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ABSTRACT. Let R be a formal power series ring over a field, with maximal
ideal m, and let I be an ideal of R. We study iterated socles of I, that
is, ideals of the form I :p m® for positive integers s. We are interested in
iterated socles in connection with the notion of integral dependence of ideals.
In this article we show that iterated socles are integral over I, with reduction
number at most one, provided s < o(I1(¢q)) — 1, where o(I1(pq)) is the
order of the ideal of entries of the last map in a minimal free R-resolution
of R/I. In characteristic zero, we also provide formulas for the generators of
iterated socles whenever s < o(I1(¢q)). This result generalizes previous work
of Herzog, who gave formulas for the socle generators of any homogeneous
ideal I in terms of Jacobian determinants of the entries of the matrices in
a minimal homogeneous free R-resolution of R/I. Applications are given to
iterated socles of determinantal ideals with generic height. In particular, we
give surprisingly simple formulas for iterated socles of height two ideals in a
power series ring in two variables. The generators of these socles are suitable
determinants obtained from the Hilbert-Burch matrix.

1. INTRODUCTION

The socle of a module M over a local ring R with maximal ideal m is the sub-
module 0 :p; m, the unique largest R-submodule that has the structure of a module
over the residue field £ = R/m. Socle generators of modules are as important as
the minimal generators of the module, to which they are (in some sense) dual, but,
in general, they are much harder to find. In this article we will usually assume that
R = k[z1,...,z4] is a formal powers series ring over a field k and M will often be
a cyclic module R/I. We pull back the socle of M = R/I to the ideal I :g m in R
and by abuse of language call this ideal the socle of I.

The computation of the socle is well understood in the complete intersection case:
If I is generated by a regular sequence fi,..., fq contained in the maximal ideal
m = (z1,...,24), standard linkage theory gives that I :g m = (I,det C'), where
C is a square transition matrix that writes the f’s in terms of the z’s. Moreover,
if the characteristic of the field k is 0 and the f’s are homogeneous polynomials,
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one can take as C' the Jacobian matrix of the f’s, by Euler’s formula. Hence
the socle is generated by I together with the determinant of the Jacobian matrix,
I:gm=(I,|0f;/0x;|). The same formula holds in the non-graded case, although
the result is much less obvious [23, 21, 18]. The converse also holds. Namely, the
socle of the Artinian algebra A = R/I is its Jacobian ideal, 0 :4 m = Jac(A),
if and only if A is a complete intersection [21]. In other words, only for complete
intersections one can expect a simple formula based on derivatives of the generators
of the ideal.

In the complete intersection case the generators of the ideal immediately give
the matrices in a free R-resolution of R/I, by means of the Koszul complex. Thus
a natural generalization is to ask whether, in general, one can obtain formulas for
the socle using derivatives of the entries of all the matrices in a free resolution.
If I is a homogeneous ideal of a power series ring over a field of characteristic 0,
Herzog gave such a formula in terms of Jacobian determinants of the entries of the
matrices in a homogeneous minimal resolution [11]. His formula suffices to deduce,
for instance, that if I is an ideal of maximal minors having generic height then
the socle is contained in the ideal of next lower minors. This gives rather strong
restrictions on where the socle can sit. Recently, Herzog’s result has been used in
the study of Golod ideals [12].

Tterated (or quasi) socles of a module are defined as socles modulo socles. After
s iterations one obtains a submodule that can be more easily described as 0 :p;y m®.
For instance, if I is a homogeneous ideal in a polynomial ring R = k[x1,...,x4],
then the largest ideal defining the subscheme V(I) C Pi‘l is the saturation of I,
which is in fact an iterated socle, I :g m®. It is of great interest to understand the
difference between I and its saturation. For example, if a subscheme is defined by
the saturated ideal I, a hyperplane section is defined by I together with the linear
form corresponding to the hyperplane, but this ideal is in general not saturated
anymore. We can apply our results to give precise formulas for the saturated ideals
defining hyperplane sections of subschemes of low Castelnuovo-Mumford regularity
(see Remark 3.9). Iterated socles also appear in the study of the scheme Gor(T) of
Gorenstein Artin algebras having fixed Hilbert function 7'. In particular, Tarrobino
makes use of Loewy filtrations, which are defined by means of subquotients of
iterated socles [15, 16]. The present work also led us to define what we feel is
a powerful concept, distance, that can be used as an effective substitute for the
Castelnuovo-Mumford regularity in the local case. We explore this notion in [5],
where we apply it to characterize the Cohen-Macaulayness and Gorensteinness of
associated graded rings and to explore a conjecture on Loewy lengths of Avramov,
Buchweitz, Iyengar, and Miller [2].

In this paper we study iterated socles from several perspectives. Many natural
questions arise. For instance, Herzog’s socle formula is extremely valuable. Are
there similar explicit formulas for iterated socles? Another question deals with
integral closures of ideals. Integral closure plays a crucial role in the study of
Hilbert functions, in intersection theory, and in equisingularity theory, for instance.
Since the integral closure of an ideal is difficult to compute, one would like to find
at least a large part of it. An obvious place to look for integral elements are iterated
socles, which immediately leads to our main motivating question:

For which values of s is I :r m® contained in the integral closure of 17
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Still another problem is to relate iterated socles to other ideals derived from I,
when more is known about the structure of I. One example is the result of Herzog
mentioned above. If I is determinantal, its socle lies in the ideal of next lower size
minors. In particular, iterated socles are contained in the ideal of yet lower size
minors. Can more be said?

We provide almost complete answers to these questions.

One cannot expect a positive answer to our main motivating question if s is
too large. One obstruction for being in the integral closure arises from the order.
Recall that the order of an ideal I in a Noetherian local ring (R, m) is defined
as o(I) = sup{t|I C m'}. If R is regular, the powers of the maximal ideal are
integrally closed, hence o(I) = o(I), where I denotes the integral closure of I. This
means that passing to the integral closure of an ideal cannot lower the order, at
least when R is regular.

There are several past results dealing with our main motivating question. The
first one is due to Burch [4]. In the same paper where she proves the Hilbert-Burch
theorem, she also shows that if R is not regular and [ has finite projective dimension
then the entire socle lies in the integral closure of I. Stronger results have been
proved for complete intersection ideals, see for instance [9, 7, 8, 20, 25, 26]. The
result of Wang [25] says that if (R, m) is a regular local ring of dimension d > 2 and I
is a complete intersection then (I : m®)? = I(I : m*) provided s < o(I) — 1. In other
words, the iterated socle is not only integral over the ideal but also has reduction
number at most one. Little is known for socles, or iterated socles, of ideals that
are not complete intersections. The integral dependence (with reduction number at
most one) of the socle of a Gorenstein ideal contained in the square of the maximal
ideal has been proved in [6]. A connection between iterated socles and adjoints of
ideals has been established by Lipman [19].

We now explain our results in more detail. In Section 2 we unify and generalize
the previously known results about integral dependence with reduction number at
most one. Most notably, we are able to eliminate the assumption that the ideal
be a complete intersection. The main result of Section 2 deals with iterated socles
of any ideal I in a power series ring R in d > 2 variables over a field; we prove
that the iterated socle is integral over I with reduction number at most one as long
as s < o(I1(pq)) — 1, where (Fo,pe) is a minimal free R-resolution of R/I (see
Theorem 2.4). Notice that if R/I is an Artinian Gorenstein ring then I;(pg) = I
by the symmetry of the resolution, and the above inequality for s simply becomes
the condition s < o(I) — 1 required by Wang and other authors. Thus our result
recovers [9, 7, 8, 6, 20, 25] in the case of a regular ambient ring and provides, at the
same time, a vast generalization. A somewhat surprising feature of the proof is that
the precise knowledge of the module structure of the quotient (I :x m**1)/T suffices
to deduce the equality (I :gr m*)? = I(I :g m®) back in the ring R. The structural
information we use is the fact that this quotient is a direct sum of copies of the
canonical module wp /ys+1, Which in turn embeds into the module of polynomials
in the inverse variables in the sense of Macaulay’s inverse systems (see Corollary
2.2).

In Section 3 we generalize Herzog’s formula from socles to iterated socles. We
work with a power series ring R = k[z1,...,x4] over a field k of characteristic
zero and consider a finite R-module M with minimal free resolution (F,, ¢s). We
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provide formulas for minimal generators of the iterated socles 0 :3y m® in the range
s < o(I1(pq)) (see Theorem 3.8, which is based on Theorems 3.4 and 3.6). Our
results cannot be obtained by repeatedly applying Herzog’s formulas because this
would require knowing the resolutions of all the intermediate iterated socles. Our
proof reduces to computing cycles in the tensor product of the resolution F, and
the Koszul complex built on suitable monomial complete intersections. The crucial
ingredient is an ad hoc modification of the classical de Rham differential on this
family of Koszul complexes, which yields a k-linear contracting homotopy in positive
degrees. Our modified de Rham differential is not a derivation as in Herzog’s case,
it is simply a connection. Yet, this property suffices for our calculations to go
through.

In Section 4 we provide applications of the formulas obtained in Section 3 to
iterated socles of determinantal ideals with generic height. In other words, we
obtain strong restrictions on where iterated socles of ideals of minors of matrices
can sit (see Theorem 4.1). Similar results hold for ideals of minors of symmetric
matrices and of Pfaffians. In particular, we give surprisingly simple formulas for
the generators of iterated socles of height two ideals in a power series ring in two
variables. These generators are suitable determinants obtained from the Hilbert-
Burch matrix (see Theorem 4.5).

In a subsequent article [5] we consider iterated socles of ideals in non-regular
local rings. We obtain substantial improvements in this situation, as we are able
to quantify the contribution that comes from the non-regularity of the ring.

For unexplained terminology and background we refer the reader to [3, 22, 24].

2. REDUCTION NUMBER ONE

In this section we prove our main result on integral dependence, Theorem 2.4.
We begin with an observation that will be used throughout the paper.

Proposition 2.1. Let R be a Noetherian local ring, M a finite R-module, N = R/J
with J a perfect R-ideal of grade g, and write =V = Ext%(_, R).
(a) There are natural isomorphisms 0 :pr J = Homp (N, M) = Torf;”(NV, M).
(b) Let (Feo,pe) be a resolution of M by finite free R-modules and assume that
Li(pg) + Ii(@g+1) C J. There is a natural isomorphism
R ~
Tor®(NV, M) = NY @, F,.
Proof. We first prove (a). As N = R/J, there is a natural isomorphism 0 :p; J &
Hompg (N, M). Since J is perfect of grade g, we also have
Hompg (N, M) = Tor)(NY, M).

Indeed, let G4 be a resolutions of N of length g by finite free R-modules. Notice
that G;[—g] is a resolution of NV of length g by finite free R-modules. Hence we
obtain natural isomorphisms

Tory (NY, M) = Hy(Gi[~g] @r M)
>~ Ker(Gj®r M — G} @ M)
>~ Ker(Hompg(Go, M) — Hompg(G1, M))

I

Hompg (N, M).
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As for part (b), notice that
Tor)'(NY, M) = Hy(NY @ F,) 2 N ®p Fy,

where the last isomorphism holds because NV ®g pg,41 = 0 = NY ®p ¢4 by our
assumption on I (¢g+1) and I (@g). O

The above proposition provides strong structural information about the iterated
socle 0 :3y m?®; it implies, under suitable hypotheses, that this colon is a direct sum
of copies of the canonical module of R/m®.

Corollary 2.2. Let (R,m) be a regular local ring of dimension d, M a finite R-
module, and (Fo,ps) a minimal free R-resolution of M. One has

0:p m® = wp/ms @r Fy
for every s < o(I1(pq))-
Proof. We apply Proposition 2.1 with N = R/m*. O

In Proposition 2.3 below we formalize the key step in the proof of Theorem 2.4.

Proposition 2.3. Let R be a commutative ring, I C K ideals, x,y elements of R,
and W a subset of R/I annihilated by some power of x so that tW = yW generates
K/I. Assume that whenever z'yw = 0 in R/I for some t > 0 and w € W, then
2w =0 oryw=0in R/I. Then

K?=1IK.

Proof. Let U,V be preimages in R of W and of W = yW, respectively. We prove
that if vy, vy are in V and ztv; = 0 mod I for some ¢ > 0, then v1vy = v{vh mod I K
for v}, v4 in V with z'~'v} = 0 mod I. Decreasing induction on ¢ then shows that
v1v9 = 0 mod IK.

We may assume that v; Z 0 mod I, and write v; = yu; mod I, vo = xus mod [
for elements uy,us of U. Now

vive = yuive mod IK
= yuijxus mod IK

= TU1YU2.

Since z'yu; = x'v; = 0 mod I and yu; = v # 0 mod I, it follows that ztu; =
0 mod I, hence z'~!(zu;) = 0 mod I. Now set v} = zu; and vl = yus. O

Theorem 2.4 below greatly generalizes the results of [9, 7, 8, 6, 20, 25] in the case
of a regular ambient ring. We consider iterated socles I : m® of arbitrary ideals I
in an equicharacteristic regular local ring R of dimension d > 2, and we prove that
the iterated socles are integral over I with reduction number at most one as long
as s < o(l1(pq)) — 1, where (F,, pe) is a minimal free R-resolution of R/I. This
inequality replaces the assumption that I be a complete intersection and s < o(I)—1
required in the earlier work, and hence appears to be the correct condition to fully
understand and generalize [9, 7, 8, 6, 20, 25]. The bound s < o(I1(p4)) — 1 is sharp,
as can be seen by taking I =m and s = 1.
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Theorem 2.4. Let (R, m) be a regular local ring of dimension d > 2 containing a
field, I an R-ideal, and (Fo, ps) a minimal free R-resolution of R/I. One has

(I:m*)%=1I(I:m°)
for every s < o(I1(¢q)) — 1.

Proof. After completing we may assume that R = k[z1,...,24] is a power series
ring over a field k. We wish to apply Proposition 2.3 with K = I : m®. Corollary
2.2 gives an isomorphism

(I : mS—H)/I = WR/ms+1 ®r Fy,
which restricts to
(I:m*)/I = wr/m: QR Fa.
We recall some standard facts about injective envelopes of the residue field and

Macaulay’s inverse systems. One has

WR/ms+1 = ER/mS+1 (k) =0 ‘ERr(k) mS“ (- ER(]C) = k[(ﬂl_l, cen ,x{;l].

The R-module structure of the latter is given as follows. We use the identifi-
cation of k-vector spaces k[xl_l,...,xgl] = k[xl,xfl,...,xd,xgl]/N, where N
is the subspace spanned by the monomials not in k[z;',...,2;']. As N is a
k[x1,...,zq)-submodule, the vector space k[z",... ,x;l] becomes a module over
klx1,...,24], and then over R since each x; acts nilpotently. The R-submodule
WR/ms+1 = 0 :mst C klzy',...,x;"] is generated by the set M of monomials of
degree s in the inverse variables 3:1_1, . ,xgl.

Notice that z°T*M = 0 and x;M is the set of monomials of degree s — 1 in
the inverse variables. In particular, z1M = 2o M generates the submodule wg/ms.
Moreover, if w = 27 - 2;% € M and a{zow = 0, then ¢t > a; or 1 > ao, in
which case z{w = 0 or zow = 0. For B any R-basis of F; consider

M®r B C WR/ms+1 QR Fy = (I : ms'H)/I C R/I

We may now apply Proposition 2.3 with K =1 : m®, x = z1, y = x2, and W the
image of M ® g B'in R/I. O

Corollary 2.5. Let (R,m) be a reqular local ring of dimension > 2 containing a
field and I an R-ideal. If R/I is Gorenstein, then

(I:m*)*=1I(I:m°)
for every s < o(I) — 1.

Proof. The assertion follows from Theorem 2.4 and the symmetry of the minimal
free R-resolution of R/I. O

For another example showing that the assumption s < o(I) — 1 is needed in
Corollary 2.5, let (R, m) be a power series ring in d > 2 variables over a field and I
a generic homogeneous m-primary Gorenstein ideal, in the sense that its dual socle
generator is a general form, say of degree 2s — 2. One has o(I) = s, see for instance
[17, 3.31]. On the other hand o(I: m*) = s — 1, hence I: m® ¢ I.

As pointed out in [10, 9, 7, 8, 6, 20, 25, 26], the case of a regular ambient ring
is the worst as far as integral dependence is concerned. If the ambient ring is not
regular, we are able to extend the result about integral dependence with reduction
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number at most one to the range s < o(I1(¢4)) and we prove integral dependence
with possibly higher reduction number in a considerably larger range. This work
is done in [5].

3. A FORMULA FOR ITERATED SOCLES

The second goal of this article is to provide closed formulas for the generators
of iterated socles of any finitely generated module M over a Noetherian local ring
(R,m) of equicharacteristic zero. After completing and choosing a Cohen presen-
tation, we may assume that R = k[z1,...,z4] is a power series ring in d variables
over a field k of characteristic zero. Let (F,, pe) be a minimal free R-resolution of
M. We will use this resolution to construct 0 :p; m® in the range s < o(I1(pq)).

Our result generalizes work of Herzog [11], who treated the case where s = 1 and
M = R/I for I an ideal generated by homogeneous polynomials. We stress again
that our result, even for M = R/I, does not follow by repeating Herzog’s construc-
tion s times, because that would require knowing the resolution of the socles at each
step. Our method instead produces the iterated socle in one step from the minimal
free resolution of M. Our approach resembles that of Herzog, but there are serious
obstacles that need to be overcome. Proposition 3.1 below allows us to reduce first
to the computation of 0 :j; J, where J is a special monomial complete intersection.
We then consider the Koszul complex of this complete intersection and define on
it a k-linear contracting homotopy modeled after the usual de Rham differential,
which splits the Koszul differential in positive degrees. The contracting homotopy
we construct is not a derivation anymore, yet it suffices to obtain explicit formulas
for Koszul cycles and hence for 0 :p; J. The formulas for general Koszul cycles are
needed in the next section, where we study iterated socles of determinantal ideals.

In the setting of Proposition 3.1 below one has m* = N(z{*,...,z5*). Hence
the assertion of the proposition would follow if one could take the intersection out
of the colon as a sum. This is indeed possible by linkage theory if M = R/I is
a Gorenstein ring and s < o(I). The content of the proposition is that even the
weaker assumption s < o(Iy(¢q)) suffices. We use the notation a = (aq, ..., aq) for

d
a vector in Z% and write |a| = E a;.
i=1

Proposition 3.1. Let (R,m) be a regular local ring of dimension d > 0 with a
reqular system of parameters x1,...,xq. Let M be a finite R-module, (Fy,pe) a
minimal free R-resolution of M, and s a positive integer. If s < o(I1(pq)), then

O:MmS: E OZM(.’EIIM,...,{EZd).
la|=s+d—1
a; >0

Proof. One has
m’ = ﬂ (x‘fl,...7x2d).

la|=s+d—1
a; >0
Since any of the ideals J, := (z{*,...,x%") contains m®, we obtain

wryy, = Homp(R/Jg, wp/ms) =0

‘WR/mS

o
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In particular, ann, (0 Ja) = Jo. Therefore

‘WR/mS

annR(ZO W Ja> = ﬂJQ:mS.

a

In other words, Z 0 Whme Jq is a faithful R/m®-submodule of the canonical mod-

ule Wr/ms. As wR7m.< cannot have a proper faithful R/m®-submodule, we conclude
that

Wrme = Y0t Ja-

According to Corollary 2.2, the module E' = 0 :j; m* is isomorphic to wgr/m: @ rFy-
Therefore
E=Y0:pJ,.

Finally, the inclusion m*® C J, gives 0:pr m® D 0:p7 Jy, hence 0:g J, =0:pp J,. O

In the next discussion we set up the interpretation of cycles in tensor complexes
that we will use to obtain explicit formulas for Koszul cycles and, eventually, for
iterated socles.

Discussion 3.2. Let R be a Noetherian ring, let M, N be finite R-modules, and let
F,, G, be resolutions of M, N by finite free R-modules with augmentation maps
m, p, respectively. The graded R-module Torf” (M, N) can be identified with these
homology modules,

Ho(Fo @p N) 2 Ho(Fo @ Go) = He(M ®pr G,) .

More precisely, the maps

Foe ®r Ge
idV W.
Fo®@r N M ®gr G,

induce epimorphisms on the level of cycles and isomorphisms on the level of homol-
ogy.

t
Recall that an element o = (ay, ..., 1) of [Fe @g Gelt = @ F;®G;_; is a cycle
i=0
in Fy ®r G, if and only if

(ide ©0%*) (@) = (~1)""(0™ @ ida)(ais1)

for all i. To make the isomorphism He(Fe @z N) — He(M ®@pr G,) explicit, we
take an arbitrary cycle v € [Z(Fs ®g N)];. Lift v to an element a; € F; ® Gy
with (id ® p)(a¢) = v. Now a; can be extended to a cycle « = (ag,...,,q) €
[Z(Fe®rGe)]t- The image u = (7 ®id)(ayp) is in [Z(M ® g G4)]:, and the homology
class of u is the image of the homology class of v under the above isomorphism.
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(7)) u
m m
FoGy — M®G;

a1 € F1Gi 1 — Fy®Gi_1

|

:

1 € Ft71®G1 —_— Ft72®G1

|

€ LGy — Fio1®Gy

.

v € Ft®N

In the next discussion we construct a contracting homotopy for certain complexes
G, that allows us to invert the vertical differentials in the staircase of Discussion 3.2.
This provides an explicit formula to pass from an element v as above to an element
U.

Discussion 3.3. Let A = k[y1,...,yn] D A" = k[y1,...,yn], where k is a field
and y1,...,y, are n > 0 variables. We say that an A-module M is graded if M =
A® 4 M’ for some A’-module M’ that is graded with respect to the standard grading
of A’. One defines, in the obvious way, homogeneous maps and homogeneous
complexes of graded A-modules. We call an element u of a graded A-module M =
A @4 M’ homogeneous of degree d if u = 1® v’ for a homogeneous element v’ of
M’ of degree d. Notice that every element u of M can be written uniquely in the
form v =Y., u; with u; homogeneous of degree 1.

We consider the universally finite derivation

iEZ
d:A— Qp(A)=F=A4e1®... P Ae,

L]
with e; = dy; homogeneous of degree 1. Let Ly = Ko(y1,...,Yn;A) = /\F be the
Koszul complex of ¥, ..., y, with differential d, mapping e; to y;. We extend d to
a k-linear map de : Le — Le[1], homogeneous with respect to the internal and the
homological degree, by setting d(av) = d(a) Avfora € Aandv=e,, A... A€y, a
typical basis element in the Koszul complex. After restriction to any graded strand
L, with respect to the internal grading, one has

Oede + d.&.‘L.m = midL.m R (31)

as can be seen from the Euler relation.
If char £ = 0 we define

de : Leso — Laso[l]
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1
by de(n) = Z —de(Nm), where 7, denotes the degree m component of 7 in
m
m>0
the internal grading. The equality (3.1) shows that de is a k-linear contracting
homotopy of Le~g-

Now let R = k[z1,...,2,] be another power series ring and let aq,...,a, be
positive integers. We consider the subring A = k[y1,...,y,] where y; = z}' are
homogeneous of degree 1. Write V' = @ kEa*---aym. One has REV @ A

0<v;<a;

as A-modules. Thus R is a free A-module, which we grade by giving the elements
of V degree 0. With K, denoting the Koszul complex Kq(y1,-..,yn; R) we obtain
isomorphisms of complexes of graded A-modules

Ke=2R®4s Le =2V ®p L.

We define V, : Kg — K,[1] by Vo = V ®, ds, which is a k-linear homogenous
map with respect to the internal and the homological degree. We notice that
Vo : R — R®a Q%(A) is no longer a derivation but only a connection of A-
modules, which means it satisfies the product rule if one of the factors is in A.
Again, if char k = 0 we define

Ve : Kesg — Kesoll]

1 ~ ~
by Ve(n) = Z —Ve(nm). Alternatively, one has the description Vo = V ®y d,.
m
m>0
Hence by the discussion above, V, is a k-linear contracting homotopy of Ke~q.
We now describe the maps V, and V, more explicitly. Let S[[z]] be a power
series ring in one variable over a commutative ring S and let a be a positive integer.

We consider the continuous S-linear map - : S[[z]] — S[[z]] with

dcglca (=) = LZJ o

We write S[[y]] for the power series subring S[[z*]] and U for the free S-module U =
@ S x¥. We have S[[z]] =2 U®s S[[y]] and -4; = U ®s d%. If R=E[[z1,..., 2]

dz?
o<v<a
is a power series ring in several variables and ai,...,a, are positive integers as
above, we write 2 for -1 with S = k[[21,...,&;,...,2,]]. To describe the

maps V, and 6., let 7 € R and let v = ¢e;; A ... Ae;, be a basis element in the
Koszul complex K, of internal degree ¢. It turns out that

_nar

and if chark = 0 and rv € Ko,

. 1
V(rv) = Z Orm i AU

, m+ £ Ox® ¢

i,m>0
Theorem 3.4. Let R = k[xz1,...,24] be a power series ring in d > 0 variables
over a field k of characteristic zero and let M be a finite R-module. For ay, ..., aq

positive integers, let Ko denote the Koszul complexr Ko(x1, ..., 25" R) and let V,
be defined as in Discussion 3.3. Consider a minimal free R-resolution (Fo,pe) of
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M and let W, be a graded k-vector space with F; = W; Qi R (notice the grading
is by homological degree only). Let t be an integer with 0<t<d, let wy,...,w, be a
k-basis of Wy, and assume that (x7*,...,25") D I1(py).

Then the R-module of Koszul cycles Z,(x{*,...,z5"; M) is minimally generated
by the images in M Q@ K; of the r elements

[(idw, ®k V) 0 (e ®p ids, )] (we @ 1),
where wy ® 1 € F; @gr Kg and 1 </ < r.

Proof. We apply Discussion 3.2 with N = R/(z{",...,2z3") and G4 = K,. Notice
that [Z(M®rG.)]: = Z¢(27", ..., 25" M) and [Z(Fe®@grN)]: = F,QrR/(z1",. .., x5")
because ¢, @ R/(x{",...,z5*) = 0 by our assumption on I;(¢¢). Hence the latter
R-module is minimally generated by the elements wy, ® 1, 1 < ¢ < r, and min-
imal generators of the former R-module can be obtained from these elements by
applying the horizontal differential o ®p idf,, taking preimages under the verti-
cal differential idp, ®p 0K of Discussion 3.2, and repeating this process t times.
Instead of taking preimages under idp, ®r 0K = idw, @i 0K+ we may apply the
map idw, ® 6., because the boundaries of K, are in the subcomplex Ko~ and
V. is a contracting homotopy for the latter according to Discussion 3.3. ]

Corollary 3.5. We use the assumptions of Theorem 3.4 witht = d. The R-module
0 :ar (29, ..., 25") is minimally generated by the images in M = M ®r Kq of the
r elements

[(idw, ®k Vo) 0 (e @r idg, )4 (we ® 1),
where wy @1 € Fy®r Ko and 1 < ¢ <r = dim;Wjy.

Proof. The identification M = M ®pr K, induces an isomorphism between the
modules 0:p7 (277,...,25") and Zg(x{",...,25% M). The assertion then follows
from Theorem 3.4. (]

We now provide a description of the generators of 0 :p7 (7,...,23") and, more
generally, of the Koszul cycles in terms of Jacobian determinants, as was done by
Herzog [11, Corollary 2] when a; = ... =aqg = 1 and M is a cyclic graded module.
To do so we consider M as a module over the subring A = k[y1, ..., yq] C R, where
y; = x;* are homogenous of degree one. Applying Herzog’s method directly would
lead to generators of the Koszul cycles as A-modules, whereas using Theorem 3.4
above we obtain minimal generating sets as R-modules.

We use the assumptions and notations of Theorem 3.4. Fixing bases of W, one
obtains matrix representations (aj,,) of the maps @; in the resolution F,. Let
B C Zio be the set of all tuples A = (\q,...,\q) with A; < a; and recall that 2,
) € B, form an A-basis of R. For A and ¢ in B, we let {\ — €} be the tuple with

{Afg}j: )‘j_gj if)\j—.EjZO
Aj —€&j +a; otherwise.
Notice that {A — g} is again in B. Moreover we define {{\ — ¢}} by
0 if )\j — & Z 0

1 otherwise.

{a-el; = {
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If B is an element of R we write § = Z ﬂlgl, where 3, € A. Multiplication by
YEB

B gives an A-endomorphism of R, represented by a matrix My with respect to the

basis 22, A € B. Its (), g)-entry is

Bire) yHA—eh

The R-resolution Fy of M is also an A-resolution. As A-basis of Fy we choose the
k-basis of W, tensored with the basis z2, A € B. To obtain a matrix representation
N; of ¢; with respect to this A-basis, we replace each ozi“ by the matrix M,; .
The (v, A; u, €)-entry of N; is

o‘iu,{a—g} g{{Afé}}.

These entries are in A, the power series ring in the variables y1,...,yq4, which all
have degree 1. We consider the degree m component o' of afj% el and

v {A—e},m
we notice that

O‘i i DAee)m y{{é—é}}

is homogeneous of degree m + |[{{A — g}}|-

The formula in the next theorem involves Jacobian determinants of homogeneous
elements of this form. Let ¢ be an integer with 0 < ¢ < d, consider sequences
of integers v = vy,...,19, m = my,...,mq with m; > 0, j = j1,...,J: with
1<ji1<...<jt <d,and let A = );,..., A, be a sequence ofituples from B. We
define the t by ¢ Jacobian determinant

a(ai y{{ii—l_ii}})

Vi1V AN _1 =2 }mi £

Dzé,m,l’ = Dy
Ik

<
1<k<t

We remark that in the denominator of the formula below the indices in the product
and the sum are decreasing.

Theorem 3.6. We use the assumptions of Theorem 3.4 and write v; for the basis
elements of Wy. The R-module of Koszul cycles Z,(x1", ..., x5% M) is minimally
generated by the images in M Qr K; of the r elements

1
A
E : 1 h D£,§7m,i T2y, @ €5y N Nejy

v,Am,j
B H Z(mi + Ao — A
h=t i=t
where A, = 0 and v, is fized with 1 < vy <7 = dim;W;.

Proof. We claim that the displayed elements in the current theorem and in The-
orem 3.4 are equal for v; = £. To prove this we make use of Discussion 3.3 and
the notation introduced there. In particular, let A be the subring k[yi,...,y4] of
R with y; = x*, V the k-vector space spanned by the monomial basis of R as an
A-module, L, the Koszul complex Ko(y1, .. .,ya; A), de the de Rham differential of
L,, and de the contracting homotopy derived from it. Recall that K¢ = V @y Le
and 6. =V ® deo. It follows that

[(idw, @1 Ve)o (e @ridx, )| (wy, 1) = [(id(w,0,v) @rde) o (a®@aidL, )] (wy, @1).



ITERATED SOCLES AND INTEGRAL DEPENDENCE IN REGULAR RINGS 13

Now, to compute the element on the righthand side of the equation we may consider

(Fs,pe) as an A-resolution of M with F; = W; ®; V ® A. This element coincides

with the one in the current theorem because d,, unlike V,, is a derivation and the
o 9

operators =—, ..., =— commute with each other. (I
Oy1? ? 9ya

To obtain an explicit description of annihilator modules we apply Theorem 3.6

with ¢ = d. In this case the sequence j is necessarily j = 1,2,...,d, and we write
i A=A
Dyrm=Dyrmj= 00 vea, a8
vAm = Py Am,j = _
0y, 1<i<d
1<j<d

Corollary 3.7. We use the assumptions of Theorem 3.4 with t = d and write

vj for the basis elements of Wy. The R-module 0 :pp (21, ..., 25%) is minimally
generated by the images in M of the r elements
1 A
Z 1 h Dy rxm 2700y, ,
v,Am
o= > mi+ [H{A = AR
h=d i=d

where Ay =0 and vq is fired with 1 < vg < r = dim;Wjy.

Theorem 3.8. Let R = k[x1,...,24] be a power series ring in d > 0 variables
over a field k of characteristic zero, with maximal ideal m. Let M be a finite R-
module with minimal free R-resolution (Fe,pe) and let s be a positive integer. If
s <o(I1(¢q)), then an explicit minimal generating set of the R-module 0 :py m® is
obtained by applying the construction of Corollary 3.5 or 3.7 for a = (a1,...,aq)
any tuple of positive integers with |a| = s+d—1 and by varying over all such tuples.

Proof. From Proposition 3.1 we know that

2 : a
O:k[msz O31M (xtfl,...,l‘dd),
a

where a = (aq,...,aq) ranges over all tuples of positive integers with |a| = s+d—1.
Since (x7*,...,z5*) D m® D I;(pq), we may apply Corollary 3.5 or 3.7 to obtain
a generating set of 0 :pr (z7*,...,23") consisting of r = rank F; elements. Thus

s+d—2
d—1
This is a minimal generating set because p(0 :py m®) = r(s‘gif) according to

Corollary 2.2. O

we have constructed a generating set of 0 :3; m® consisting of r( ) elements.

Remark 3.9. Let R = k[x1,...,24] be a polynomial ring in d > 2 variables over an
algebraically closed field k of characteristic zero, with homogeneous maximal ideal
m. Let I be a homogeneous prime ideal defining the variety V(I) C szl, and
let © € Ry be a general linear form. Fix a minimal homogeneous free resolution
(Fa,0s) of R/T over R. If I(pg_1) C m*e(A)=1 then Theorem 3.8 can be used
to give explicit generators of the saturated ideal defining the hyperplane section
V(I)NV(x) in V(z) = P{2 The point is that (I,z) : m*> = (I,x) : m*® for an s
that is small enough to apply the full strength of our results.
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To see this, we write (R',m') = (R/Rx,m/Rxz), A = R/I, and A" = A/Ax.
Tensoring Fy with R’ one obtains a minimal homogeneous free resolution (F}, ©})
of A’ over R'. Let A denote the integral closure of A. Notice that A/A is a graded
A-module concentrated in positive degrees, because A is a positively graded domain
over an algebraically closed field. One sees that H} (A) =2 H2(A/A). On the other
hand, H (A’) embeds into H} (A)(—1). We deduce that HY (A’) is concentrated in
degrees i, where 2 < i < reg(A’) = reg(A). Therefore m*8(4)~1[0 (A’) = 0, which
gives 014/ (M)® =0 :4 (m/)*8A) =L On the other hand, I;(¢/, ;) C (m/)res()-1
by our assumption. Thus Theorem 3.8 can be applied to yield the generators of the
saturation 0 :4/ (m’)*.

The assumption I (¢4—1) C m is obviously satisfied if reg(A) = 2, as is
the case when V(I) C szl is nondegenerate of almost minimal degree [13, Theorem

A

reg(A)—1

There is another construction based on differentiating matrices in free resolu-
tions, which has been used in the definition of Atiyah classes and characteristic
classes of modules, see for instance [1]. With R, M, (F., @), and W, as in Theo-
rem 3.6, apply the universally finite derivation to the entries of each ¢; to obtain
an R-linear map

d—i d—it1
F; ®r /\ Qr — Fisi®r [\ Q.
Composing these maps and projecting Fy onto M yields an R-linear map
d
U:Fy— M&g [\ Qi

whose class in Ext&(M, M @ \* Qp/) only depends on M, see [1, 2.3.2]. After

identifying M®R/\d Qg with M, we consider the image of ¥ as a submodule of M.
It is natural to try to relate this submodule to the socle of M. Indeed, im¥ =0 :j; m
if M = R/I is a complete intersection and F, is the Koszul complex with its natural
bases. This is not true in general however. For instance, let R = k[, y] be a power
series ring in the variables x,y over a field k of characteristic zero and consider the
free resolution

Fo:0— R* 5 R LR

with
x? 0
oo = | 12 e and o1 = [ 22y +of  —at—a%P af } )
0 22443

In this case im¥ is generated by the images in M = R/I = Hy(F,) of the two
elements x°y% and 7Txy* + 623y. The first element is in I : m, but the second is
not. In fact, the second element is not even integral over I, whereas I : m C I
according to Theorem 2.4 for instance. To see that Tzy* + 623y is not integral
over I, we give a grading to R by assigning to x degree 3 and to y degree 2. Now
7Txy* 4+ 623y is homogeneous of degree 11 and I is generated by the homogenous
element x2y? + y° of degree 10 and two other homogeneous elements of degrees 12
and 18. Thus if 7Txy* + 623y were integral over I, it would be integral over the
principal ideal generated by z2y? + 1°, and hence would be contained in this ideal,
which is not the case.
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4. APPLICATIONS TO DETERMINANTAL IDEALS

The formulas of Corollaries 3.5 and 3.7 are somewhat daunting. Nevertheless,
they suffice to provide strong restrictions on where iterated socles of ideals of minors
can sit. Such restrictions also hold for ideals of minors of symmetric matrices and of
Pfaffians. In particular, this applies to any height two ideal in a power series ring in
two variables. In this case the formulas for iterated socles become very simple. The
generators can be expressed in terms of determinants of the original presentation
matrix. All these issues will be discussed in the present section.

Theorem 4.1. Let (R, m) be a regular local ring containing a field of characteristic
zero, let 1 < n < € <m be integers, let I = I,,(¢) be the ideal generated by the n xn
minors of an £ X m matriz ¢ with entries in m®, and assume that I has height at
least ({ —n+1)(m —n+1). One has

I:m® C L1(d).

Proof. We may assume that s > 1 and I # R. Recall that I is a perfect ideal of
grade ({ —n+1)(m—n+1) according to [14]. We may assume that I is m-primary.
After completing we may further suppose that R = k[z1,...,z4] is a power series
ring in d > 0 variables over a field k of characteristic zero.

Now let Y = (y;;) be an ¢ x m matrix of variables over R, write S = R[{y;;}],
and let J = I,,(Y) be the S-ideal generated by the n X n minors of Y. We consider
a minimal free S-resolution F, of S/J. Since J is extended from an ideal in the ring
E[{y:;}], all matrices of F, have entries in the S-ideal I (Y") generated by the entries
of Y. On the other hand, J is perfect of grade ({—n-+1)(m—n-+1). Hence, regarding
R as an S-module via the identification R =2 S/I1(Y — ¢), we see that Fe ®s R is a
minimal free R-resolution of R/I and the entries of Y — ¢ form a regular sequence
on S/J. Notice that all matrices of the resolution Fy ®¢ R have entries in the
R-ideal I;(¢) C m®. Thus according to Proposition 3.1 the assertion of the present
theorem follows once we have shown that I : (z7',...,25") C I,—1(¢) whenever
la| = s+d—1 and a; > 0. The latter amounts to proving that the module of Koszul
cycles Zg(xi,...,x5%; R/I) is contained in I,_1(¢) - Kq(x7*,..., 5% R/I). This
is a consequence of the next, more general result. [l

Proposition 4.2. In addition to the assumptions of Theorem 4.1 suppose that R =
k[z1,...,2z4] is a power series ring in d > 0 variables over a field k of characteristic

zero. If a; are positive integers with Zle a; <s+d—1, then
Zy(xl, . 2y RIT) C In1(¢) - Ki(21*, ... 25" R/T)
for every t > 0.

Proof. We adopt the notation introduced in the previous proof. Notice that z¢ =
x{, ..., 2y form a regular sequence on S/J and so do the entries y — ¢ of the
matrix ¥ — ¢. Thus the Koszul complexes Ko(z%;S/J) and K,(y — ¢;S/J) are
acyclic. Since the zeroth homology of the second complex is R/T , Discussion 3.2
shows that the natural map

Ko(@% 5/J) @575 Koy — ¢;5/J) — Keo(z% 5/J) ©g/0 R/T = Ko(z* R/1)
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induces a surjection on the level of cycles. On the other hand, we have the following
isomorphisms of complexes

Ko(2%5/J) @575 Ke(y — ¢;5/J) = Ko(z%y — ¢;.5/J) = Ko

where the first isomorphism follows from the definition of the Koszul complex. The
second isomorphism uses the fact that the sequences x%,y — ¢ and z¢,y minimally
generate the same ideal in S because I1(¢) C m® C (z2).

We conclude that it suffices to show that
Zi(z%y; S/ J) C In_1(Y) - Ke(z*,y; S/ J)

z%,y;S/J),

for every ¢ > 0. To this end we apply Theorem 3.4 to the ring S = k[z,y],
the S-module S/J with minimal free resolution (F,, p,), and the Koszul complex
Ko = Ko(2%,y;5). As observed in the previous proof, the condition I1(¢:) C (y)
is satisfied. Hence Theorem 3.4 yields the inclusion B

Zt(gg, Y; S/J) cS [(idwo Rk %t,l) o ((,01 Xg ithfl)}(W1 X thl) .

The S-module on the right hand side is contained in S 6,5_1(171(5/) -K;_1). Finally,
notice that %(IH(Y)) C I,—1(Y) and that (%La(ln(Y)) C I,(Y) because the map

%ﬁi is k[y]-linear. We conclude that

SV (I(Y) - Kyoy) € L (V) - Ky

as required. O

Theorem 4.1 above is sharp, as can be seen by taking R to be a power series ring
in m — n + 1 variables over a field, ¢ a matrix with linear entries, and n = ¢. In
thiscase I: m=m": m=m""! =1, {(¢).

We now turn to perfect ideals of height two. For this it will be convenient to
collect some general facts of a homological nature.

Proposition 4.3. Let R be a Noetherian local ring, M a finite R-module, N = R/.J
with J a perfect R-ideal of grade g, and write —* = Hompg(_, R), =" = Ext%(_, R).
(a) If M is perfect of grade g, then there is a natural isomorphism Hompg (N, M)
Homp (MY, NV) given by u s u".
(b) If M is perfect of grade g and 7w : MY —» NQgrM" is the natural projection,
then the map ©V is naturally identified with the inclusion map 0 :pp J —
M.
(c) Assume M has a resolution (Fo,pe) of length g by finite free R-modules.
If Ii(¢g) C J, then there are natural isomorphisms

N®rM'=N®rF; and Homp(M",N")=Hompg(F;,N").

Il

Proof. The additive contravariant functor —V

Homp (N, M) — Homg (M"Y, NY)

induces an R-linear map

sending u to u¥. The latter is an isomorphism since —¥V ~ id on the category of
perfect R-modules of grade g. This proves part (a).

We prove (b). Let p : R—» R/J be the natural projection and notice that = =
p®@r M. We show that (p@g M)V can be naturally identified with Hompg(p, M).
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Let a C ann(MY) be an ideal generated by an R-regular sequence of length g.
There are natural identifications of maps

(p@RMV)V = Ext%(p(X)RMV,R)
= Homg(p®r MY,R/a)
Hompg(p, Homg (M"Y, R/a))
Hompg(p, Ext% (MY, R))
= Homg(p, M)
Homg(p, M),

where the last equality uses the assumption that M is perfect of grade g. Finally
notice that

Homp(p, M) : Homg(R/J, M) — Homp (R, M)
can be identified with the inclusion map 0:p; J — M.

As for part (c), notice that M" = coker ¢}. Hence the containment I (pg) C J =
ann(N) implies that N @ MY = N ®@p Fy, which is the first isomorphism in part
(c). Now Hom-tensor adjointness gives the second isomorphism Hompg (M"Y, NV) =
Hompg(Fy,NY) because N = R/.J. O

Corollary 4.4. In addition to the assumptions of Proposition 4.3 assume that M
is perfect of grade g. Let (Fo,pe) and G4 be resolutions of M and N of length g by
finite free R-modules. Notice that F}[—g] and Gi[—g] are resolutions of MV and
NV by finite free R-modules.

(a) Given a linear map v : MY — NV, lift v to a morphism of complezes
Ve : F¥ — G, dualize to obtain U : Ge — Fo, and consider Hy(v}) :
N =R/J — M. One has

0:p J={Ho(@})(1+J)|v€Homr(MY,N)}.
(b) Assume that I (¢4) C J. Let
w: MY — NQpg Fy
be the composition of the epimorphism 7 in Proposition 4.3(b) with the first
isomorphism in Proposition 4.3(c) and lift w to a morphism of complezes
We : Fy — Glalg] @R Fy .
The mapping cone C(w}) is a free R-resolution of M/(0 :ps J).
Proof. From Propositions 4.3(a) and 2.1(a) we have isomorphisms
Homp (MY, NY) = Hompg(N, M) — 0:as J,

where the first map sends v to v¥ = Hy(v}) and the second map sends u to u(1+.J).
This proves part (a).
To show part (b), notice that
wy : Gyl—g] ®r Fy — F. ,

where G}[—g] ®r F,y and F, are acyclic complexes of finite free R-modules. More-
over, Ho(w}) = w". By Proposition 4.3(b) and the first isomorphism in Proposi-
tion 4.3(c), the map w" is injective with cokernel M /(0 :p; J). It follows that the
mapping cone C(w}) is a free R-resolution of M /(0 :ps J). O
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Theorem 4.5. Let (R,m) be a two-dimensional reqular local ring with regular
system of parameters x,y, and let I be an m-primary ideal minimally presented by
ann X (n — 1) matriz ¢ with entries in m*°.

(a) For1<i<n—1and1<a< s write the it" column ¢; of ¢ in the form
2= 4y and let Ay, be the determinant of the n x n matriz obtained
from ¢ by replacing ¢; with the two columns n and . One has

I'm’=T+(A,|1<i<n—-1,1<a<ys).

(b) The ideal I : m* is minimally presented by the [(n — 1)(s+ 1) + 1] x (n —
1)(s + 1) matriz

The n X (n — 1)(s + 1) matriz B is obtained from ¢ by replacing each
column ¢; with the s + 1 columns ¢4, ..., d;s defined by the equation ¢; =
Z;:o 25 Iyig;i. The (n—1)s x (n— 1)(s + 1) matriz x is the direct sum
of n — 1 copies of the s X (s + 1) matriz

—y x

Proof. We prove part (a). The R-module R/I has a minimal free R-resolution
(Fe,e) of length 2. After a choice of bases we may assume that s = ¢. As
I1(p2) € m*, Proposition 3.1 shows that

I:m®= Z I: (strl*a,ya).

1<a<s

We claim that I : (257179 y) =T+ (Aj |1 <i<n—1) forevery 1 <a <s.

For this we wish to apply Corollary 4.4(a) with M = R/I, J = (25179 y%), and
Ge = K, the Koszul complex of —y®, z5t1~% with its natural bases. The second
isomorphism of Proposition 4.3(c) gives Hompg (MY, NV) = Hompg(Fy,wp/s). Let
v € Hompg(F3,wg,) be the projection ; : F5 —» R = K3 onto the i'" component
followed by the epimorphism K3 —» wg,;. We lift v to a morphism of complexes
Vs : F§ — K with v_o = ;. The R-module Homg (M"Y, NV) = Homg(F5,wg/s)
is generated by the elements v as i varies in the range 1 < ¢ < n—1. Hence according
to Corollary 4.4(a) the ideal I : (z°t17% y%) is generated by I together with the
ideals I (v§). Thus it suffices to prove that each ideal I;(0f) is generated by Ajq,.

In the diagram
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0 > ©1 F Py =" 7
50 571 572:7”
* 8; * 8; *
0 K Ky K
we may choose U_1 = [ 1 | £ |* because 05 0_1 = [z°T17%|ya] - [ n | £ |* is the

it" row of ¢*, which equals 7; ¢§. Since v is surjective, the mapping cone C(,)
has homology only in degree —1. Splitting off a direct summand, dualizing, and

shifting by —1 yields the acyclic complex

¢ |-n —5]

0 —01 [ $1 |_1~)();]

0 — (F2/m(K2)) @ Ky Fo

i ® Ky

where ¢’ is obtained from ¢ by deleting the i*" column. Since I1(¢1) = I has height
2, the Hilbert-Burch Theorem now shows that I1(vg) = In([¢' | =1 | =€ ]) = R Ay,
as desired.

To prove part (b) we wish to apply Corollary 4.4(b) with M = R/I, J = m®,
and G, the resolution that, after a choice of bases, has differentials

o=z =27y ... ¥’ and 1))

|
|
8

Lift the natural epimorphism
w: MY — R/m® ®@pr Fy

to a morphism of complexes We : Fy — Go[2] ®p F5 so that w_o = id. In the

diagram
. e
0 Fg 1 Fl* P2 F2*
@o |w1 W_g=id
D2QF% 0L QFy
0— Go®F; — 2 Gi®F; —= Go®F;

we can choose w_; = B* by the definition of B. Notice that d; ® Fy = —x*. The
result now follows since C(w}) is a free R-resolution of R/(I :p m®) according to

Corollary 4.4(b). O

Remark 4.6. In the setting of Theorem 4.5 a minimal free R-resolution of R/(I : m®)
is
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0 — R-De+1) Y2 pr-n+n+ N g

where 105 = 1 and the £** entry of v is the signed ¢** maximal minor of v. If
¢ < n the ¢** maximal minor of v is the ¢! maximal minor of ¢; if £ > n + 1 write
l=n+(G—-1s+afor1<i<n-—1,1<a<s, and then the /** maximal minor

a—1 s
of ¥ is A4, where n := Zx“fl*jyjqﬁij and & := szijj*“qbij are used in the
7=0 Jj=a

definition of A,.

For the proof one uses Theorem 4.5(b), the Hilbert-Burch Theorem, and the
following elementary fact about determinants that can be shown by induction on r
and expansion along the last row:

If [ f) /g is a square matrix, where g has columns pg,...,u, and § =
—y oz

€ H _ - r—3,.9,,.
, then det [ 5 3 } =det | ¢ Zx Ty
-y x J=0

Acknowledgments. Part of this work was done at the Mathematical Sciences
Research Institute (MSRI) in Berkeley, where the authors spent time in connec-
tion with the 2012-13 thematic year on Commutative Algebra, supported by NSF
grant 0932078000. The authors would like to thank MSRI for its hospitality and
partial support. The authors would also like to thank David Eisenbud for helpful
discussions about the material of this paper.

REFERENCES

[1] B. Angéniol and M. Lejeune-Jalabert, Calcul différentiel et classes caractéristiques en
géométrie algébrique, Travaux en Cours 38, Hermann, Paris, 1989.
[2] L. Avramov, R.-O. Buchweitz, S. Iyengar, and C. Miller, Homology of perfect complexes,
Adv. Math. 223 (2010), 1731-1781.
[3] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathe-
matics 39, Cambridge University Press, Cambridge, 1998.
[4] L. Burch, On ideals of finite homological dimension in local rings, Math. Proc. Camb. Phil.
Soc. 74 (1968), 941-948.
[5] A. Corso, C. Huneke, C. Polini, and B. Ulrich, Distance in resolutions with applications to
integral dependence, Loewy length, and blowup algebras, in preparation.
[6] A. Corso, C. Huneke, and W.V. Vasconcelos, On the integral closure of ideals, manuscripta
math. 95 (1998), 331-347.
[7] A. Corso and C. Polini, Links of prime ideals and their Rees algebras, J. Algebra 178 (1995),
224-238.
[8] A. Corso and C. Polini, Reduction number of links of irreducible varieties, J. Pure Appl.
Algebra 121 (1997), 29-43.
[9] A. Corso, C. Polini, and W.V. Vasconcelos, Links of prime ideals, Math. Proc. Camb. Phil.
Soc. 115 (1994), 431-436.
[10] S. Goto, Integral closedness of complete intersection ideals, J. Algebra 108 (1987), 151-160.
[11] J. Herzog, Canonical Koszul cycles, in International Seminar on Algebra and its Applications
(Mexico City, 1991), Aportaciones Mat. Notas Investigacién 6, Soc. Mat. Mexicana, México,
1992, pp. 33-41.
[12] J. Herzog and C. Huneke, Ordinary and symbolic powers are Golod, Adv. Math. 246 (2013),
89-99.



ITERATED SOCLES AND INTEGRAL DEPENDENCE IN REGULAR RINGS 21

[13] L.T. Hoa, J. Stiickrad, and W. Vogel, Towards a structure theory for projective varieties of
degree = codimension+2, J. Pure Appl. Algebra 71 (1991), 203-231.

[14] M. Hochster and J. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection
of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058.

[15] A. Iarrobino, Tangent cone of a Gorenstein singularity, in Proceedings of the Conference on
Algebraic Geometry (Berlin, 1985), Teubner-Texte Math. 92, Teubner, Leipzig, 1986, pp.
163-176.

[16] A. Iarrobino, Associated graded algebra of a Gorenstein Artin algebra, Mem. Amer. Math.
Soc. 107 (1994), no. 514.

[17] A. Iarrobino and J. Emsalem, Some zero-dimensional generic singularities; finite algebras
having small tangent space, Compositio Math. 36 (1978), 145-188.

[18] E. Kunz, Kdhler Differentials, Advanced Lectures in Mathematics, Vieweg, Braunschweig,
1986.

[19] J. Lipman, Adjoints of ideals in regular local rings, Math. Res. Lett. 1 (1994), 739-755.

[20] C. Polini and B. Ulrich, Linkage and reduction numbers, Math. Ann. 310 (1998), 631-651.

[21] G. Scheja and U. Storch, Uber Spurfunktionen bei vollstindigen Durchschnitten, J. reine
angew. Math. 278 (1975), 174-190.

[22] 1. Swanson and C. Huneke, Integral Closure of Ideals, Rings, and Modules, London Mathe-
matical Society Lecture Notes Series 336, Cambridge University Press, Cambridge, 2006.

[23] J. Tate, The different and the discriminant. Appendix to: B. Mazur and L. Roberts, Local
Euler characteristics, Invent. Math. 9 (1970), 201-234.

[24] W.V. Vasconcelos, Integral Closure. Rees Algebras, Multiplicities, Algorithms, Springer
Monographs in Mathematics, Springer-Verlag, Berlin, 2005.

[25] H.-J. Wang, Links of symbolic powers of prime ideals, Math Z. 256 (2007), 749-756.

[26] K. Watanabe and K. Yoshida, A variant of Wang’s theorem, J. Algebra 369 (2012), 129-145.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40506
E-mail address: alberto.corso@uky.edu

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MELJI UNIVERSITY,
1-1-1 HIGASHI-MITA, TAMA-KU, KAWASAKI 214-8571, JAPAN
E-mail address: goto@math.meiji.ac.jp

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VA 22904
E-mail address: huneke@virginia.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556
E-mail address: cpolini@nd.edu

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907
E-mail address: ulrich@math.purdue.edu



