
A NOTE ON MATHER-JACOBIAN MULTIPLIER IDEALS

Abstract. Using Mather-Jacobian multiplier ideals, we prove a formula comparing the Grauert-
Riemenschneider canonical sheaf with the canonical sheaf of a variety over an algebraically
closed field of characteristic zero. We also study Mather-Jacobian multiplier ideals on alge-
braic curves, in which case Mather-Jacobian multiplier ideals can be defined over a ground
field of any characteristic. We show that the Mather-Jacobian multiplier ideals on curves
are essentially the integrally closed ideals. Finally by comparing the conductor ideal with
the Mather-Jacobian multiplier ideal of the structure sheaf, we give a criterion for when an
algebraic curve is locally a complete intersection.

1. Introduction

Recently, the theory of Mather-Jacobian multiplier ideals (MJ-multiplier for short) on arbi-
trary varieties over an algebraically closed field of characteristic zero has been developed by
Ein-Ishii-Mustata [EIM16] and Ein-Ishii [EI15] (see also de Fernex-Docampo [dFD14] for a
similar theory on normal varieties). This new notion generalizes the classical theory of mul-
tiplier ideals on nonsingular varieties (or normal Q-Gorenstein varieties) and has found some
interesting applications (for instance [Niu14]). Throughout this paper, the ground field k is
always assumed to be algebraically closed. By a variety we mean a reduced and irreducible
separated scheme of finite type over k.

We first prove the following result that compares the Grauert-Riemenschneider canonical
sheaf with the canonical sheaf of a variety by using MJ-multiplier ideals. This result partially
generalizes a formula established by de Fernex-Docampo in [dFD14, Theorem C] for normal
varieties.

Theorem 1.1. Let X be a variety over a field of characteristic zero. Let ωX be the canonical

sheaf, ωGRX the Grauert-Riemenschneider canonical sheaf, and Î (OX) the Mather-Jacobian
multiplier ideal. Then

Î (OX) · ωX ⊆ ωGRX .

The formula of de Fernex-Docampo is stronger than the one above if the variety is normal.
However, their formula is not known in general. We also note that when X is locally a complete

intersection, it is well-known to experts that Î (OX) · ωX = ωGRX (see Remark 2.6 for details.)
Next we turn to understand MJ-multiplier ideals on algebraic curves, which is the first case

one should investigate. Let X be an algebraic curve, i.e., X is a dimension one variety. We first
show that the definition of MJ-multiplier ideal can be extended to arbitrary characteristic, see
Proposition 2.4. By its definition, any MJ-multiplier ideal is integrally closed and contained

in Î (OX). We prove that this property actually characterizes MJ-multiplier ideals on curves.

Theorem 1.2. Let X be an algebraic curve over a field of any characteristic and a ⊆ OX be
an ideal. Then a is a Mather-Jacobian multiplier ideal if and only if a is integrally closed and

a ⊆ Î (OX).
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Note that our theorem is global in nature. The question whether an integrally closed ideal
is a multiplier ideal was initially raised by Lipman-Watanabe [LW03]. They proved that on a
nonsingular surface, locally a multiplier ideal is the same as an integrally closed ideal. This
problem was also studied in work of Favre-Jonsson [FJ05]. Later, it was generalized to log
terminal surfaces by Tucker [Tuc09]. Finally the question was completely solved for higher
dimensional nonsingular varieties in celebrated work of Lazarsfeld-Lee [LL07] . We wonder
whether the result of [LW03] and [FJ05] can be generalized to MJ-multiplier ideals on any
surface, see Conjecture 3.6.

On a variety X, there are three intrinsic ideals: the Jacobian ideal JacX , the MJ-multiplier

ideal Î (OX), and the conductor ideal CX . They satisfy the inclusion JacX ⊆ Î (OX) ⊆ CX ,
where JacX means the integral closure, and when X is a curve they all capture the singularities
of X. Our last theorem gives a criterion for a curve to be a local complete intersection using
MJ-multiplier ideals.

Theorem 1.3. Let X be an algebraic curve over a field of arbitrary characteristic. Let Î (OX)
be the Mather-Jacobian multiplier ideal and CX be the conductor ideal. Then X is a local

complete intersection if and only if Î (OX) = CX .

This theorem is not true for higher dimensional varieties, see Example 3.12. But it can be
established for codimension one points of any variety, see Remark 3.10. It would be interesting
to understand algebraic or geometric consequences of the equality between the conductor
ideal and the MJ-multiplier ideal of any variety. We give a partial result along these lines
in Proposition 3.13.

2. Mather-Jacobian Multiplier ideals

Throughout this section, we assume the ground field k is of characteristic zero. We start by
recalling the definition of MJ-multiplier ideals defined in [EIM16]. For more details, we refer
to the paper [EIM16].

Let X be a variety of dimension d and Ω1
X be the sheaf of differentials of X. We write

Ωd
X = ∧dΩ1

X . The morphism P(Ωd
X) → X is an isomorphism over the regular locus Xreg

of X. The closure of Xreg in P(Ωd
X) is the Nash blowup of X, and is denoted by X̂ with

reduced scheme structure. It comes equipped with the projection ν : X̂ → X. The line bundle
O
X̂

(1) := OP(Ωd
X)(1)|

X̂
is called the Mather canonical line bundle of X and sometimes we also

write K̂X for O
X̂

(1).

Definition 2.1. Let X be a variety over k of dimension d and f : Y → X be a resolution
of singularities factoring through the Nash blow-up of X. Then the image of the canonical
homomorphism

f∗(Ωd
X) −→ Ωd

Y

is an invertible sheaf of the form Jacf ·Ωd
Y . Here Jacf is the relative Jacobian ideal, which is

invertible and defines an effective divisor, called the Mather discrepancy divisor and denoted

by K̂Y/X .

Definition 2.2. Let X be a variety over k and a ⊆ OX a nonzero ideal on X. Given a log
resolution f : Y → X of JacX ·a, we denote by Z and JY/X the effective divisors on Y such
that a · OY = OY (−Z) and JacX ·OY = OY (−JY/X) (such a resolution automatically factors
through the Nash blow-up, see Remark 2.3 of [EIM16]). The Mather-Jacobian multiplier ideal
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of a of exponent t ∈ R≥0 is defined by

Î (X, at) := f∗OY (K̂Y/X − JY/X − btZc),

where b c means the round down of an R-divisor. Sometimes we simply write it as Î (at) and
call it MJ-multiplier ideal.

Remark 2.3. (1) It has been shown in [EIM16, Corrolary 2.14] that the sheaf Î (X, at) defined
above is an ideal of OX .

(2) If X is a curve, then we choose its normalization f : X ′ → X as a resolution of
singularities. In this case, there is no need to refer to the Nash blow-up.

(3) It is clear that any MJ-multiplier ideal is contained in the ideal Î (OX). It would be

interesting to understand more about this intrinsic ideal Î (OX).

For a variety X, let f : X ′ → X be a resolution of singularities (or simply take X ′ to be the
normalization of X). Then the conductor ideal CX is defined to be

CX := H omOX
(f∗OX′ ,OX) = ann(f∗OX′/OX).

We refer the reader to [ZS75, V.5] and [Kun13] for details of conductor ideals. The following
easy proposition shows that MJ-multiplier ideals are contained in the conductor ideal. See also
[EIM16, Corrolary 2.14].

Proposition 2.4. Let X be a variety over k and µ : X ′ → X be the normalization. Then

Î (OX) is an ideal of µ∗OX′. In particular, Î (OX) ⊆ CX .

Proof. Let f : Y → X be a log resolution of JacX . There exists a morphism f ′ : Y → X ′

such that f = µ ◦ f ′. Thus Î (OX) = f∗(OY (K̂Y/X − JY/X)) = µ∗(f
′
∗(K̂Y/X − JY/X)). Note

that f ′∗(K̂Y/X −JY/X) is a module over f ′∗OY = OX′ . Hence µ∗(f
′
∗(K̂Y/X −JY/X)) is a module

over µ∗OX′ . This means that Î (OX) is a µ∗OX′ module. But we know Î (OX) is contained
in OX ⊆ µ∗OX′ thus it is an ideal of µ∗OX′ . The rest of the result follows from the fact that
CX is maximal with respect to the property of being an ideal of µ∗OX′ contained in OX (cf.
[Kun13, Excersice 6, p.103]). �

Recall that for a variety X, if f : X ′ → X is a proper birational morphism with X ′

nonsingular, then the Grauert-Riemenschneider canonical sheaf ωGRX of X is defined as f∗ωX′ .
It is easy to check that ωGRX does not depend on the choice of the birational morphism f .
Notice that ωGRX ⊆ ωX . It has been discussed in [dFD14] that if X is normal, then one can
use a special ideal to compare ωX with ωGR (see Remark 2.6(2)). Here we show that MJ-
multiplier turns out to be a more natural option for such comparison on arbitrary varieties in
the following theorem.

Theorem 2.5. Let X be a variety over k. Let ωX be its canonical sheaf, ωGRX its Grauert-

Riemenschneider canonical sheaf, and Î (OX) its Mather-Jacobian multiplier ideal. Then one
has

Î (OX) · ωX ⊆ ωGRX .

Proof. The question is local, so we can assume that X is affine and embedded in an affine
space AN such that d := dimX and c := codimAN X. Assume that IX := (F1, F2, · · · , Fr).
We can take the generators F1, · · · , Fr general such that any c of them provide a general link
of X (for instance, if IX = (f1, · · · , fd) is generated by polynomials fi, then we can take for

1 ≤ i ≤ d, Fi =
∑d

j=1 ai,jfj where the ai,j are general elements in k. See [EM09, Section

9.2]). Specifically, let J ⊂ {1, 2, · · · , r} such that |J | = c. Then let IVJ be the ideal generated
3



by {Fi | i ∈ J}. Then the subscheme VJ defined by IVJ is a general link of X, which is a
complete intersection in AN . Denote qJ := (IVJ : IX) · OX and JacJ := JacVJ ·OX . Consider
the following morphisms

Ωd
X

cX−→ ωX
uJ−→ ωVJ |X

wJ−→ OX ,

where cX is the fundamental class, uJ is a natural inclusion, and wJ is induced by the localiza-
tion at the generic points of X so that it maps ωVj |X isomorphic to OX (for details see [EM09,
Proposition 9.1]). It has been proved in loc. cit. that

(1) the image of uJ is qJ ⊗ ωVJ |X and therefore if we set αJ := wJ ◦ uJ , we get an
isomorphism

αJ : ωX −→ qJ ;

(2) the image of uJ ◦ cX is JacJ ⊗ωVJ |X and under the isomorphism αJ above the image
of cX is JacJ .

Now consider J0 := {1, 2, · · · , c} and write V0 := VJ0 , Jac0 := JacJ0 , and q0 = qJ0 . From the
surjective morphism

Ωd
X −→ Jac0⊗ωV0 |X ,

we deduce that the Nash blowup satisfies X̂ = BlJac0 X and K̂X = Jac0 ·OX̂
⊗ ν∗ωV0 |X ,

where ν : X̂ → X is the projection (indeed, if one has a surjection Ωd
X → a ⊗ L where

a ⊆ OX is an ideal and L is an line bundle, then X̂ = BlaX by the definition of X̂, and

K̂X = a · O
X̂
⊗ ν∗L ). Consider a log resolution f : X ′ → X of JacX , Jac0 and q0 such that

JacX ·OX′ = OX′(−JX/X′), Jac0 ·OX′ = OX′(−Z0), and q0 · OX′ = OX′(−Q0). This f factors

through X̂ and therefore we have

K̂X′/X = ωX′ ⊗ OX′(Z0)⊗ f∗ω−1
V0
|X ,

which implies that

(2.5.1) ωGRX = f∗OX′(K̂X′/X − Z0)⊗ ωV0 |X .

Note that f∗OX′(K̂X′/X −Z0) is an ideal sheaf because it is contained in Î (OX) since Jac0 ⊆
JacX . On the other hand, we have the equality ωX = q0 ⊗ ωV0 |X . Hence we deduce that

ωGRX : ωX = (f∗OX′(K̂X′/X − Z0)⊗ ωV0 |X) : (q0 ⊗ ωV0 |X) = f∗OX′(K̂X′/X − Z0) : q0,

since ωV0 |X is invertible.

In order to prove the theorem we need to show Î (OX) · q0 ⊆ f∗OX′(K̂X′/X −Z0). But note

that Î (OX) · q0 ⊆ Î (q0) = f∗OX′(K̂X′/X − JX/X′ −Q0). Thus it suffices to show

(2.5.2) JacX ·q0 ⊆ Jac0 .

To this end, consider for any J ⊂ {1, 2, · · · , r} with |J | = c the isomorphism

αJ ◦ α−1
0 : q0 −→ qJ .

Since the ideals q0 and qJ contain some non zero-divisors of OX , the isomorphism αJ ◦ α−1
0 is

given by αJ ◦ α−1
0 (r) = bJ

aJ
· r for any r ∈ q0, where bJ and aJ are some non zero-divisors in

OX . Thus we have qJ = bJ
aJ
·q0 and JacJ = bJ

aJ
·Jac0, as indicated in the following commutative

diagram

qJ αJ(Im cX) = JacJ? _oo

∧dΩ1
X

cX //ωX

αJ
55

α0 ))q0

αJ◦α−1
0

OO

α0(Im cX) = Jac0 .? _oo
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But notice that

JacX =
∑
J

JacJ ,

and therefore

JacX ·q0 =
∑
J

JacJ ·q0 =
∑
J

bJ
aJ
· Jac0 ·q0 =

∑
J

bJ
aJ
· q0 · Jac0 =

∑
J

qJ · Jac0 ⊆ Jac0 .

This proves the inclusion (2.5.2) and the theorem then follows. �

Remark 2.6. (1) When X is locally a complete intersection, the image of the canonical

morphism Ωd
X → ωX is JacX ⊗ωX . So X̂ = BlJacX X and using a log resolution f : X ′ → X

of JacX , one obtains as in (2.5.1) that

ωGRX = f∗OX′(K̂X′/X − JX/X′)⊗ ωX = Î (OX) · ωX .

This equality was also mentioned explicitly or implicitly in [EIM16] and [dFD14].
(2) In their work [dFD14], when X is normal, de Fernex-Docampo proved that

I �(d−1
X ) · ωX ⊆ ωGRX ,

where the ideal I �(d−1
X ) is a special multiplier ideal defined on normal varieties. It is not clear

to us right now that this notion can be generalized to any variety. It would be interesting if a
similar result can be proved for arbitrary varieties.

Example 2.7. It is easy to see that in general we do not have the equality Î (OX) ·ωX = ωGRX
for any variety. Indeed, we can take X to be a variety with rational singularities that are not

all MJ-canonical. Then ωX = ωGRX but Î (OX) is not trivial.

3. Mather-Jacobian multiplier ideals on curves

In this section, we study MJ-multiplier ideals on algebraic curves. We allow the ground field k
to have any characteristic. We shall first prove that the definition of MJ-multiplier ideals still
works for such a ground field k.

We start by briefly recalling some facts about general Noether normalizations. Assume that
X = SpecR is an affine variety of dimension d and R = k[x1, . . . , xn] is a finitely generated
k-algebra generated by x1, . . . , xn. We can choose x1, . . . , xn general (for example, we can take
the forms ai1x1+. . .+ainxn, where the aij ’s are general elements in the ground field k) such that
any d of them, say xj1 , . . . , xjd , give a Noether normalization k[xj1 , · · · , xjd ] ⊆ k[x1, · · · , xn]
and the quotient field Q(R) is separable over k(xj1 , · · · , xjd). The following proposition is
well-known to experts and can be easily proved by a calculation.

Proposition 3.1. Let X = SpecR be an affine variety of dimension d over k, where R =
k[x1, · · · , xn], and let X ′ be the normalization of X. For any J ⊂ {1, · · · , n} with |J | = d,
write xJ = {xj | j ∈ J} and AJ := Spec k[xJ ] and consider the following diagram

X ′ //

!!

X

~~
AJ
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Then we can take the generators x1, . . . , xn to be general such that X is generically étale and
finite over each AJ and we have

(3.1.1) JacX =
∑
J

Jac(X/AJ) and Jac(X ′/X) =
∑
J

Jac(X ′/AJ),

where Jac(X ′/X), Jac(X/AJ), and Jac(X ′/AJ) are relative Jacobian ideals in the diagram.

Now let X be an algebraic curve over k and let f : X ′ → X be the normalization of X.
Let JacX be the Jacobian ideal of X and write JacX ·OX′ = OX′(−JX/X′) for an effective

divisor JX/X′ on X ′. Let Jac(X ′/X) be the relative Jacobian ideal of f and K̂X′/X be the

effective divisor on X ′ with Jac(X ′/X) = OX′(−K̂X′/X). For an ideal a of OX we write
a · OX′ = OX′(−Z) where Z is an effective divisor on X ′. Then formally we can form an
Mather-Jacobian multiplier ideal of a of exponent t ∈ R≥0 by

Î (X, at) := f∗OX′(K̂X′/X − JX/X′ − btZc).

The crucial point is that we need to show this fractional ideal sheaf Î (X, at) is indeed inside

OX if k has any characteristic. As any such fraction ideal is contained in Î (OX), it suffices to

show that Î (OX) is an ideal of OX . When k has characteristic zero, this is proved in [EIM16].
For arbitrary characteristic, we prove it in the following proposition by using a result from
Lipman and Sathaye.

Proposition 3.2. In the setting above, Î (OX) is contained in the conductor ideal CX of X.

Proof. The question is local, so we assume that X = SpecR is affine, where R is a k-algebra
generated by x1, . . . , xn. Write S for the normalization of R in L and X ′ = SpecS is the
normalization of X. We choose x1, . . . , xn as in Proposition 3.1. It suffices to show that
(S : Jac(X ′/X)) · JacX is an R-ideal. To this end, for a Noether normalization AJ as in
Proposition 3.1, consider ring extensions AJ ⊆ R ⊆ L, where L is the quotient field of R.
Then [LS81, Theorem 2] says that

(S :L Jac(X ′/AJ)) · Jac(X/AJ) ⊆ CX .

Note that the notations {AJ , R, S, L, Jac(X/AJ), Jac(X ′/AJ)} used here correspond to the no-
tations {R,S, S̄, L, J, J̄} used in loc. cit. Now by (3.1.1) and by the fact that S :L Jac(X ′/X) ⊆
S :L Jac(X ′/AJ), we see that

(S :L Jac(X ′/X)) · JacX ⊆ CX .

Finally since the conductor ideal CX is inside R, the result follows. �

Remark 3.3. When char k = 0, it was shown in [EIM16] that Î (OX) ⊆ OX by reducing to
the usual multiplier ideal on a nonsingular variety. Using this we proved Proposition 2.4. The
method requires the existence of resolution of singularities.

If char k > 0, although we have proved the above proposition for curves, it is not clear how to
extend the theory of MJ-multiplier ideals to varieties of any dimension. The above proposition
may provide some evidence in this direction.

Theorem 3.4. Let X be an algebraic curve over k and a ⊆ OX be an ideal. Then a is a

MJ-multiplier ideal if and only if a is integrally closed and a ⊆ Î (OX).

Proof. The necessity of the conditions is clear by the definition of Mather-Jacobian multiplier

ideals. So we prove the sufficiency by assuming that a is integrally closed and a ⊆ Î (OX).
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Let f : X ′ → X be the normalization of X. We write a ·OX′ = OX′(−E) and decompose E
as

E =
t∑
i=1

aiEi,

where Ei are distinct prime divisors and ai > 0. Let K̂X′/X be the Mather discrepancy divisor.

Let JacX be the Jacobian ideal of X, and write JacX ·OX′ = OX′(−JX/X′). Since a ⊆ Î (OX)
we have an inequality

(3.4.1) −E ≤ K̂X′/X − JX/X′ .
Thus there exists an effective divisor B such that

−E = K̂X′/X − JX/X′ −B.
We construct an effective divisor

B′ = nB + E

by fixing a number n� 0 so that b 1
nB
′c = B. As OX′(−B′) ⊆ OX′(−E), we see that

f∗OX′(−B′) ⊆ f∗OX′(−E) = a ⊆ OX ,

where a = f∗OX′(−E) because a is integrally closed. Thus we set b := f∗OX′(−B′), which is
an ideal. Now since f is a finite morphism, we then get the surjection

(3.4.2) f∗f∗OX′(−B′) −→ OX′(−B′) −→ 0.

(Indeed, the question is local so we can assume X ′ = SpecB, X = SpecA and OX′(−B′) = M̃
for a B-module M . Then the surjectivity of the map in (3.4.2) follows from the fact that the
natural map M ⊗A B → M is surjective.) Thus we see that b · OX′ = OX′(−B′). Finally, we

check using the definition that a = Î (b
1
n ). �

Remark 3.5. (1) Note that the theorem above is global, i.e., X need not to be affine.
(2) Theorem 3.4 is certainly not true for higher dimensional varieties by the result of

Lazarsfeld-Lee [LL07]. However, for surfaces, in light of the work of Lipman-Watanabe [LW03],
Favre-Jonsson [FJ05], and Tucker [Tuc09], we may expect the following conjecture.

Conjecture 3.6. Let X be an algebraic surface over k and a ⊆ OX be an ideal. Let p ∈ X
be a closed point. Then ap is a MJ-multiplier ideal at p if and only if ap is integrally closed

and ap ⊆ Î (OX)p.

Next we prove Theorem 1.3. We first state two easy lemmas used in the proof.

Lemma 3.7. Let X be a variety over k and f : X ′ → X be its normalization. Let CX be the
conductor ideal of X. Then one has CX · ωX ⊆ f∗ωX′. If furthermore X is Gorenstein then
one has CX = f∗ωX′ ⊗ ω−1

X .

Proof. Recall that CX = H om(f∗OX′ ,OX). Then we have the following diagram

H om(f∗OX′ , ωX) = f∗ωX′

��
CX ⊗ ωX //

55

ωX .

This implies that CX · ωX ⊆ f∗ωX′ . If X is Gorenstein, then by definition one has that
CX = f∗ωX′ ⊗ ω−1

X . �
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Lemma 3.8. Let (R,m) be a Cohen-Macaulay local ring of dimension one with a canonical
module ωR. Let M be a finite torsion-free R-module and N be a submodule of M such that the
length λ(M/N) is finite. Then one has

λ(M/N) = λ(HomR(N,ωR)/HomR(M,ωR)).

Proof. Apply HomR( , ωR) to the exact sequence 0 → N → M → M/N → 0. From the
assumption that M/N has finite length and M is torsion-free, we deduce an exact sequence

0 −→ HomR(M,ωR) −→ HomR(N,ωR) −→ Ext1
R(M/N,ωR) −→ 0.

Now by local duality and Matlis duality, we have

λ(M/N) = λ(Ext1
R(M/N,ωR)),

and the result follows. �

Theorem 3.9. Let X be an algebraic curve over k. Let Î (OX) be the MJ-multiplier ideal and

CX be the conductor ideal. Then X is a local complete intersection if and only if Î (OX) = CX .

Proof. Let f : X ′ → X be the normalization of X. If X is a local complete intersection, the
fundamental class Ω1

X → ωX has image JacX ⊗ ωX , where JacX is the Jacobian ideal of X.

We deduce that ωX′ = OX′(K̂X′/X − JX/X′)⊗ f∗ωX , where JacX ·OX′ = OX′(−JX/X′) for an

effective divisor JX/X′ on X ′. The projection formula gives that f∗ωX′ = Î (OX)⊗ ωX . From

Lemma 3.7, we conclude Î (OX) = CX .

Next we prove the sufficient part of the theorem assuming that Î (OX) = CX . The question

is local, so we can assume that X is an affine curve. Since f is finite the condition Î (OX) = CX
is the same as

(3.9.1) JacX ·OX′ = CX · Jac(X ′/X),

where Jac(X ′/X) is the relative Jacobian of f . Let p ∈ X be a closed point and R := Op be
the local ring at p. Consider the following fiber product

X ′p −−−−→ X ′y yf
SpecR −−−−→ X

where X ′p := SpecR ×X X ′, and write X ′p = SpecS. Note that S is a regular semilocal
noetherian ring and is a finitely generated R-module. Furthermore since S is locally a principal
ideal domain, it is then a principal ideal domain, i.e., any ideal of S is generated by an element
of S.

Now we shall take a Noether normalization µ : X → A = Spec k[y] for some y in OX . Write
Jac(X/A) and Jac(X ′/A) for the relative Jacobian ideals. We make the following crucial claim
in our proof.

Claim 3.9.2. We can choose y general so that

(1) Jac(X ′/X) · S = Jac(X ′/A) · S;
(2) (JacX) · S = Jac(X/A) · S.

Proof of claim. We can assume R = k[x1, . . . , xn]. Consider the natural exact sequence

S ⊗R Ω1
R/k

u−→ Ω1
S/k −→ Ω1

S/R −→ 0.
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The image of u is generated by 1 ⊗ dx1, . . . , 1 ⊗ dxn as S-module. Because S is regular and
semilocal, we see that Ω1

S/k is isomorphic to S. For the same reason the image of u, as an

S-submodule, can be generated by one element of the form 1⊗dy, where y = a1x1 + . . .+anxn
and a1, . . . , an are general elements of the infinite field k. Thus we take this y to produce the
Noether normalization A = Spec k[y] with the morphism µ : X → A. Write q := µ(p) and
A := k[y]q. Then in the sequence

S ⊗A Ω1
A/k

uA−→ Ω1
S/k −→ Ω1

S/A −→ 0,

the image of uA is S · (1⊗ dy). This shows that Ω1
S/R = Ω1

S/A and then statement (1) follows.

Since the image of u is a free S-module generated by 1⊗ dy, we obtain

S ⊗R Ω1
R/k = S · (1⊗ dy)⊕ T,

where T is the torsion part. We can check that T ∼= S⊗R Ω1
R/A. Also from the splitting above

we see that Fitt1(S ⊗R Ω1
R/k) = Fitt0(T ) and then statement (2) follows. Thus Claim 3.9.2 is

proved.

Having Claim 3.9.2 in hand, we see that on X ′p, the condition (3.9.1) becomes

(3.9.3) Jac(X/A)p · S = CX,p · (Jac(X ′/A) · S).

Here we shall use the notion of Dedekind complementary modules. We briefly recall the
definition here and the details can be found in [Kun08, Definition 8.4]. Write L = Q(R) for
the the quotient field of X. The quotient field of A is k(y) and L is a vector space over k(y).
In addition, one has

Homk(y)(L, k(y)) ∼= L · trL/k(y)

is generated by the trace map trL/k(y) from L to k(y). So the image of the natural map

Homk[y](R, k[y]) −→ Homk(y)(L, k(y))

can be written as C(X/A) · trL/k(y) for a R-ideal C(X/A) in L, which is called the Dedekind
complementary modules of X/A.

Let C(X/A) and C(X ′/A) be the Dedekind complementary modules of X/A and X ′/A.
They are the canonical modules of X/A and X ′/A respectively. We have inclusions R ⊆ S ⊆
C(X ′/A)p ⊆ C(X/A)p. On the other hand, we have inclusions

(3.9.4) Jac(X/A)p ⊆ R :L C(X/A)p ⊆ R :L C(X ′/A)p.

Since S is a principal ideal domain, Jac(X ′/A) ·S = S ·y for a non zero-divisor y ∈ S. Because
X ′ is a nonsingular curve, we have C(X ′/A) = OX′ :L Jac(X ′/A) [Ber64, Satz 2] and therefore
we have C(X ′/A)p = S :L (Jac(X ′/A) · S) = S · y−1. Thus R :L C(X ′/A)p = R :L (S · y−1) =
(R :L S)y = CX,p ·y. But CX,p is also an S-ideal so CX,p ·y = CX,p ·(S ·y) = CX,p ·(Jac(X ′/A)·S).
Thus we deduce that

R :L C(X ′/A)p = CX,p · (Jac(X ′/A) · S),

and therefore (3.9.3) is equivalent to

(3.9.5) R :L C(X ′/A)p = Jac(X/A)p · S.
Again, since S is a principal ideal domain, we have Jac(X/A)p · S = S · δ, where δ ∈

Jac(X/A)p. We show that this δ generates Jac(X/A)p as an R-ideal. To this end, consider the
inclusions of (3.9.4),

R · δ ⊆ Jac(X/A)p ⊆ R :L C(X/A)p ⊆ R :L C(X ′/A)p.
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By equality (3.9.5), we have R :L C(X ′/A)p = Jac(X/A)p · S = S · δ. Thus we obtain

R · δ ⊆ Jac(X/A)p ⊆ R :L C(X/A)p ⊆ R :L C(X ′/A)p = S · δ.
Granting the inequality in Claim 3.9.6 for the time being, we immediately getR·δ = Jac(X/A)p.
This means that Jac(X/A) is principal at p.

Now by using [Lip69, Lemma 1], we see that the projective dimension pdR(Ω1
X/A)p ≤ 1 since

Jac(X/A) is principal at p. Also notice that we have a short exact sequence

0 −→ µ∗Ω1
A/k −→ Ω1

X/k −→ Ω1
X/A −→ 0,

where Ω1
A/k is locally free. Then we obtain that pdR(Ω1

X/k)p ≤ 1 and therefore pdOX
Ω1
X/k ≤ 1,

which implies that X is locally a complete intersection by the well-known result of [Vas68] or
[Fer67].

Finally, we need to prove the following claim to finish our proof.

Claim 3.9.6. Use λ to denote the length of modules. Then one has

λ(
R : C(X ′/A)p
R : C(X/A)p

) ≥ λ(
C(X/A)p
C(X ′/A)p

) = λ(
S

R
)

Proof. First note that

HomR(R,C(X/A)p)

HomR(S,C(X/A)p)
∼=

C(X/A)p :L R

C(X/A)p :L S
=

C(X/A)p
C(X ′/A)p

.

Now the asserted equality of lengths in the claim follows from Lemma 3.8 since C(X/A)p ∼= ωR.
To show the inequality, we note that there exits a canonical module K of R such that

R ⊆ K ⊆ S. Indeed, we can first choose a canonical ideal ω of R, then there is an element
t ∈ ω such that St = ω ·S since S is a principal ideal domain and k is infinite. Then we simply
take K := t−1ω. Also note that such K satisfies the condition KS = S.

Now by the choice of K, we have C(X/A)p ⊆ KC(X/A)p and C(X ′/A)p = KC(X ′/A)p,
which implies that

λ(
C(X/A)p
C(X ′/A)p

) ≤ λ(
KC(X/A)p
KC(X ′/A)p

).

On the other hand, we have

K :L KC(X ′/A)p = (K :L K) :L C(X ′/A)p = R :L C(X ′/A)p

since K :L K = R. Similarly, K :L KC(X/A)p = R :L C(X/A)p. Thus by Lemma 3.8 we have

λ(
KC(X/A)p
KC(X ′/A)p

) = λ(
HomR(KC(X ′/A)p,K)

HomR(KC(X/A)p,K)
) = λ(

R :L C(X ′/A)p
R :L C(X/A)p

),

which proves the asserted inequality.

�

Remark 3.10. The same proof shows that Theorem 3.9 holds for codimension one points on
any variety. Let X be a variety of any dimension and let p ∈ X be a codimension one point,

then X is a local complete intersection at p if and only if Î (OX)p = CX,p.

Example 3.11. We adopt this example from [EIM16] and [Eis95, Excercise 11.16]. Consider
X = Spec k[x2, x3]. It is a curve with a cusp at the origin. One can calculate that the

MJ-multiplier ideal Î (OX) = (x2) ⊆ k[x2, x3] and the conductor ideal CX = (x2). Thus

Î (OX) = CX .
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Example 3.12. (1) Consider X to be the cone over the Segre embedding P1 × P1 ⊂ P3 over

a field of characteristic zero. Then X is MJ-canonical so that Î (OX) = OX = CX . But X is
not a local complete intersection. For more details, we refer to [EI15, Example 3.13].

(2) Consider X to be the cone over a nonsingular hypersurface of degree d ≥ 3 in Pd−1 over
C. Then X is a normal locally complete intersection. Moreover, X is MJ-log canonical but

not MJ-canonical. Thus Î (OX) 6= OX while CX = OX . See [EI15, Example 3.12] for more
details.

To finish, we discuss some cases of higher dimensional varieties where the MJ-multiplier
ideal and the conductor ideal coincide.

Proposition 3.13. Let X be a Gorenstein variety over a field of characteristic zero, Î (OX)
be the MJ-multiplier ideal, and CX be the conductor ideal. Let X ′ be the normalization of

X. Assume that Î (OX) = CX . Then one has ωX′ = ωGRX′ , where ωGRX′ is the Grauert-
Riemenschneider canonical sheaf of X ′.

Proof. Let f : X ′ → X be the normalization morphism from X ′ to X. By Lemma 3.7, one has

CX = f∗ωX′ ⊗ ω−1
X .

On the other hand, by Theorem 2.5, we have Î (OX) ⊆ ωGRX ⊗ ω−1
X . Thus the assumption

Î (OX) = CX implies that f∗ωX′ ⊆ ωGRX . On the other hand, ωGRX = f∗ω
GR
X′ ⊆ f∗ωX′ . So we

have f∗ω
GR
X′ = f∗ωX′ . Since f is affine and finite, we deduce that ωGRX′ = ωX′ . �

Corollary 3.14. Assume that X is a Gorenstein surface over a field of characteristic zero

such that Î (OX) = CX . Then the normalization of X has rational singularities.

Proof. Let X ′ be the normalization of X. Then by the proposition above, ωX′ = ωGRX′ . But X ′

is Cohen-Macaulay, thus X ′ has rational singularities. �
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