwd
d .

Theorem 5.4. In addition to the assumptions of Notation 5.1 we suppose that f1, . . . , fu are monomials. If
h ∈ k[z] is as in Proposition 5.2(b), then(

mono(J) :R[z] (h)
∞
)
∩R ⊆ gradedcore(I).

Proof. Let xv ∈
(
mono(J) :R[z] (h)∞

)
∩R. Then xvhN ∈ mono(J) for N ≫ 0. By Proposition 5.2 for each

λ such that Jλ is a reduction of I we have πλ (h) ̸= 0. Hence, setting Y = ∏yi as in (4) and using (5), we
obtain

xv ∈ πλ (mono(J)) = πλ

((
(b̃1, . . . , b̃ℓ) :R[z,y] Y ∞

)
∩R[z]

)
⊆ πλ

(
(b̃1, . . . , b̃ℓ) :R[z,y] Y ∞

)
∩R

⊆ (πλ (b̃1, . . . , b̃ℓ) :R[y] Y ∞)∩R = mono(Jλ )⊆ Jλ .

Taking the intersection over all such λ we obtain xv ∈ gradedcore(I), as desired. □

We propose the following conjecture based on the previous result and computational evidence.

Conjecture 5.5. Let I and h be as in Theorem 5.4. Then

gradedcore(I) = (mono(J) :R[z] (h)
∞)∩R.

In our next result, we show that the content ideal of mono(J) is principal and that it is generated by the
irreducible polynomial h from Proposition 5.2 (b). We use this result to verify Conjecture 5.5 for specific
examples at the end of the section. Before we proceed we need to fix more notation.

Notation 5.6. In addition to the assumptions of Notation 5.1 we suppose that f1, . . . , fu are monomials. Let
v1, . . . ,vr ∈ Nd be distinct vectors such that mono(J) =C1(xv1)+ . . .+Cr(xvr), where C1, . . . ,Cr are ideals
of k[z] (see Definition 4.3). The ideal C =C1 + . . .+Cr is called the content ideal of mono(J). We note
that the set of monomials M := {xv

1, . . . ,x
v
r} generates mono(Jλ ) for general λ by Proposition 4.4 (b).

Let xv = lcm( f1, . . . , fu) and for each fi let gi be the monomial in R[y] = R[y1, . . . ,yd ] such that deg(gi) =

v and degx j
(gi) = degx j

( fi) for every i and j. Notice that ∑
u
j=1 zi, jg j is b̃i, the multihomogenization of

bi ∈ k[z][x1, . . . ,xd ]. Let f̂i be the element of k[y] such that degy j
( f̂i) = degy j

(gi), that is gi = fi f̂i, and set

Î = ( f̂1, . . . , f̂u)⊆ k[y]. The ideal Î is the Newton complementary dual of I defined in [11] (see also [2]).

Theorem 5.7. Let C be as in Notation 5.6 and let h ∈ k[z] be as in Proposition 5.2 (b). Then C = (h).

Proof. We prove the result by constructing a k[z]-isomorphism

η :
k[z]
(h)

k[z]
C

.∼

For this we consider the following diagram, which we explain in the rest of the proof.
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T

(b̃1, . . . , b̃ℓ) : Y ∞

(1)
=

T

(b̃1, . . . , b̃ℓ) : G∞

F [z]
H : F ∞

+

S

(b̃1, . . . , b̃ℓ) : G∞

F (Î)[z]

(b̂1, . . . , b̂ℓ) : F̂∞
[x,x−1]

A
(h)

A[x,x−1]

mono(J)A[x,x−1]
=

A
C

[x,x−1]
A
(q)

[x,x−1]

A
C

A
(q)

ϕ

ψ

φ

∼

η

χ

Φ

∼

Write
A := k[z]⊆ S := A[x,x−1][g1, . . . ,gu]⊆ T := A[x,x−1][y1, . . . ,yd ],

and set Y =
d
∏
j=1

y j, F =
u
∏
j=1

f j, G =
u
∏
j=1

g j, and F̂ =
u
∏
j=1

f̂ j.

The equality (1) at the top of the diagram follows from Lemma 3.3 since Y ∈
√
(g1, . . . ,gu)k[x,x−1][y1, . . . ,yd ]

as xi are units.
We continue by constructing the map ψ . The inclusion S ⊂ T induces an A-algebra homomorphism

ψ :
S

(b̃1, . . . , b̃ℓ) :S G∞

T

(b̃1, . . . , b̃ℓ) :T G∞
.

We claim ψ is injective. Since G is a non-zerodivisor modulo (b̃1, . . . , b̃ℓ) :S G∞, it suffices to show that
ψ ⊗S SG is injective. Write z′i = zi,1 +g−1

1 ∑
u
j=2 zi, jg j ∈ SG for 1 ⩽ i ⩽ ℓ. Notice that(

(b̃1, . . . , b̃ℓ) :S G∞

)
G
= (b̃1, . . . , b̃ℓ)SG = (z′1, . . . ,z

′
ℓ)SG

and similarly (
(b̃1, . . . , b̃ℓ) :T G∞

)
G
= (z′1, . . . ,z

′
ℓ)TG .

Consider the two rings

B := k[x,x−1][g,G−1][{zi, j | j ⩾ 2}]⊆C := k[x,x−1][y,G−1][{zi, j | j ⩾ 2}].

One has SG = B[z′1, . . . ,z
′
ℓ] and TG =C[z′1, . . . ,z

′
ℓ], and z′1, . . . ,z

′
ℓ are variables over B and C. Clearly,

B[z′1, . . . ,z
′
ℓ]

(z′1, . . . ,z
′
ℓ)

C[z′1, . . . ,z
′
ℓ]

(z′1, . . . ,z
′
ℓ)

,

which proves the claim.
Next we deal with the map ϕ . Define a map of A-algebras

ϕ : F [z]→ S
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given by ϕ( fi) = gi. To prove that ϕ is well-defined, let p be a polynomial with coefficients in A such
that p( f1, . . . , fu) = 0 and fix w = (w1, . . . ,wd) ∈ Nd . Let pw be the sum of the terms p′ of p such that
deg(p′( f1, . . . , fu)) = w. Therefore

pw(g1, . . . ,gu) = y
∑i wi

δ
v−w pw( f1, . . . , fu) = 0.

We conclude that p(g1, . . . ,gu) = 0 showing that ϕ is well-defined. Notice that ϕ(bi) =
u
∑
j=1

zi, jg j = b̃i,

hence ϕ(H ) ⊆ (b̃1, . . . , b̃ℓ). Therefore, we have ϕ(H :F [z] F∞) ⊆ (b̃1, . . . , b̃ℓ) :S G∞. Now Lemma 3.3
shows that H :F [z] F

∞
+ = H :F [z] F∞. It follows that ϕ induces a homomorphism of A-algebras

ϕ :
F [z]

H : F ∞
+

S

(b̃1, . . . , b̃ℓ) : G∞
.

Now we construct the isomorphism φ . Notice that f̂ j = a jg j where a j = f−1
j ∈ k[x,x−1] is a unit, in

particular F̂ is equal to G times a unit in k[x,x−1]. Now

S = k[ f̂1, . . . , f̂u][z][x,x−1] = F
(
Î
)
[z][x,x−1] .

Consider the automorphism φ of S as an algebra over k[g1, . . . ,gu][x,x−1] that sends zi, j to a jzi, j. Notice

that φ maps A[x,x−1] onto itself and sends b̃i to b̂i :=
u
∑
j=1

zi, j f̂ j. Hence φ induces an isomorphism

φ :
S

(b̃1, . . . , b̃ℓ) : G∞
−→

F
(
Î
)
[z]

(b̂1, . . . , b̂ℓ) : F̂∞
[x,x−1]

that maps the image of A[x,x−1] onto itself.
We now deal with the map χ . Recall that (b̃1, . . . , b̃ℓ) :T Y ∞ = (b̃1, . . . , b̃ℓ) :T G∞ by the equality (1) at

the top of the diagram. Hence the inclusion A[x,x−1]⊆ S ⊆ T induces the natural embedding

χ :
A[x,x−1](

(b̃1, . . . , b̃ℓ) :T Y ∞

)
∩A[x,x−1]

S

(b̃1, . . . , b̃ℓ) : G∞
.

On the other hand,(
(b̃1, . . . , b̃ℓ) :T Y ∞

)
∩A[x,x−1] =

((
(b̃1, . . . , b̃ℓ) :A[x,y] Y ∞

)
∩A[x])

)
A[x,x−1]

= mono(J)A[x,x−1] = C A[x,x−1] ,

where the penultimate equality holds by (5).
We continue by establishing the isomorphism Φ. Since the isomorphism φ maps the image A[x,x−1]

onto itself, it follows that this map restricts to an isomorphism

Φ :
A
C

[x,x−1]
A(

(b̂1, . . . , b̂ℓ) : F̂∞

)
∩A

[x,x−1] .

By Proposition 5.2 (b) and Lemma 3.3, the ideal
(
(b̂1, . . . , b̂ℓ) :F (Î)[z] F̂∞

)
∩A is generated by an irreducible

polynomial q.
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Finally we construct the desired map η . Recall that (H : F ∞
+ )∩A = (h) by Proposition 5.2 (b). Since

ϕ is a homomorphism of A-algebras, it induces an epimorphism of A-algebras

η :
A
(h)

A
C

.

It follows that (h)⊆ C . On the other hand,

ht(C ) = ht
(
C A[x,x−1]

)
= ht

(
qA[x,x−1]

)
= ht(q) = 1,

where the second equality holds because of the isomorphism Φ. Since (h) is a prime ideal of height 1, we
conclude that C = (h), finishing the proof. □

The variation of the coefficient ideals occurring in mono(J) provides a tool to distinguish between the
monomials of M and possibly single out the relevant ones:

Discussion 5.8. With assumptions as in Notation 5.6 and Theorem 5.7. We are now in a position to single
out the set N = {xvi ∈ M |

√
Ci = (h)} of monomials with ‘maximal’ coefficient ideals and consider the

sum of ‘non-maximal’ coefficient ideals D = ∑iCi, where xvi ranges over set M \N . Notice that the
monomials in N generate the ideal

(
mono(J) :R[z] (h)∞

)
∩R in Conjecture 5.5.

We believe that the ideal D defines the closed subset of Aℓu
k that identifies the ‘general special’ reductions

Jλ needed to describe the graded core. Namely, we conjecture that

(a) gradedcore(I) = Jn+1
λ

: In for n ≫ 0 if λ is general in V (D).
(b) gradedcore(I) can be obtained by intersecting the mono of a general minimal reduction with finitely

many Jλ with λ general in V (D).

We now verify Conjecture 5.5 and Conjecture (b) in Discussion 5.8 for a specific example.

Example 5.9. Let I = (x3
1,x

2
1x2,x1x2

3,x
3
3) ⊆ R = Q[x1,x2,x3] be as in Example 4.8 and M ,N ,D as in

Discussion 5.8. Recall that gradedcore(I) is not a finite intersection of general reductions of I and is not
mono(K), for a general reduction K. However, as it turns out, gradedcore(I) is a finite intersection of
special reductions of I.

There exist relatively prime non-constant polynomials h and g in Q[z] such that

mono(J) = (h)(x2
1,x1x2,x1x3,x2x3,x2

3)I +(hg)(x2
1x3

2,x1x2
2x2

3,x
2
2x3

3) =: (h)A+(hg)B.

We note that

M =
{

x2
1,x1x2,x1x3,x2x3,x2

3,x
2
1x3

2,x1x2
2x2

3,x
2
2x3

3
}
, N =

{
x2

1,x1x2,x1x3,x2x3,x2
3
}
, and D = (hg).

By Proposition 5.2 and Theorem 5.7 the polynomial h is irreducible and defines the locus where Jλ is
not a reduction of I. As we have seen in Example 4.8 core(I) ⊆ gradedcore(I) ⊆ A+B = Im2. Since
h and g are relative prime, we obtain (mono(J) : (h)∞)∩R = A, with J is as in Notation 5.1. Hence
A⊆ gradedcore(I) according to Theorem 5.4.

Next we search for special reductions that are needed to compute the graded core.
Computation with Macaulay2 [20] shows that

g = z1,4z2,3z3,2 − z1,3z2,4z3,2 − z1,4z2,2z3,3 + z1,2z2,4z3,3 + z1,3z2,2z3,4 − z1,2z2,3z3,4.
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Consider

λ 0 =

1 0 0 0
0 1 0 0
0 0 1 1

 and λ 1 =

1 0 0 0
0 1 1 0
0 0 0 1

 .

Then πλ 0
(g) = πλ 1

(g) = 0, πλ 0
(h) ̸= 0, and πλ 1

(h) ̸= 0. Therefore λ 0 and λ 1 belong to V (D), and the
ideals

Jλ 0
= (x3

1,x
2
1x2,x1x2

3 + x3
3) and Jλ 1

= (x3
1,x

2
1x2 + x1x2

3,x
3
3)

are special reductions of I. Thus

A⊆ gradedcore(I)⊆ Im2 ∩mono(Jλ 0
∩ Jλ 1

) = A,

where mono(−) is computed using the command monomialSubideal in Macaulay2. We conclude that
gradedcore(I) = A, which verifies Conjecture 5.5.

The following theorem gives an instance where the graded core equals the mono of a general minimal
reduction without any residual conditions.

Theorem 5.10. Using Notation 5.6, if
√

Ci = C for every i, then gradedcore(I) = mono(Jλ ) for general λ .

Proof. The assumption implies that M = N for M and N as in Discussion 5.8. Now we use the
inclusions

(N ) =
(
mono(J) :R[z] (h)

∞
)
∩R ⊆ gradedcore(I)⊆ mono(Jλ ) = (M )

that follow from Discussion 5.8, Theorem 5.4, and Notation 5.6. □

6. THE CORE OF LEX-SEGMENT IDEALS

In this section we investigate the core of a special class of monomial ideals, lex-segment ideals. Through-
out R denotes a polynomial ring k[x1, . . . ,xd ] over a field k and I denotes a homogeneous ideal.

We begin by recalling some basic facts about lex-segment ideals; for a thorough treatment see [43] or
[21]. Let HM denote the Hilbert function of a finitely generated graded R-module M. Write R =

⊕
i⩾0 Ri

and consider the lexicographic monomial order with x1 > x2 > · · · > xd . Let Li be the subspace of Ri

generated by the largest HI(i) monomials and set L =
⊕

i⩾0 Li. The vector space L is an ideal, and any ideal
constructed this way is called a lex-segment ideal. Lex-segment ideals are strongly stable, i.e., if u ∈ L is a
monomial and x j|u for some j, then xi

u
x j ∈ L for every i < j. However, there are strongly stable ideals that

are not lex-segment.
The purpose of this section is to tackle the following conjecture.

Conjecture 6.1. Let R = k[x1, . . . ,xd ] be a polynomial ring over a field k of characteristic zero and
m= (x1, . . . ,xd) the homogeneous maximal ideal of R. If L is a lex-segment ideal of height g ⩾ 2 generated
in degree δ ⩾ 2, then

core(L) = Lmd(δ−2)+g−δ+1.

Remark 6.2. We have strong evidence supporting this conjecture. The case δ = 2 was shown in [50,
Theorem 5.1], and the case g = d, i.e., I is a power of m, was shown in [10, Proposition 4.2]. The case
d ⩽ 3 is Corollary 6.14. Moreover, a large number of cases were verified with Macaulay2 [20]. In fact, we
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developed an algorithm based on Theorem 4.7, Proposition 6.5, and Remark 6.10 that tested the conjecture
for every lex-segment ideal in the following cases: d = 4 and δ ⩽ 12; d = 5 and δ ⩽ 5; d = 6 and δ ⩽ 3.
Furthermore, in Theorem 6.9, Theorem 6.11, and Theorem 6.13 we obtain other partial results towards the
conjecture.

For a monomial ideal I ⊂ R = k[x1, . . . ,xd ], we denote by Γ(I) the set of monomials in I and by G(I)
the minimal set of monomial generators {xv1 , . . . ,xvu} of I. For a set of monomials W in R, we denote by
log(W )⊆ Nd the set of exponents of the monomials in W . For w = (w1, . . . ,wd) ∈ Nd , we define min(w)

and max(w) to be the smallest and largest i such that wi ̸= 0, respectively; we also set |w|= ∑i wi.
The following technical results are needed in the proofs of the main results of this section. The first one

gives a characterization of the analytic spread and height of strongly stable ideals.

Proposition 6.3. Let R = k[x1, . . . ,xd ] be a polynomial ring over a field k and I a strongly stable ideal.

(a) ht(I) = max{min(v) |v ∈ log(G(I))}.
(b) If in addition I is generated in a single degree then

ℓ(I) = max{max(v) |v ∈ log(G(I))}.

Proof. To prove part (a) let r =max{min(v) |v∈ log(G(I))}. It is clear that I ⊆ (x1, . . . ,xr) and so ht(I)⩽ r.
On the other hand, let p ∈V (I) and let v ∈ log(G(I)). If i ⩽ min(v), then x|v|i ∈ I since I is strongly stable.
Therefore xi ∈ p for every 1 ⩽ i ⩽ r, and the conclusion follows.

We now prove part (b). Let s = max{max(v) |v ∈ log(G(I))}. Notice that G(I) consists of mono-
mials in the variables x1, . . . ,xs. Hence ℓ(I) ⩽ s. On the other hand, since I is strongly stable and
generated in one degree, say δ , it follows that xδ−1

1 (x1, . . . ,xs) ⊆ I. Therefore ℓ(I) = trdegk(k[Iδ ]) ⩾

trdegk

(
k[xδ−1

1 x1, . . . ,xδ−1
1 xs]

)
= s. □

Remark 6.4. If L is a lex-segment ideal of height g ⩾ 2 generated in degree δ ⩾ 2, then ℓ(L) = d and the
minimal number of generators of L is at least d+1. Indeed, in this case xδ

2 ∈ L and then xδ−1
1 (x1, . . . ,xd)⊂ L.

The conclusion about ℓ(L) now follows from Proposition 6.3 (b).

The following proposition allows us to use the results of [9] and [44] for the computation of cores of
lex-segment ideals. Some of the techniques in the proof originate from [50, Theorem 3.3]. Recall that an
ideal I of height g is said to satisfy AN−

s , where s is an integer, if for every g ⩽ i ⩽ s and every geometric
i-residual intersection K of I the ring R/K is Cohen-Macaulay. Notice that if Ip satisfies AN−

s for every
p ∈V (I), then I satisfies AN−

s .
Let a1, . . . ,an be homogeneous elements of R and I the ideal they generate. Write Hi for the ith Koszul

homology of a1, . . . ,an. The ideal I satisfies sliding depth if depth(Hi)⩾ d −n+ i for every i, where we
use the convention depth(0) = ∞ (see [24]).

Proposition 6.5. Let R = k[x1, . . . ,xd ] be a polynomial ring over a field k, m= (x1, . . . ,xd) the maximal
homogeneous ideal of R, and L a lex-segment ideal. Then Lsat = L : m∞ satisfies G∞, sliding depth, and
AN−

d−1. Moreover, L satisfies Gd and AN−
d−1.

Proof. We may assume that L ̸= 0 and L ̸= R. Write g = ht(L). We claim that Lsat satisfies G∞ and sliding
depth. Let δ be the largest degree of a monomial generator of L. We use induction on δ . If δ = 1, then
L = (x1, . . . ,xg), and the claim holds trivially. Assume δ ⩾ 2 and the claim holds for every lex-segment ideal
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generated in degrees smaller than δ . We may assume g < d, as otherwise Lsat = R. Set S := k[xg, . . . ,xd ].
By Proposition 6.3 (a) we can write L = I + xgL′ for some ideals I and L′ such that I ⊆ (x1, . . . ,xg−1), the
generators of L′ involve only the variables xg, . . . ,xd , and L′∩S is a lex-segment ideal in S generated in
degrees smaller than δ . Clearly, xδ

g ∈ L and then (x1, . . . ,xg−1)m
δ−1 ⊆ I. We conclude that

(x1, . . . ,xg−1)m
δ−1 + xgL′ ⊆ L ⊆ (x1, . . . ,xg−1)+ xgL′.

Therefore

Lsat = (x1, . . . ,xg−1)+
(
(xgL′∩S) :S (xg, . . . ,xd)

∞
)
R

= (x1, . . . ,xg−1)+ xg
(
(L′∩S) :S (xg, . . . ,xd)

∞
)
R since g < d.

It follows from the induction hypothesis that Lsat satisfies G∞. Now, since x1, . . . ,xg−1 is a regular
sequence and the image of Lsat in S ∼= R/(x1, . . . ,xg−1) is xg

(
(L′∩S) :S (xg, . . . ,xd)

∞
)
, by [24, Lemma 3.5]

the ideal Lsat satisfies sliding depth if and only if xg
(
(L′∩S) :S (xg, . . . ,xd)

∞
)

satisfies sliding depth. Since
xg is a regular element, the latter is equivalent to ((L′∩S) :S (xg, . . . ,xd)

∞) satisfying sliding depth. The
conclusion now follows from the induction hypothesis.

Now for every p∈V (Lsat), the ideal Lsat
p satisfies G∞ and sliding depth. It follows from [24, Theorem 3.3]

that this ideal is AN−
d−1. Hence Lsat satisfies AN−

d−1.
Notice that the ideals L and Lsat are equal locally at every prime ideal p ̸= m. Hence the property Gd

passes from Lsat to L. According to [53, Remark 1.12] the property AN−
d−1 passes from Lsat

p to Lp because
the two ideals coincide locally in codimension d −1. Hence L satisfies AN−

d−1. □

Let R be a Cohen-Macaulay ∗local ring with a graded canonical module ωR (cf. [7, Section 3.6]). For a
graded R-module M, we denote by M∨ = HomR(M, ωR) the ω-dual of M. The following proposition and
its proof are essentially contained in [53, Lemma 2.1] (see also [8, Lemma 4.9]), we include it here in its
graded version.

Proposition 6.6. Let R be a Cohen-Macaulay ∗local ring with a graded canonical module ωR. Let I be a
homogeneous ideal. Let x ∈ I be a homogeneous regular element and J = (x) : I. Then

ωR/J
∼=
(
(IωR)

∨∨/xωR
)
(deg(x)).

Proof. We may assume that J ̸= R. There are homogeneous isomorphisms

J = x(R :Quot(R) I)

∼= xHomR
(
I, R
)

∼= xHomR
(
I, HomR(ωR, ωR)

)
∼= xHomR

(
I ⊗R ωR, ωR

)
∼= xHomR

(
IωR, ωR

)
, as Ker(I ⊗R ωR ↠ IωR) is torsion.

We conclude that J ∼= x(IωR)
∨, and therefore

(7) J∨ ∼=
(
x(IωR)

∨)∨ ∼= x−1(IωR)
∨∨.

Dualizing the exact sequence

0 J R R/J 0 ,
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into ωR, one obtains an exact sequence

(8) HomR(R/J, ωR) R∨ J∨ Ext1R(R/J, ωR) 0 .

Since ht(J) = 1 we have HomR(R/J,ωR) = 0 and Ext1R(R/J, ωR)∼= ωR/J . Thus (7) and (8) yield

0 ωR x−1(IωR)
∨∨ ωR/J 0 .

Hence
ωR/J

∼=
(
x−1(IωR)

∨∨)/ωR ∼=
(
(IωR)

∨∨/xωR
)
(deg(x)) ,

as desired. □

For a graded module M = ⊕i∈ZMi we denote by indeg(M) the initial degree of M, i.e., indeg(M) =

inf{i |Mi ̸= 0}.

Lemma 6.7. Let R be a standard graded Cohen-Macaulay ring over a field k with dim(R) = d, ωR the
graded canonical module of R, and I a homogeneous ideal. Assume that I satisfies Gd−1 and is weakly
(d −2)-residually S2. Let n and δ ⩾ 0 be integers, and consider the following statements :

(i) indeg
(
ωR/((a1,...,ad−1):I)

)
⩾−n for some (d −1)-residual intersection

(a1, . . . ,ad−1) : I

of I such that each ai is homogeneous of degree δ ,
(ii) indeg

(
ωR/((a1,...,ad−1):I)

)
⩾−n for every (d −1)-residual intersection

(a1, . . . ,ad−1) : I

of I such that each ai is homogeneous of degree δ ,
(iii) indeg

(
ωR/((a1,...,ad):I)

)
⩾−n for every d-residual intersection

(a1, . . . ,ad) : I

of I such that each ai is homogeneous of degree δ .

Then (i) is equivalent to (ii). Moreover, if indeg(I)⩾ δ , then (ii) implies (iii).

Proof. For a Noetherian graded k-algebra T , we denote by HST (t) the Hilbert series of T . We may assume
that the field k is infinite.

(i) ⇒ (ii): Set a = {a1, . . . ,ad−1} and let R = R/((a) : I). Since R is Cohen-Macaulay of dimension one
(see [8, Proposition 3.4 (a)]), we may write HSR(t)=

QR(t)
1−t for some QR(t)∈Z[t]. By [7, Corollary 4.4.6 (a)]

and the assumption in (i), we have

(9) deg
(
QR(t)

)
= 1− indeg

(
ωR
)
⩽ 1+n.

By [8, Proposition 3.1 and Theorem 2.1 (b)], HSR/((a):I)(t) is the same for every (d−1)-residual intersection
((a) : I) of I such that each ai is homogeneous of degree δ . The conclusion now follows by applying (9)
again.

(ii) ⇒ (iii): We assume that indeg(I)⩾ δ . Let (a,ad) : I = (a1, . . . ,ad−1,ad) : I be a d-residual intersec-
tion of I. By [53, Corollary 1.6 (a)] we may assume that (a) : I is a geometric (d −1)-residual intersection
of I. Write for images in R = R/((a) : I). From [8, Proposition 3.1, Proposition 3.3, and Lemma 2.4
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(b)] it follows that R is Cohen-Macaulay of dimension one, ad ∈ I is a homogeneous R-regular element
of degree δ , and (a, ad) :R I = (ad) :R I. Hence by Proposition 6.6 and the fact that IωR is a maximal
Cohen-Macaulay R-module, we have

ωR/((a,ad):I) = ωR/((ad):I)
∼=
(
(IωR)

∨∨/adωR
)
(δ )∼= (IωR/adωR)(δ ),

where (−)∨ = HomR (−,ωR) . Therefore, indeg
(
ωR/((a,ad):I)

)
⩾−n as desired. □

Remark 6.8. Let R = k[x1, . . . ,xd ] be a polynomial ring over a field k and L a lex-segment ideal of height
g generated in degree δ . Let R′ = k[x1, . . . ,xd−1]. Then L∩R′ is a lex-segment ideal of R′ generated in
degree δ and ht(L′) = min{g,d −1}.

Proof. If g = d, then L = (x1, . . . ,xd)
δ and the result is clear. Hence we may assume g < d. Let

{xv1 , . . . ,xvu} be the minimal monomial generating set of L. Thus L ∩ R′ is generated by the mono-
mials xvi such that xd ∤ xvi , and then it is a lex-segment ideal of R′. Finally, by Proposition 6.3 (a) we have
ht(L′) = g. □

In the following we prove one inclusion of Conjecture 6.1 in full generality.

Theorem 6.9. Let R = k[x1, . . . ,xd ] be a polynomial ring over an infinite field k and m= (x1, . . . ,xd) the
maximal homogeneous ideal of R. If L is a lex-segment ideal of height g ⩾ 2 generated in degree δ ⩾ 2,
then

Lmd(δ−2)+g−δ+1 ⊆ core(L).

Proof. Recall that by Proposition 6.5 the ideal L satisfies Gd and AN−
d−1. According to Corollary 3.12, we

have that core(L) is the intersection of finitely many reductions generated by d general elements of L with
respect to a generating set of L contained in Lδ . Let a = a1, . . . ,ad be such general elements. To prove the
statement of the theorem, it suffices to show that md(δ−2)+g−δ+1 ⊆ (a) : L . The latter is equivalent to

(10) HR/((a):L)(n) = 0 for every n ⩾ d(δ −2)+g−δ +1.

Since L is Gd , by [46, Lemma 3.1 (a)] and Remark 6.4, (a) : L is a d-residual intersection of L. Therefore
the ring R/((a) : L) is Artinian. Hence (10) is equivalent to indeg(ωR/((a):L))⩾−(d(δ −2)+g−δ ).

We claim that there exists a (d − 1)-residual intersection of L, (b1, . . . ,bd−1) : L, such that each bi is
homogeneous of degree δ and indeg

(
ωR/((b1,...,bd−1):L)

)
⩾ −

(
d(δ − 2)+ g− δ

)
. The result will follow

from this claim and the implication (i) ⇒ (iii) in Lemma 6.7.
We now prove the claim by induction on σ(L) = d −g ⩾ 0. If σ(L) = 0, then L =mδ and the claim is

satisfied by taking bi = xδ
i for every i (see [7, Corollary 3.6.14]).

For the induction step assume σ(L)> 0 and set R′ = k[x1, . . . ,xd−1] and L′ = L∩R′. By Remark 6.8 the
ideal L′ is a lex-segment ideal of height g generated in degree δ . In particular, σ(L′) = d −1−g < σ(L).
By induction hypothesis there exists a (d −2)-residual intersection (b) :R′ L′ = (b1, . . . ,bd−2) :R′ L′ such
that each bi is homogeneous of degree δ and

(11) indeg
(
ωR′/((b):R′L′)

)
⩾−((d −1)(δ −2)+g−δ ) .

Therefore the implication (i) ⇒ (ii) in Lemma 6.7 shows that every (d −2)-residual intersection (b) :R′ L′

such that each bi is homogeneous of degree δ has this property. Hence we may choose this residual
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intersection to be a geometric residual intersection, which exists by Proposition 6.5 and [53, proof of
Lemma 1.4].

To pass back to L we consider the saturation Lsat and write (Lsat)′ = Lsat ∩R′. From [14, Proposition
15.24] we have Lsat = L : (xd)

∞, hence the minimal monomial generators of Lsat are not divisible by xd , i.e.,

(12) Lsat = (Lsat)′R .

By Proposition 6.5, Lsat satisfies G∞ and AN−
d−1, hence so does (Lsat)′. The homogeneous inclusion

(Lsat)′/L′ ↪→ Lsat/L implies that the Hilbert function of (Lsat)′/L′ is eventually zero, hence

(13) ht
(
L′ :R′ (Lsat)′

)
⩾ d −1 .

Notice that (b) :R′ (Lsat)′ ⊂ (b) :R′ L′. Since (b) :R′ L′ is a geometric (d − 2)-residual intersection, (13)
implies that (b) :R′ (Lsat)′ is a geometric (d −2)-residual intersection. The ideal (b) :R′ (Lsat)′ is unmixed
of height d −2 by [53, Proposition 1.7 (a)]. Therefore by (13)

(14) (b) :R′ (Lsat)′ = (b) :R′ L′.

Let denote images in the ring R′ = R′/((b) :R′ (Lsat)′) = R′/((b) :R′ L′). Notice that R′ is Cohen-
Macaulay of dimension one. Since (b) :R′ L′ is a geometric (d −2)-residual intersection of L′ we have that
ht
(
L′
)
= 1. Hence there exists an R′-regular element bd−1 ∈ L′

δ
. Thus by (14) the ideal (b, bd−1) :R′ (Lsat)′

is a (d − 1)-residual intersection. From [53, Proposition 1.7 (f)] it follows that (b, bd−1) :R′ (Lsat)′ =

(bd−1) :R′ (Lsat)′. Moreover, (Lsat)′ωR′ is a maximal Cohen-Macaulay R′-module. Hence Proposition 6.6
implies

ωR′/((b,bd−1):R′ (Lsat)′)
∼=
(
(Lsat)′ωR′/bd−1ωR′

)
(δ ).

Using (12) we see that
ωR/((b,bd−1):RLsat)

∼= ωR′/((b,bd−1):R′ (Lsat)′)⊗R′ R(−1) .

Hence

indeg
(
ωR/((b,bd−1):RLsat)

)
= indeg

(
ωR′/((b,bd−1):R′ (Lsat)′)

)
+1

= indeg
((
(Lsat)′ωR′/bd−1ωR′

)
(δ )
)
+1

⩾ indeg
(
ωR′
)
−δ +2

⩾−((d −1)(δ −2)+g−δ )−δ +2 by (11)

=−(d(δ −2)+g−δ ) .

Finally, since (b, bd−1) :R′ (Lsat)′ is a (d −1)-residual intersection, (12) shows that (b,bd−1) :R Lsat is
a (d − 1)-residual intersection. This ideal is unmixed of height d − 1 by [53, Proposition 1.7 (a)], and
moreover ht(L :R Lsat)⩾ d. Therefore (b,bd−1) :R Lsat = (b,bd−1) :R L is a (d −1)-residual intersection of
L, completing the proof. □

Remark 6.10. We remark that in order to show the reverse containment in Theorem 6.9, if k is a field of
characteristic zero, it is enough to show that xd(δ−2)+g

1 ̸∈ J for some reduction J of L. To see this, notice
that L∩md(δ−2)+g+1 = Lmd(δ−2)+g−δ+1 because L is generated in degree δ . Therefore it suffices to show
that core(L)⊆md(δ−2)+g+1. Since core(L) is a strongly stable monomial ideal [50, Proposition 2.3], this
containment is equivalent to xd(δ−2)+g

1 ̸∈ core(L).
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The next two theorems settle Conjecture 6.1 in some particular cases. In the first theorem, we show that
Conjecture 6.1 holds for the smallest and largest lex-segment ideals for fixed d, g, and δ .

Theorem 6.11. Let R = k[x1, . . . ,xd ] be a polynomial ring over a field k of characteristic zero and
m= (x1, . . . ,xd) the maximal homogeneous ideal of R. Let g and δ be integers such that 2 ⩽ g ⩽ d and
δ ⩾ 2. Let L be one of the following lex-segment ideals

(1) (x1, . . . ,xg−1)m
δ−1 +(xg)

δ , or
(2) (x1, . . . ,xg)m

δ−1.

Then core(L) = Lmd(δ−2)+g−δ+1.

We need the following lemma for the proof of Theorem 6.11.

Lemma 6.12. Let R = k[x1, . . . ,xd ] be a polynomial ring over a field k of characteristic zero and L a
lex-segment ideal generated in degree δ ⩾ 2. If J is any reduction of L, then for every n ⩾ 0 we have

core(L)⊆ Jn+1 : Ln.

Proof. Since L satisfies Gd and AN−
d−1 according to Proposition 6.5, by Corollary 3.10 it suffices to show

that core(Lp)⊆ Kn+1 :Rp Ln
p for every p ∈ Spec(R) and every reduction K of Lp. We may further assume

that K is a minimal reduction of Lp, and in particular µ(K)⩽ dim(Rp). By [53, Lemma 1.10 (b)] the ideal
Lp satisfies Gd and AN−

d−1, and by [36, Remark 2.7] we have ht
(
K :Rp Lp

)
⩾ dim(Rp). Therefore K satisfies

G∞. Hence by [53, Remark 1.12 and Corollary 1.8 (c)], K satisfies sliding depth. Now the proof of [44,
Theorem 4.4] shows that for all n ⩾ 0

core(Lp)⊆ Kn+1 :Rp ∑
y∈Lp

(K,y)n = Kn+1 :Rp Ln
p ,

where the last equality holds since k has characteristic zero and then Ln
p = ∑

y∈Lp

(yn). □

Proof of Theorem 6.11. We write L1 = (x1, . . . ,xg−1)m
δ−1 +(xδ

g ) and L2 = (x1, . . . ,xg)m
δ−1. Let

J1 = (xδ
1 , . . . ,x

δ
g )+(x1, . . . ,xg−1)(xδ−1

g+1 , . . . ,x
δ−1
d ), and

J2 = (xδ
1 , . . . ,x

δ
g )+(x1, . . . ,xg)(xδ−1

g+1 , . . . ,x
δ−1
d ).

We claim that J1 is a reduction of L1 and J2 is a reduction of L2. To see this, notice that by [31, Propo-
sition 8.1.7] the ideal (x1, . . . ,xg−1)(xδ−1

1 , . . . ,xδ−1
d )+ (xδ

g ) is a reduction of L1, and this ideal is equal
to

(x1, . . . ,xg−1)(xδ−1
1 , . . . ,xδ−1

g )+(xδ
g )+(x1, . . . ,xg−1)(xδ−1

g+1 , . . . ,x
δ−1
d ).

Clearly the ideal (xδ
1 , . . . ,x

δ
g ) is a reduction of (x1, . . . ,xg−1)(xδ−1

1 , . . . ,xδ−1
g )+(xδ

g )⊂ (x1, . . . ,xg)
δ . There-

fore again by [31, Proposition 8.1.7] and transitivity of reductions we conclude J1 is a reduction of L1.
Likewise, J2 is a reduction of L2.

Now by Remark 6.10 and Lemma 6.12, it suffices to show that xd(δ−2)+g
1 /∈ Jd

1 : Ld−1
1 and xd(δ−2)+g

1 /∈
Jd

2 : Ld−1
2 . Let α = x2d−g−1

1 xδ−1
2 · · ·xδ−1

g xδ−2
g+1 · · ·x

δ−2
d and notice that α ∈ Ld−1

1 ⊆ Ld−1
2 . We now show that

xd(δ−2)+g
1 α ̸∈ Jd

2 , and hence xd(δ−2)+g
1 α ̸∈ Jd

1 , which finishes the proof. Indeed, suppose by contradiction
that

β := xd(δ−2)+g
1 α = xdδ−1

1 xδ−1
2 · · ·xδ−1

g xδ−2
g+1 · · ·x

δ−2
d ∈ Jd

2 .
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Since none of the minimal monomial generators of J2, other than xδ
1 , divides β , we must have xdδ

1 divides
β , a contradiction. □

The next theorem shows that Conjecture 6.1 holds for any δ if g = d −1 ⩾ 2.

Theorem 6.13. Let R = k[x1, . . . ,xd ] be a polynomial ring over a field k of characteristic zero, m =

(x1, . . . ,xd) the maximal homogeneous ideal of R, and L a lex-segment ideal generated in degree δ ⩾ 2.
Assume d ⩾ 3 and that L has height g = d −1. Then

core(L) = Lmd(δ−2)+g−δ+1.

Proof. By Remark 6.10 it suffices to show that xd(δ−1)−1
1 ̸∈ core(L). Thus by Lemma 6.12, it is enough

to prove that xd(δ−1)−1
1 ̸∈ Jd : Ld−1 for some reduction J of L. Since g = d − 1, it follows that L =

(x1, . . . ,xd−2)m
δ−1 + xd−1L′, where L′ is a lex-segment ideal in the variables xd−1 and xd generated in

degree δ −1. By Theorem 6.11 we may assume that

L = (x1, . . . ,xd−2)m
δ−1 +

(
xδ

d−1,x
δ−1
d−1xd , . . . ,xδ−i

d−1xi
d

)
with 1⩽ i⩽ δ −2. Therefore K =

(
xδ

1 , . . . ,x
δ
d−1,x

δ−i
d−1xi

d

)
+(x1, . . . ,xd−2)xδ−1

d is a reduction of L according
to [47, Proposition 2.1].

We claim that
J =

(
xδ

1 − xδ−i
d−1xi

d ,x
δ
2 , . . . ,x

δ
d−1

)
+(x1, . . . ,xd−2)xδ−1

d

is a reduction of L and that xd(δ−1)−1
1 ̸∈ Jd : Ld−1.

First we show that J is a reduction of L. Let

K′ = (xδ
1 ,x1xδ−1

d ,xδ
d−1,x

δ−i
d−1xi

d ,) and J′ =
(

xδ
1 − xδ−i

d−1xi
d ,x1xδ−1

d ,xδ
d−1

)
.

Let F (K′) denote the special fiber ring of K′. Then F (K′)∼= k[T1,T2,T3,T4]/D , for some homogeneous
ideal D , where the isomorphism is induced by the map sending T1 to xδ

1 , T2 to x1xδ−1
d , T3 to xδ

d−1, and T4 to

xδ−i
d−1xi

d . Notice that T i
1T δ (δ−1)

4 −T δ i
2 T (δ−1)(δ−i)

3 ∈ D . Therefore the ring

F (K′)/J′F (K′)∼= F (K′)/(T1 −T4,T2,T3)F (K′)

is Artinian; here we denote by J′F (K′) the F (K′)-ideal generated by the image of J′ in [F (K′)]1. Thus
J′ is a reduction of K′, and hence J is a reduction of K. We conclude that J is a reduction of L, proving the
claim.

Next we show xd(δ−1)−1
1 ̸∈ Jd : Ld−1. Let α = xd

1xδ−1
2 · · ·xδ−1

d−1xδ−2
d and notice that α ∈ Ld−1. We claim

that αxd(δ−1)−1
1 ̸∈ Jd , which will complete the proof.

Let
H =

(
xδ

1 − xδ−i
d−1xi

d , xδ
d−1

)
+(x1, . . . ,xd−2)xδ−1

d ⊂ J.

Clearly αxd(δ−1)−1
1 ∈ Jd if and only if αxd(δ−1)−1

1 ∈ Hd . Thus we focus the rest of the proof on showing
that αxd(δ−1)−1

1 ̸∈ Hd . For this we consider the sequence f = f1, f2, f3, where

f1 = x2dδ−δ

1 , f2 = xdδ
d−1, f3 = xd(δ−1)

d ,
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and note that it suffices to show

C := ( f ) : αxd(δ−1)−1
1 ̸⊇ ( f ) : Hd .

It is easy to see that
C =

(
x(d−1)δ+1

1 , x(d−1)δ+1
d−1 , x(d−1)(δ−1)+1

d

)
.

Consider the element

β :=
(

xδ
1 +dxδ−i

d−1xi
d

)
M , where M = x(d−2)δ

1 x(d−1)δ
d−1 x(d−1)(δ−1)

d .

Since
xδ

1 M = x(d−1)δ
1 x(d−1)δ

d−1 x(d−1)(δ−1)
d ̸∈C,

we have that β ̸∈ C. Thus it is enough to show β ∈ ( f ) : Hd . Since xδ
d−1M ∈ ( f ) and xδ−1

d M ∈ ( f ), it

remains to see that β

(
xδ

1 − xδ−i
d−1xi

d

)d
∈ ( f ).

Notice that

β (xδ
1 − xδ−i

d−1xi
d)

d = β

d

∑
j=0

(−1) j
(

d
j

)
xδ (d− j)

1 x(δ−i) j
d−1 xi j

d

= x(d−1)δ
1 x(d−1)δ

d−1 x(d−1)(δ−1)
d

d

∑
j=0

(−1) j
(

d
j

)
xδ (d− j)

1 x(δ−i) j
d−1 xi j

d

+ dxdδ−2δ

1 xdδ−i
d−1 x(d−1)(δ−1)+i

d

d

∑
j=0

(−1) j
(

d
j

)
xδ (d− j)

1 x(δ−i) j
d−1 xi j

d .

To simplify the notation, set

β1 := x(d−1)δ
1 x(d−1)δ

d−1 x(d−1)(δ−1)
d and β2 := dxdδ−2δ

1 xdδ−i
d−1 x(d−1)(δ−1)+i

d ,

and for 0 ⩽ j ⩽ d set

h j := (−1) j
(

d
j

)
xδ (d− j)

1 x(δ−i) j
d−1 xi j

d .

It is easy to see that β1h0 ∈ ( f ) and β1h1 +β2h0 = 0. We prove below that β1h j ∈ ( f ) for every j ⩾ 2 and
that β2h j ∈ ( f ) for every j ⩾ 1.

Consider the terms β1h j with j ⩾ 2. In β1h j the degree of xd−1 is (d −1)δ +(δ − i) j and the degree of
xd is (d −1)(δ −1)+ i j. Hence to show that β1h j ∈ ( f ) we need to prove that for every 2 ⩽ j ⩽ d one of
the following inequalities holds

(15) (d −1)δ +(δ − i) j ⩾ dδ or (d −1)(δ −1)+ i j ⩾ d(δ −1).

The first inequality is equivalent to i ⩽ δ ( j−1)
j and the second one is equivalent to i ⩾ δ−1

j . Since δ ( j−1)
j ⩾

δ−1
j for j ⩾ 2, we have that one of the inequalities in (15) must hold for any such j.
Finally, consider the terms β2h j, with j ⩾ 1. In β2h j the degree of xd−1 is dδ − i+(δ − i) j and the

degree of xd is (d − 1)(δ − 1)+ i+ i j. Hence, to show that β2h j ∈ ( f ) we need to prove that for every
1 ⩽ j ⩽ d one of the following inequalities holds

(16) dδ − i+(δ − i) j ⩾ dδ or (d −1)(δ −1)+ i+ i j ⩾ d(δ −1).
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The first inequality is equivalent to i ⩽ δ j
j+1 and the second one is equivalent to i ⩾ δ−1

j+1 . Since δ j
j+1 ⩾ δ−1

j+1
for j ⩾ 1, we have that one of the inequalities in (16) must hold for any such j. □

Corollary 6.14. Conjecture 6.1 holds if d ⩽ 3.

Proof. The result follows from Theorem 6.13 and [10, Proposition 4.2]. □

The next fact follows directly by combining several results in the literature. We state it here for
completeness and to provide a reference. For more information about integral closures and reductions see
[31] .

Proposition 6.15. Let R = k[x1, . . . ,xd ] be a polynomial ring over a field k and L a lex-segment ideal
generated in degree δ ⩾ 1. The ideal L is normal, i.e., Ln is integrally closed for every n ∈ N.

Proof. The proof follows from [22, Theorem 5.1], [13, Proposition 2.14 and its proof], and [51, Proposition
13.15]. □

The following two results provide upper bounds for the core of lex-segment ideals generated in a single
degree.

Theorem 6.16. Let R = k[x1, . . . ,xd ] be a polynomial ring over a field k of characteristic zero. If L is a
lex-segment ideal of height g ⩾ 2 generated in degree δ ⩾ 2, then

core(L)⊆ adj(Lg),

where adj(Lg) denotes the adjoint of Lg as in [40, Definition 1.1].

Proof. Let J be any minimal reduction of L. Let A = R[Jt, t−1] and B = R[Lt, t−1] be the extended Rees
algebras of J and L, and ωA and ωB be their graded canonical modules. Notice that

ωA ⊂ (ωA)t−1 = ωAt−1 = ωR[t,t−1] .

Thus making the identification ωR[t,t−1] = R[t, t−1] we obtain an embedding ωA ⊂ R[t, t−1] so that (ωA)t−1 =

R[t, t−1]. Therefore [ωA]nt−n = R for n sufficiently small.
By Proposition 6.15 L is a normal monomial ideal, thus B is a normal Cohen-Macaulay algebra and a

direct summand of a polynomial ring according to [6, Theorem 6.10 and Theorem 4.43]. Therefore, B has
rational singularities [5, Théorème]. We conclude that

(17) [ωB]it−i = adj(Li) .

for every i ⩾ 0 by [33, proof of Corollary 3.5]. Let K := Quot(R) be the field of fractions of R and let
r := rJ(L) be the reduction number of L with respect to J. We have the following isomorphisms of graded
A-modules

ωB ∼= HomA(B, ωA)∼= ωA :K(t) B

= ωA :R[t,t−1] B

= ωA :R[t,t−1] (R⊕Lt ⊕ . . .⊕Lrtr)

=
r⋂

i=0

(
ωA :R[t,t−1] Li

)
t−i
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=
r⋂

i=0

((⊕
j∈Z

[ωA] j

)
:R[t,t−1] Li

)
t−i

=
r⋂

i=0

⊕
j∈Z

(
[ωA] jt− j :R Li) t j−i

=
⊕
s∈Z

(
r⋂

i=0

(
[ωA]s+it−s−i :R Li)) ts.

In particular,

(18) [ωB]gt−g =
r⋂

i=0

(
[ωA]g+it−g−i :R Li) .

By Proposition 6.5 and [53, Proposition 1.11, Remark 1.12, and Corollary 1.8 (c)], J satisfies G∞

and sliding depth. Thus by [23, Theorem 6.1] we have that grJ(R) = ⊕n⩾0 Jn/Jn+1 is Cohen-Macaulay.
Moreover {Jn+1 : Ln}n∈N forms a decreasing sequence of ideals. Indeed, since grJ(R) is Cohen-Macaulay,
we have Jn+i : Jn = Ji for every non-negative integers i and n. Therefore

Jn+1 : Ln = (Jn+2 : J) : Ln = Jn+2 : JLn ⊇ Jn+2 : Ln+1.

Computing a-invariants we have a(A) = a(grJ(R))+1, as grJ(R)∼= A/(t−1). Furthermore a(grJ(R)) =
−g by [49, Theorem 3.5]. Therefore [ωA]g−1t1−g = R, which implies Atg−1 ⊆ ωA. Hence by Lemma 6.12
for all 0 ⩽ i ⩽ r we have

core(L)⊆ Jr+1 :R Lr ⊆ Ji+1 :R Li = [Atg−1]g+it−g−i :R Li ⊆ [ωA]g+it−g−i :R Li.

Thus core(L)⊆
r⋂

i=0
([ωA]g+it−g−i :R Li) = [ωB]gt−g = adj(Lg) by (18) and (17), as desired. □

Corollary 6.17. Let R = k[x1, . . . ,xd ] be a polynomial ring over a field k of characteristic zero and
m= (x1, . . . ,xd) the maximal homogeneous ideal of R. If L is a lex-segment ideal of height g ⩾ 2 generated
in degree δ ⩾ 2, then

core(L)⊆ Lm(g−1)δ−d+1.

Proof. The ideal Lg is integrally closed by Proposition 6.15 and it is generated in a single degree. Hence
[26, Main Theorem] implies that if xv ∈ adj(Lg) then xvx1x2 · · ·xd ∈ Lgm. Therefore adj(Lg)⊆mgδ−d+1.
Finally, by Theorem 6.16 we conclude that core(L)⊆ L∩ adj(Lg)⊆ L∩mgδ−d+1 = Lm(g−1)δ−d+1. □
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