DEGREE BOUNDS FOR LOCAL COHOMOLOGY

ANDREW R. KUSTIN, CLAUDIA POLINI, AND BERND ULRICH

ABSTRACT. It has long been known how to read information about the socle degrees of the local
cohomology H, (M) of a graded R-module from the twists in position = dimR, in a resolution of
M by free R-modules. It has also long been known how to use local cohomology to read valuable
information from complexes which approximate resolutions in the sense that they have positive ho-
mology of small Krull dimension. The present paper reads information about the maximal generator
degree (rather than the socle degree) of H% (M) from the twists in position d — 1 (rather than position
d) in an approximate resolution of M.

We apply the local cohomology results to draw conclusions about the maximum generator degree
of the second symbolic power of the prime ideal defining a monomial curve and the second symbolic
power of the ideal defining a finite set of points in projective space. There is also an application to
hyperplane sections of subschemes of projective space and to partial Castelnuovo-Mumford regular-
ity. Perhaps, the most important application is to the study of blow-up algebras and their defining
equations. The techniques of the present paper are the main tool used in [10] to bound the degrees of
these equations and thus to identify them in some cases.

1. INTRODUCTION

For the time being, let R be a non-negatively graded polynomial ring in d variables over a field
and M be a finitely generated graded R-module of depth zero. It is well known how to

read the socle degrees of M from the twists at the end of

(1.0.1y a minimal homogeneous finite free resolution of M.

Of course, the socle of M is the socle of the local cohomology module H, (M), where m is the max-
imal homogeneous ideal of R. In this paper we find bounds on the degrees of interesting elements
of Hi,(M) in terms of information about the ring R and information that can be read from a homo-
geneous complex of finitely generated R-modules C, : - -+ — C, — C; — Cy — 0 with Hyo(C,) = M.
The ring R need not be a polynomial ring, the complex C, need not be finite, need not be acyclic, and
need not consist of free modules, and the parameter i need not be zero. Instead, we impose hypothe-
ses on the Krull dimension of H;(C,) and the depth of C; in order make various local cohomology
modules H: (H;(C.)) and H. (C;) vanish.
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The crucial technical result is Proposition 4.1. In Theorem 4.3, our main theorem, we bound
the maximal generator degree of H!, (M) in terms of the maximal generator degree of C ; for appro-
priately related i and j. In particular, in Corollary 4.8, we bound the maximal generator degree of
Hg1 (M) in terms of the maximal generator degree of C;_;. The hypotheses of Corollary 4.8 hold
if C, is a free resolution of M; consequently, this result is completely analogous to (1.0.1) where
max{r | [HY (M)], # 0} is read from the generator degrees of C;. Corollary 4.7 is an intriguing
generalization of the well-known fact that a maximal Cohen-Macaulay module over a polynomial
ring is free.

Corollary 4.8 is precisely the result that we use in [10] to identify the torsion submodule of
the symmetric powers Sym,(/) where [ is a grade three Gorenstein ideal in an even-dimensional
polynomial ring. A more elementary result (Proposition 3.6) may be used to identify the torsion
submodule of Sym,(7) when [ is a grade three Gorenstein ideal in an odd-dimensional polynomial
ring. We view Proposition 3.6 as a model for the main results in the present paper.

In Section 3, using a spectral sequence argument, we relate the cohomology of Hom(C,,N) to
Ext®(M,N), where C, is a complex with Hy(C,) = M and M and N are arbitrary modules. In spite
of the a priori lack of hypotheses we obtain a significant, multi-faceted, result which is the basis for
Section 4; and hence the rest of the paper.

In Section 5, we apply the local cohomology techniques of Section 4 to draw conclusions about
geometric situations. Corollary 5.2 shows that if p is the prime ideal which defines the monomial
curve associated to a numerical semigroup H, then the maximal generator degree of the second

symbolic power of p satisfies
bo(p®) < sup{bo(p) + the maximal generator of H + the Frobenius number of H,2by(p)}.
Corollary 5.4 shows that if / is the ideal which defines a finite set of points in projective space, then
bo(I?) < bo(1) + p(P/1) +2,

where p(P/I) is the postulation number of the homogeneous coordinate ring of the set of points.
Corollary 5.7 is about hyperplane sections of subschemes of projective space. Let V be the sub-
scheme of ]P’,‘f*1 defined by the homogeneous ideal / in R = k[xj,...,x,| and H be a linear subspace
of }P’g_l defined by general linear forms in k[x1, ..., x;]. We produce an upper bound for the maximal
generator degree of the saturated ideal defining the subscheme V N H of H, in terms of information

that can be read from a single shift in the minimal homogeneous resolution of R/I.

Acknolwedgment. We are indebted to the referee of the first version of this paper. Owing to the
referee’s suggestions, the proof of Lemma 3.2 was simplified substantially and the assumptions of

Theorem 4.3 were weakened.

2. CONVENTIONS, NOTATION, AND PRELIMINARY RESULTS

2.1. By a graded ring or module we mean a Z-graded ring or module, unless otherwise specified.

Notice that every ring and module is graded, namely trivially graded.
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2.2, If M and N are graded modules over a graded ring R, then N is a homogeneous subquotient of
M if N is isomorphic to a homogeneous submodule of a graded homomorphic image of M; that is,
if there exists a graded R-module P with

M

|

N——=P
Of course, N is also a subquotient of M if N is isomorphic to a graded homomorphic image of a
homogeneous submodule of M. The property of being a subquotient is transitive in the sense that if
M), is a subquotient of M, and M> is a subquotient of M3, then M| is a subquotient of M3.

2.3. Let M and N be graded modules over a graded ring R. By *Homg(M,N) and * Ext,(M,N) we
denoted the graded Hom and Ext modules. They coincide with the usual Hom and Ext modules if
R is Noetherian and M is finitely generated or if R, M, and N are trivially graded.

2.4. Let M and N be graded modules over a graded ring R. In order to simplify our formulas we set
Exth(M,N) = 0 and * Exty(M,N) = 0 for i < 0. If R is a non-negatively graded Noetherian ring, Ry

is local, and m is the maximal homogeneous ideal of R, we also set H., (M) = 0 for i < 0.

2.5. We collect names for some of the invariants associated to a graded module. Let R be a graded

ring and M be a graded R-module. Define
topdegM = sup{j | M; # 0},
indegM =inf{j | M; # 0},
bo(M) =inf{b|R(D;,M;) =M} .

If R is a non-negatively graded Noetherian ring, Ry is local, m is the maximal homogeneous ideal
of R, and M is finitely generated, then also define

a;(M) = topdegH! (M) and
bi(M) = topdeg TorX (M, R /m).

Observe that both definitions of the maximal generator degree bo(M) give the same value. The

expressions “topdeg”, “indeg”, and “b;” are read “top degree”, “initial degree”, and “maximal i-th
shift in a minimal homogeneous free resolution”, respectively. If M is the zero module, then
topdeg(M) = by(M) = —oo and  indegM = oo.
In general one has
al-(M) < oo and b,(M) < oo,
We often use the data of 2.6.

2.6. Let R be a non-negatively graded Noetherian ring with Ry local, let m be the maximal homo-

geneous ideal of R, and write k = R/m for the residue field.
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Lemma 2.7. Use the data of 2.6 and let M be a (not necessarily finitely generated) graded R-
module. Assume that M is a finitely generated Ry-module for every j. Then

b()(M) = bo(k@RM) .
In particular, bo(M) = —eo if and only if M = mM.

Proof. We show that by(M) < bo(k ®g M), for which it suffices to prove that if k ®g M can be
generated by homogeneous elements of degrees at most b then so does M. Notice that my is the
maximal ideal of the local ring Ry. Write Ry = @ ;~oR}, so thatm =mo+R.

Let N be the submodule of M generated by the homogeneous elements of degrees at most b and
set K =M /(N + moM). Our assumption on the generation of k @g M = M /(moM + R+ M) implies
that K /R, K = 0 or, equivalently, K = R, K. Since K; = 0 for every j < b, it follows that K = 0. Thus
M /N = 0 by Nakayama’s Lemma because every graded component (M/N); is a finitely generated
module over the local ring (Ry,mg). O

2.8. Take R,Ry,m as described in 2.6. For a minimal homogeneous generating set yy,...,y, of m,
with degy; > degy, > --- > degy,, let ®, = thzl degy; if t <nand ®; = —oo otherwise.

2.9. Take R, Ry, m as described in 2.6. Assume further that Ry is a factor ring of a local Gorenstein
ring T. Let S = T'[xy,...,x,] be a graded polynomial ring which maps homogeneously onto R. If g
is the codimension of R as an S-module, then the graded canonical module of R is

og = Ext§(R,S)(— Zdegx,-).

2.10. Take R,Ry,m as described in 2.6 with dimR = d. Recall the numerical functions of 2.5. The
a-invariant of R is

a(R) = ay(R).
Furthermore, if mg is the graded canonical module of R (see 2.9), then

a(R) = —indeg wg.

2.11. The graded ring R = @ R; is a standard graded Ry-algebra if R is generated as an Ry-algebra
i>0
by Ry and R; is finitely generated as an Ry-module.

2.12. Let R be a standard graded polynomial ring over a field k£, m be the maximal homogeneous
ideal of R, and M be a finitely generated graded R-module. Recall the numerical functions of 2.5.

The Castelnuovo-Mumford regularity of M is
regM = sup{a;(M) +i} = sup{b;(M) —i}.
2.13. Let g be an integer and R be a ring. A complex of finitely generated free R-modules

. —Cp—Cp—0

is called g-linear if C; = R(—q — i)P for some P, for all i with 0 < i.
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3. FIRST BOUNDS ON LOCAL COHOMOLOGY MODULES

The main result of this paper is Theorem 4.3. Lemma 3.2 is the first step in the proof of The-
orem 4.3. In Lemma 3.2 we relate the cohomology of Hom(C,,N) to Ext®*(M,N), where C, is a
complex with Hy(C,) = M and N is an arbitrary module.

Setup 3.1. Let R be a graded ring, M and N be graded R-modules, and
Ce: -+—C —Cy—0
be a homogeneous complex of graded R-modules with Hy(C,) = M. Fix an integer i. We consider
two hypotheses which can be imposed on the above data:
e The data satisfies U; if *Ext/(H;(C,),N) = 0 for all integers j with 1 < j <.
e The data satisfies V; if *Ext'"/(C;,N) = 0 for all integers j with 0 < j <i— 1.
Lemma 3.2. In the setup of 3.1, the following statements hold.

(a) If the hypotheses U;_1, U;, Vi_1, and V; all are in effect, then there is a natural homogeneous
isomorphism H!(*Hom(C,,N)) ~ *Ext'(M,N).

(b) If the hypotheses U;, Vi_1, and V; are in effect, then there is a natural homogeneous surjection
*Ext/(M,N) — H!(*Hom(C,,N)) .

(c) If the hypotheses U;_1, U;, and V; are in effect, then there is a natural homogeneous surjection
H'(*Hom(C,,N)) —= *Ext'(M,N) .

(d) If the hypotheses U;_1, U;, and V;_1 are in effect, then there is a natural homogeneous injection
H!(*Hom(C,,N)) = *Ext!(M,N) .

(e) Ifthe hypotheses U;_1, V;_1, and V; are in effect, then there is a natural homogeneous injection
*Ext'(M,N) = H(*Hom(C,,N)) .

(f) If the hypotheses U; and V;_y are in effect, then H (*Hom(C,,N)) is a natural homogeneous
subquotient of *Ext'(M,N).

(g) If the hypotheses U;_| and V; are in effect, then *Ext'(M,N) is a natural homogeneous subquo-
tient of H'(*Hom(C,,N)).

Proof. For i <0 the assertions are obvious, hence we may assume that i is a positive integer. Let
I* be a homogenous resolution of N by graded injective modules. Consider the double complex
DP9 :=*Hom(C,,1”) and write T* for its total complex. The horizontal and vertical filtration of the
double complex yield first quadrant spectral sequences whose E, terms are

"

EDY~"Ext’(Hy(C.),N)  and  "E}Y~HI(Ext’(C.,N)),

respectively.
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The infinity term 'EP4is a homogeneous subquotient of /Eé’ Tt is a homogeneous epimorphic
image if g =0,

(3.2.1) 'EPY — - "EPO.
On the other hand there is a homogeneous embedding
(32.2) EL0 ———HP(T*),

whose cokernel has a filtration with factors 'EL~44 for 1 < qg<p.
The condition U,_ is equivalent to /nglfm =0 for 1 < j < p—1, which implies that /Ej.:ll*” =

0 for 1 < j < p—1 and hence /Eﬁfll*“ =0 for 1 < j. It follows that on the (j+ 1)-st page of
0

the spectral sequence the natural map 'E;:l]_j Iy 'E;’jrl is the zero map for 1 < j. Hence the
epimorphism of (3.2.1) is an isomorphism.

The condition U, means that 'Eg “99 =0 for 1 < g < p, which gives E?%9 =0 for 1 < ¢ < p.
Hence the inclusion of (3.2.2) is an isomorphism.

Likewise, "EP4 is a homogeneous subquotient of ”Eg ! and a homogeneous epimorphic image if
p =0. Hence

"

(3.2.3) "ES? —"E%4.
Also there is a homogeneous embedding
(3.2.4) B ——HI(T*),

and the cokernel of this embedding has a filtration whose factors are "EP4P for 1 < p<q.

Now V,_ implies //ngl’qu =0 for 2 < j < g, which gives //Ejjffl’qu =0 for 2 < j. Therefore
the natural map NE; “hai //E?"q is the zero map for 2 < j, and hence the epimorphism of (3.2.3)
is an isomorphism.

Finally, V, gives NEé’ 4P —0for 1 < p < q. Therefore ”Eg;’f_p = 0, which means that the em-
bedding of (3.2.4) is an isomorphism.

The lemma now follows from the homogenous epimorphisms and embeddings (3.2.1), (3.2.2),

(3.2.4), (3.2.3) for p = g = i and the various conditions for when they are isomorphisms. ]

Remark 3.3. The above proof shows that in Lemma 3.2 the condition V; can be replaced by the
weaker assumption that H/ (Ext'~/(C,,N)) = 0 for all j with 0 < j <i— 1, and likewise for V;_.

Observation 3.5 shows that the hypotheses of Lemma 3.2 are implied by some natural assump-

tions on a complex.

Setup 3.4. Let R be a non-negatively graded Cohen-Macaulay ring with Ry a factor ring of a local
Gorenstein ring. Let d be the dimension of R and assume that 1 < d. Let m be the maximal
homogeneous ideal of R, k = R/m its residue field, and ® = wg its graded canonical module; see
2.9. Let

(€0,d): ... 20 20 e —0
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be a homogeneous complex of finitely generated graded R-modules. Write M = Hy(C,) and He =
H,.(C,). Let (—)" denote the functor Homg (—, ®).

Observation 3.5. Adopt the setup of 3.4 and use the hypotheses U;, V; of 3.1 with N = .

(a) Fix an integer i. If dimH; < d — i+ j for every j with 1 < j <i—1, then the data satisfies
condition Uy for all £ with £ <i—1.

(b) Fix integers r and s. If min{d,d —r+ j+ 1} < depthC; for every jwith0 < j <s—1, then the
data satisfies condition Vy for all ¢ with r < { <.

Proof. We may assume that the local ring Ry is complete. In the setting of (a), we have an (Hj) =

0 for every k with d —i+ j+1 <k; thatis, d — (i — j — 1) < k. By graded duality, this gives

Ext}(H;, ) = 0 for every & with 4 < i— j— 1. In (b), we have H% (C;) = 0 whenever

k<min{d,d —r+j+1}—1=d—max{l,r—j},

which gives Extl(C;, ®) = 0 for every h with max{1,r — j} < h. O
Our first application of Lemma 3.2 is the next result, Proposition 3.6, which relates local coho-

mology modules along complexes and yields bounds on the top degree of such modules. Propo-

sition 3.6 is essentially known; the idea goes back to Gruson, Lazarsfeld, and Peskine [7, 1.6], at

least. Proposition 3.6 has found applications in [10], where we determine the implicit equations

defining Rees rings of linearly presented grade three Gorenstein ideals.
Recall the numerical functions of 2.5 and 2.10.

Proposition 3.6. Let R be a non-negatively graded Noetherian algebra over a local ring Ry with
dimR = d, m be the maximal homogeneous ideal of R, M be a graded R-module, and

C,: .. —CL—Cy—0
be a homogeneous complex of finitely generated graded R-modules with Hy(C,) = M. Fix an integer
i. Assume that
(1) dimH;(C,) < j+i forall jwith1 < j<d—i—1, and
(2) j+i+1<depthC; forall jwith0<j<d—i—1.
Then
(a) Hi, (M) is a graded subquotient of H (C,_;), and
(b) a;(M) < bo(Cy—;) +a(R).

Remark 3.7. If
(3.7.1) H;(C,)p, =0forall jand p with 1 < j <d—i—1, p € Spec(R), andi+2 < dimR/p,

then hypothesis (1) is satisfied. Typically, one applies Proposition 3.6 when the modules C; are max-
imal Cohen-Macaulay modules (for example, free modules over a Cohen-Macaulay ring), because,

in this case, hypothesis (2) about depthC; is automatically satisfied.
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Proof. (a) Completing Ry does not change the local cohomology modules in question; hence we
may assume that Ry is complete. We use the notation of 2.9; most notably, S = T'[xy,...,x,] with
X1,...,X, homogeneous variables of positive degree over a local Gorenstein ring 7', which we may
assume to be complete, and R is obtained from S by factoring out a homogeneous ideal J of height
g. The ideal J contains a homogenous regular sequence o of length g. (Indeed, after factoring out a
maximal 7'-regular sequence in Jy, we may assume that Jo C p for some minimal prime ideal p of
T. Hence J, # S, and n = dimS, > htJ, > htJ = g. It follows that ht (xi,...,x,)J = min{n,g} = g.
Since the ideal (xj,...,x,)J has grade g and is generated by forms of positive degree, it contains a
homogenous regular sequence o of length g, hence so does J.) Now S/(a) and R have the same
dimension d, and we may safely replace the latter ring by the former in order to assume that R is
Cohen-Macaulay with Ry complete.

When the hypotheses of Proposition 3.6 are inserted into Observation 3.5, one obtains, in partic-
ular, that the conditions Uy_;—; and V,;_; hold; so Lemma 3.2.g guarantees that Extd_i(M ,®) is a
graded subquotient of HY~/(Hom(C,,®)), which is a graded subquotient of Hom(C,_;, ®). Graded
duality yields Hi, (M) is a graded subquotient of HZ (C,_;).

(b) Apply (a) to see that
ai(M) < aa(Cy—i).
Let F be a finitely generated graded free R-module which maps surjectively onto C;_; so that

bo(F) = bo(C,4—;). The long exact sequence of local cohomology gives a surjection
Hip (F) — Hy(Ca-i)

which shows that
ad(Cd,,-) S ad(F) = bo(F) +a(R) = bO(Cdfi) —I—a(R).

Corollary 3.8. Adopt the hypotheses of Proposition 3.6, with i = 0. Then
[HY (M)]; =0 forall £ with bo(Cy)+a(R) < L.

Reminder. Keep in mind that the hypotheses of Proposition 3.6 are satisfied if the conditions of

Remark 3.7 are in effect.

Corollary 3.9. Let R =klxy,...,x4] be a standard graded polynomial ring over a field, with maximal
homogeneous ideal m,
Ce: ... —C—C —Cy—0

be a homogeneous complex of finitely generated graded free R-modules, and M = Hy(C,). Assume
that dimH;(C,) < j for all 1 < j <d — 1 and that the subcomplex

Cqg— ... —Cy—0

of C. is g-linear for some integer q. Then H, (M) is concentrated in degree g; that is, [H%(M)]; =0
for all L with { # q.
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Proof. Apply Corollary 3.8. We see that [H%, (M)]; = 0 for £ with by(C;) +a(R) < £. But
bo(Ca) +a(R) < (g +d)—d =gq;

so [HY (M)]; = 0 for g < £. On the other hand, H% (M) is a graded submodule of M and [M]; = 0
for all £ with ¢ < g. O

4. BOUNDS ON GENERATOR DEGREES OF LOCAL COHOMOLOGY MODULES

In this section, we use Lemma 3.2 and Proposition 4.1 below to prove our main result, Theo-
rem 4.3. The rest of the section is devoted to applications of this result.

Proposition 4.1. Adopt the setup of 3.4. Fix integers i and t with 1 <t. Assume
(1) HL,(M) =0 forall ¢ withd —i+1 <0 <d—i+t—1,

(2) dimH;(C,) <d—i+j forall jwith1 < j<i—1,

(3) min{d,d —i+t+ j+1} <depthC; forall jwith0< j<i—1, and

@ i—j+1 SdepthC]V forall jwithi—t+1<j<i—1.

Then there is a natural homogeneous injection

socle(Extg (M, wg)) = Exth(k,im(d) . ,)) -

Moreover, t < depth(im(9)_,_,)), and equality holds if depth Extly (M, 0g) = 0.

Remark 4.2. Hypothesis (1) is always satisfied when ¢ = 1, or depthM/H® (M) > d —i+1, or, in
particular, M/H9 (M) = 0. A slightly modified proof shows that condition (1) can be replaced by

the weaker assumption

depthExt(M,®) > i+2—{ forall { withi—t+1<0<i—1.
Hypothesis (2) is satisfied for i < d if

H;(C,), =0 forall jandp with 1 < j<i—1and2 <dimR/p.

As observed in Remark 3.7, one typically applies Proposition 4.1 when the modules C; are maximal
Cohen-Macaulay modules, because, in this case, hypotheses (3) and (4) are automatically satisfied
fort <d.

Proof. Hypotheses (2) and (3) and Observation 3.5 imply that

“4.2.1) the condition Uy, of 3.1 holds when 7 <i—1

4.2.2) the condition Vj, of 3.1 holds wheni—t < h <i.

Use (4.2.1), (4.2.2), and Lemma 3.2.e in order to conclude that there is a natural homogeneous
injection

(4.2.3) Ext!(M,®)—— H(CY) .
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Combine (4.2.3) and the natural inclusion H'(C))“—— coker(d;) to see that

socle(Exth (M, ®))—— socle(coker(d;')) .
Assumption (1) implies that
Exth(M,) =0 fori—t4+1<h<i—1.
Use (4.2.1), (4.2.2), and Lemma 3.2.a to conclude that H"(C}/) ~ Ext"(M,®) fori—t+1<h <
i — 1; and therefore
H'(C))=0 fori—t+1<h<i—1.

It follows that the complex
aiv—H—l a}/—H—Z aiv—l 9y
(4.2.4) G, —=C . — - —C. >’ —coker(d)) =0

is exact. Notice that 1 < depthC,’ since 1 < depthg. Hence the inequality in Assumption (4) holds
for j withi—¢+1 < j <i. It follows that Ext}(k,C} ,) =0 for 0 < h <t — 1. Long exact sequences
associated to Exty(k, —) then show that

socle(coker(d;)) ~ Homg(k, coker(9d;")) = Exty(k,im(d;", ).

Moreover, t < depth(im(d;’,,)) by the exact complex (4.2.4). Equality holds unless
Ext (k,im(9/",,,)) =0,
which means socle(Ext, (M, ®)) = 0, hence 0 < depthExt (M, ®). O

Theorem 4.3. Adopt the setup of 3.4 and the hypotheses of 4.1. Let a(R) denote the a-invariant
of R and let ®, be the invariant of R from 2.8. If the graded components of Hﬁf"(M) are finitely

generated as an Ry-module, then
bo(Hy, /(M) < bo(Ci—1) + O, +a(R).

Reminder. Keep in mind that the hypotheses of Proposition 4.1 are satisfied if the conditions of
Remark 4.2 are in effect.

Remark 4.4. The assumption in Theorem 4.3 that the graded components of H%_i(M ) are finitely
generated as an Ro-module is satisfied if Ry is Artinian or if HZ /(M) is finitely generated as
an R-module. The latter condition holds if i = d because HY (M) is a graded submodule of M.
From graded duality it follows that the same condition also holds if dim R, — depth M}, < i for all
p € Supp(M) \ {m}. The last assumption is satisfied, for instance, if Ry is universally catenary,
Suppg(M) is equidimensional of dimension # d — i, and M is Cohen-Macaulay locally on the punc-

tured spectrum of R.
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Proof. We may assume that Ry is complete. Applying graded duality and Hom-tensor adjointness
twice one obtains isomorphisms of graded k-vector spaces
Homg (k, Exth (M, )) *Homg, (k@g H-I(M), Eg, (k)
* Homg (Hﬁ:l (M) ) HomRo (k7 ERo (k) ))
*Homg (HY, (M), k).

1R

It follows that
(4.4.1) *Homy (k @g HE/ (M), k) ~ socle(Exthy (M, w)).
Since the graded components of H% /(M) are finitely generated Ro-modules Lemma 2.7 gives
bo(Hg, '(M)) = bo(k@r Hy, (M)
Now from (4.4.1) one attains
bo(HY /(M) = —indeg(socle(Exthy (M, ®))).
Thus, it remains to prove that
indeg(socle(Exth (M, ®)) > —bo(Ci_;) — ©®, —a(R).
From Proposition 4.1 we have a homogeneous embedding
socle(Exth (M, ®)) = Exth(k,N),

where N =im(9;, +1)- By the same proposition, depth N > . Hence conditions U; | and U; of 3.1
are both satisfied for C, := K,, the Koszul complex of a minimal homogenous generating set of m
as in (2.8). The conditions V;_; and V; are trivially satisfied as K, is a complex of free modules.

Therefore Lemma 3.2.a gives the well-known identification
Exth(k,N) ~ H' (Homg(K,,N)).

The latter homology module is a homogenous subquotient of Homg(K;,N), which in turn is
an epimorphic image of Homg(K;,C\,). Let F be a finitely generated graded free R-module,
with by(F) = by(C;i—;), that maps homogeneously onto C;_,. We obtain a homogeneous inclusion
C/,“——=F" . Thus:

Homg(K;,C;" ,)— Homg(K;,F")

i

Homg(K;,N).

We conclude that socle(Ext, (M, ®)) is a homogeneous subquotient of Homg(K;, F"). Therefore,
indeg(socle(Exty (M, ®))) indeg Homg (K;,F")

indeg FV — @,

—by(F) +indeg® — ©;

—bo(Ci—¢) —a(R) — O;.

v
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Corollary 4.5 is a self-contained reformulation of Theorem 4.3. The purpose of this reformulation
is to obtain one simultaneous bound for topdeg H.,, (M) (which is the subject of Proposition 3.6) and
bo(H;,(M)) (which is the subject of Theorem 4.3) for appropriately related r and s. We resume this
theme in Corollary 4.6.

Corollary 4.5. Adopt the setup of 3.4. Fix integers i and t with 1 <t < u(m). Let a(R) denote the

a-invariant of R and let ®, be the invariant of R from 2.8. Assume

(1) HL.(M) =0 forall { withi—t+1</(<i—1,
(2) dimH;(C,) < j+i—t forall jwithl < j<d—1—i+t, and
(3) Cj is a maximal Cohen-Macaulay module for all j with0 < j<d—1—i+t.

If the graded components of Hf{ "(M) are finitely generated as an Ry-module, then
sup{bo(Hy' (M)) —©,a;(M)} < bo(Ca—i) +a(R).
Proof. Apply Theorem 4.3 (with i replaced by d — i +¢) and Proposition 3.6.b. (I

Various forms of partial regularity appear in the literature; see, for example, [8, 3, 11]. Recall
from 2.12 that

regM = sup{a;(M)+i|0 <i}.
The number reg(M/HY (M)) which appears on the left side of (4.6.1) is equal to the partial regu-
larity
(4.5.1) sup{a;(M)+i|1<i}

of M. We obtain the right side of (4.6.1) as an upper bound for the partial regularity (4.5.1) of M.
Then we show that the maximal generator degree of the submodule Hg1 (M) of M that is ignored in
the calculation of (4.5.1) satisfies the same bound.

We also offer the following interpretation of the right side of (4.6.1). If C, had been a minimal
homogeneous resolution of M by free R-modules, then by(C;) would equal b;(M). Of course,

sup{b;(M)—i|0<i<d-t}
is another partial regularity of M.
Corollary 4.6. Adopt the setup of 3.4 and assume in addition that R is a standard graded ring with

Ry a field. Fix an integert with 1 <t < u(m). Assume

(1) t < depthM/HY (M),

(2) dimH;(C,) < j forall jwith1 < j<d—1, and

(3) C; is a maximal Cohen Macaulay module for all j with0 < j <d—1.
Then

(4.6.1) sup{bo(H% (M)),reg(M/HY(M))} < sup{bo(C;) —i |0 <i<d—t}+reg(R).
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Proof. The assumption on the depth of M /HY (M) implies that
Hi, (M/Hy,(M)) =0 forO0<i<t—L.
Therefore
reg(M/ HO,(M)) = sup{a;(M) +i |1 < i < d)
<sup{bo(Cyq—i) +a(R)+i|t <i<d} by Proposition 3.6.b
=sup{bo(C;) +a(R)+d—i|0<i<d—t}.
Apply Theorem 4.3 with i = d to obtain

bo(Hp(M)) < bo(Cy—s) +1 +a(R).
The invariant ©, from 4.3 and 2.8 is ¢ because R is standard graded, and a(R) +d = reg(R) because
R is standard graded and Cohen-Macaulay. U

Corollary 4.7 is well known and easy to prove if R is a standard graded polynomial ring over
a field because, in this case, the sum @, + a(R) is zero, the maximal Cohen-Macaulay module
M/HO (M) is free, H? (M) is a direct summand of M, and it is true and clear that

bo(HO,(M)) < bo(M).
On the other hand, the result in the stated generality is new and intriguing.

Corollary 4.7. Let R be a non-negatively graded Cohen-Macaulay ring with Ry a local ring. Denote
the maximal homogeneous ideal of R by m and dimR by d. Let M be a finitely generated graded
R-module and assume that M/ H> (M) is a maximal Cohen-Macaulay R-module. Then

bo(Hy, (M)) < bo(M) +© +a(R),
where @ is defined in 2.8 and a(R) is the a-invariant of R.
Proof. Again we may assume that 1 < d. Apply Theorem 4.3 with i =¢ = d and C, a free resolution
of M. U
Corollary 4.8 is the numerical consequence of Theorem 4.3 that we apply most often.

Corollary 4.8. Adopt the setup of 3.4 and assume in addition that R = k[xy,...,x4| be a standard
graded polynomial ring over a field. Assume that dimH;(C,) < j whenever 1 < j < d — 1 and that
min{d, j+2} < depthC; whenever 0 < j < d — 1. Then

bo(Hy, (M) < bo(Cy—1) —d +1.
Proof. Apply Theorem 4.3 withi=d and ¢t = 1. g

The next result is analogous to Corollary 3.9. The hypothesis is weaker than the hypothesis in
Corollary 3.9 because we do not require that the complex C, be linear quite as far in the present
result. Alas, the conclusion is also weaker. We conclude that the generators of H, (M) are concen-

trated in one degree rather than learning that all of H%, (M) is concentrated in one degree.



14 ANDREW R. KUSTIN, CLAUDIA POLINI, AND BERND ULRICH

Corollary 4.9. Let R =klxy,...,x4] be a standard graded polynomial ring over a field, with maximal

homogeneous ideal m,
Co: ... —C—Ci—C—0

be a homogeneous complex of finitely generated graded free R-modules, and M = Hy(C,). Assume
that dimH;(C,) < j for all 1 < j <d — 1 and that the subcomplex

Cig— ... —Cy—0

of Ce is g-linear for some integer q. Then every minimal homogeneous generator of Hom(M ) has

degree q.
Proof. We may assume that 1 < d since otherwise H& (M) = M. Apply Corollary 4.8 to conclude
bo(Hp,(M)) < bo(Cq1) —d+1=g¢.

On the other hand, HY, (M) is a submodule of M and every minimal homogeneous generator of M
has degree g. U

5. GEOMETRIC APPLICATIONS.

We apply the local cohomology techniques of Section 4 to draw conclusions about the generator
degrees of the second symbolic power of the prime ideal which defines a monomial curve in affine
space; of the second symbolic power of the ideal which defines a finite set of points in projective
space; and of the saturated ideal defining the intersection of a projective scheme with a general
linear subspace.

Recall that if 7 is an ideal in a Noetherian ring R, then the ¢-th symbolic power of I is I'Ry NR,
where W is the complement of the union of the associated primes of I and Ry is the localization of
R at the multiplicative system W; see [9]. The first two applications in this section make use of local

cohomology by way of the following lemma.

Lemma 5.1. Let P be a non-negatively graded Noetherian ring with Py an Artinian local ring. Let
I be a homogeneous ideal in P with P/I a Cohen-Macaulay ring of dimension one. Write R = P/I

and denote the maximal homogeneous ideal of R by m. Then
bo(I'?) < sup{bo(I) + bo(m) +a(R),2bo(I)}.

Proof. Let M be the R-module /1. Notice that HO (M) = I /I?. If M/ H?, (M) is the zero module,
then 1> = I and the degree bounds hold automatically. Otherwise, M/HS (M) has positive depth
and is a maximal Cohen-Macaulay R-module. Apply Corollary 4.7 to the R-module M to conclude
that

(5.1.1) bo(HY(I/17)) < bo(I/1?) +©1 +a(R).
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Nakayama’s Lemma guarantees that bo(I/I?) = bo(I). In the present situation, ®;, which is defined
in (2.8), is equal to bo(m). Thus,

bo(1?) < Sup{bo (1(2)/12) abO(Iz)} = sup {bo (Hy(1/1%)) ,bo(I*)}
< sup{bo(I) +bo(m) +a(R),2bo(I)}.
O

Our first application of Lemma 5.1 is to monomial curves. The hypothesis in Corollary 5.2 that
H is a numerical semigroup includes the requirement that all large positive integers are in H. The
Frobenius number of H, denoted F(H), is the largest integer b with b ¢ H. One way to see the
connection between F (H) and the language of Lemma 5.1 is described below.

Let R be a non-negatively graded ring over a field. Denote the maximal homogeneous ideal of
R by m and the dimension of R by d. A well known theorem of Serre, see for example [2, 4.3.5],

shows that
max{n | Hilbert Functiong (n) # Hilbert Quasi-Polynomial ()}
d
(5.1.2) = max{n Z(—l)’dimHﬁn(R)n;zéO}.
i=0

If R is Cohen-Macaulay, then the number on the right side of (5.1.2) is equal to the a-invariant of R.
If R C k[t] is the coordinate ring of a monomial curve over an infinite field, then the number on the
left side of (5.1.2) represents the largest exponent n with " ¢ R. If R is a standard graded ring, then
the number on the left is often called the postulation number of R.

Corollary 5.2. Let k be an infinite field, H be a numerical semigroup minimally generated by the
positive integers hy < hy < --- < hy, P be the polynomial ring k[xi,...,x;], and p C P be the prime

ideal which defines the monomial curve
{(xh,...,7") C AL |t €k}
Then the maximal generator degree of the second symbolic power of p satisfies
bo(p®) < sup{bo(p) + the maximal generator of H+ the Frobenius number of H,2bo(p)}.

Proof. View P as a graded ring with degx; = h;. Then p is the kernel of the homogeneous ring
homomorphism P — k[t] with x; — ", Let R = P/p and m denote the maximal homogeneous
ideal of R. We see that R is a one-dimensional Cohen-Macaulay domain, the a-invariant of R is the
Frobenius number of H, and by(m) = hy is the maximal generator of H. The assertion follows from
Lemma 5.1. U

Example 5.3. In the language of Corollary 5.2, if H = <3,4,5>, then
bo(p)+bo(m)+F(H) =104+5+2 =17, 2by(p) =20, and bo(p'?) = 18;
so there are situations where some minimal generator of p? of degree more than

bo(p) +bo(m) +F (H)



16 ANDREW R. KUSTIN, CLAUDIA POLINI, AND BERND ULRICH
is also a minimal generator of p(z). The calculation of bo(p(2> ) was made in Macaulay?2 [6] over the
field of rational numbers.

Our second application of Lemma 5.1 concerns the ideal of a finite set of points in projective
space and to other similar ideals. In the situation of Corollary 5.4,

reg(R) = a(R) + 1 = the postulation number of P/I plus one;

see the discussion surrounding (5.1.2).

Corollary 5.4. Let P be a standard graded polynomial ring over a field and I be a homogeneous
ideal in P with R = P/I Cohen-Macaulay of dimension one. Then

bo(I®)) < bo(I) +reg(R) + 1.

Furthermore, if, in addition to the above hypotheses, the minimal homogeneous resolution of I by

free P-modules is not linear, then
(5.4.1) bo(I®) < bo(I) +reg(R).

Proof. The ring R is a standard graded ring over a field; so every minimal generator of the maximal
homogeneous ideal m of R has degree one; furthermore 1+ a(R) = reg(R). Apply Lemma 5.1 to

obtain
bo(I®)) < sup{bo(I) + bo(m) +a(R),2bo(I)} < sup{bo(I) +reg(R),2bo ()}
= bo(I) + max{reg(R),bo(I)}.
In the general case,
bo(I) <reg(l) <reg(R)+1.
On the other hand, if the minimal homogeneous resolution of / by free P-modules is not linear, then
bo(I) <reg(I) <reg(R)+1;
hence by(I) < reg(R). O

Example 5.5. If P = Q|[x,y,z] and I is the ideal of P generated by the 2 x 2 minors of

Xy z

y z x|’
then R = P/I is a one dimensional Cohen-Macaulay ring, the minimal homogeneous resolution of 1
by free P-modules is linear,

bo(I) +reg(R) =2+1=3, and by(I?)=4;

so the inequality (5.4.1) does not hold in the general case. Again, by (I (2>) was computed using
Macaulay? [6].
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Remark 5.6. If one re-does the calculation of Corollary 5.4 starting at (5.1.1), then one can read
the conclusion of Corollary 5.4 as

(5.6.1) bo(I® /1) < bo(I) +reg(R).
Indeed,
bo(I®) /1) = bo(HO,(1/17)) < bo(I/1?) + Oy +a(R) = bo(I) + 1 +a(R) = by (I) +reg(R).
The formulation (5.6.1) affords a direct comparison with the relevant part of [4, Cor 7.8]:
topdeg(I® /1?) < by (I) — 1 +reg(R).
Observe that by(I'?) /1?) < topdeg(I'®) /I?) and by(I) < by (I) — 1. (Recall the meaning of b; from
(2.5).)

Corollary 5.7 is about hyperplane sections of subschemes of projective space. For instance, let V
be the subscheme of ]P’f1 defined by the homogeneous ideal I in R = k[xy,...,x,] and H be a linear
subspace of Pffl defined by general linear forms in k[xj,...,x4]. We produce an upper bound for
the maximal generator degree of the saturated ideal defining V N H, in terms of information that can
be read from a single shift in the minimal homogeneous resolution of R/I. The analogous bound
for the highest degree of a form that is in the saturated ideal of V M H but not in the image of / was
proved in [4, 5.1]. Notice that the saturated ideal of V N H is the ideal of polynomials vanishing on
V NH if k is algebraically closed and / is radical [5, 5.2].

Corollary 5.7. Let R = k[xy,...,x4] be a standard graded polynomial ring over a field k, I be a
homogeneous ideal of R, and L be an ideal minimally generated by c linear forms in R. Assume that
dim Tor®(R/I,R/L) < 1. Let I be the image of I in R = R/L and J be the saturation J =T of I.
Then

bo(J) < max{bo(I),bg—c—2(I) —d+c+1}.
Furthermore, if c = dim(R/I) — 1, then

bo(]) < bd_c_z(l) —d+c+2.

Remark 5.8. The inequality dim Torf(R/I,R/L) < 1 is satisfied if dim(R/I) < 1. It also holds if
k is infinite and L is generated by general linear forms, because such forms are a filtered regular
sequence on R/I, see [12, 2.3] for a proof.

Proof. If d — 1 < c, then R is a principal ideal domain and hence J = I. Thus we may assume that
¢ <d —2. Denote the maximal homogeneous ideal of R by m and the maximal homogeneous ideal
of R by m. The ideal J of R is equal to

therefore
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and
bo(J) < sup{bo(1),bo(Hy(R/T))} < sup{bo(1),bo(Hx(R/T))}.

We now bound bo(H2(R/I). Let C, be a minimal homogeneous resolution of R/I by free R-
modules. Consider the complex Co = C, ®g R. Our assumption on Tor; and the rigidity of Tor [1,
2.1] imply that dim Tor®(R/I,R/L) < 1 for all positive i. Keep in mind that R is a polynomial ring
of dimension d — c¢. Apply Corollary 4.8 to the complex C, to obtain

bo(He(R/T)) < bo(Ca—c—1) = (d =€) + 1 = ba—c1(R/) —d +c+1
= bd_c_z(l) —d+c+1.

This completes the proof of the general case.
If c=dim(R/I)— 1, thend —c— 1 =ht [ = grade[ and

bo(R/T) <bi(R/I) < -+ <ba—c—1(R/I)
because
0—Cy—...—Cj_.,
is a minimal resolution. It follows that
bo(I) < -+ <bg—c—(I);
and therefore, bo(I) < bg—c—2(I) —d +c+2. O

REFERENCES

[1] M. Auslander, Modules over unramified regular local rings, lllinois J. Math § (1961), 631-647.
[2] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge
University Press, Cambridge, 1993.
[3] M. Chardin, Powers of ideals and the cohomology of stalks and fibers of morphisms, Algebra Number Theory 7
(2013), 1-18.
[4] D. Eisenbud, C. Huneke, and B. Ulrich, The regularity of Tor and graded Betti numbers, Amer. J. Math. 128 (2006),
573-605.
[5] H. Flenner, Die Sdtze von Bertini fiir lokale Ringe, Math. Ann. 229 (1977), 97-111.
[6] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at
http://www.math.uiuc.edu/Macaulay?2/.
[7] L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves,
Invent. Math. 72 (1983), 491-506.
[8] L. T. Hoa and T. N. Trung, Partial Castelnuovo-Mumford regularities of sums and intersections of powers of mono-
mial ideals, Math. Proc. Camb. Phil. Soc. 149 (2010), 229-246.
[9] M. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math. 147 (2002),
349-369.
[10] A. Kustin, C. Polini, and B. Ulrich, The equations defining blowup algebras of height three Gorenstein ideals,
Algebra Number Theory 11 (2017), 1489-1525.
[11] W. Niu Some results on asymptotic regularity of ideal sheaves, J. Algebra 377 (2013), 157-172.
[12] Y. Xie, Formulas for the multiplicity of graded algebras, Trans. Amer. Math. Soc. 364 (2012), 4085-4106.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208
E-mail address: kustin@math.sc.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME NOTRE DAME, IN 46556
E-mail address: cpolini@nd.edu



DEGREE BOUNDS FOR LOCAL COHOMOLOGY

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907
E-mail address: bulrich@purdue.edu



