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Abstract
We prove that two arbitrary ideals I ⊂ J in an equidimensional and universally
catenary Noetherian local ring have the same integral closure if and only if they have
the samemultiplicity sequence.We also obtain a Principle of Specialization of Integral
Dependence, which gives a condition for integral dependence in terms of the constancy
of the multiplicity sequence in families.
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1 Introduction

The aim of this paper is to prove a numerical criterion for integral dependence of
arbitrary ideals, which is an important topic in commutative algebra and singularity
theory.

The first numerical criterion for integral dependence was proved by Rees in 1961
[23]: let I ⊂ J be twom-primary ideals in an equidimensional and universally catenary
Noetherian local ring (R,m). Then I and J have the same integral closure if and only
if they have the same Hilbert–Samuel multiplicity. This multiplicity theorem plays an
important role in Teissier’s work on the equisingularity of families of hypersurfaces
with isolated singularities, as it is used in the proof of his principle of specialization of
integral dependence (PSID) [27,28]. For hypersurfaceswith non-isolated singularities,
one needs a similar numerical criterion for integral dependence of non-m-primary
ideals.

In 1969, Böger [6] extended Rees’ multiplicity theorem to the case of equimultiple
ideals.We refer to a surveyofLipman for the geometric significance of equimultiplicity
[14]. Subsequently, there were further generalizations that still maintain remnants of
the m-primary assumption, see for instance [11,18,22,24]. For a long time, it was not
clear how to extend Rees’ multiplicity theorem to arbitrary ideals. Since the Hilbert–
Samuel multiplicity is no longer defined for non-m-primary ideals, the need arose to
use other notions ofmultiplicities that can be used to check for integral dependence. As
it turns out, there are several choices, each with its own advantages and disadvantages.

One possibility is the j-multiplicity, which was defined by Achilles and Manaresi
[2] as themultiplicity of them-torsion of the associated graded ring of an ideal.Another
option is the ε-multiplicity, which was introduced by Ulrich and Validashti [31] (see
also [13]) to control the asymptotic behavior of the m-torsion modulo the powers of
an ideal. In 2001, Flenner and Manaresi [8] proved that if I ⊂ J are arbitrary ideals
in an equidimensional and universally catenary Noetherian local ring, then I and J
have the same integral closure if and only if they have the same j-multiplicity at
every prime ideal or, equivalently, at every prime ideal where I has maximal analytic
spread. An analogous statement using the ε-multiplicity was shown in 2010 by Katz
and Validashti [13]. Both criteria require localization, at all prime ideals or at a finite
set of prime ideals that may be difficult to determine.

On the other hand, the j-multiplicity of an ideal I appears as one of the numbers
in the multiplicity sequence, which consists of the normalized leading coefficients of
the bivariate Hilbert polynomial of a bi-graded ring associated to I andm (see Sect. 2
for the definition). This notion was introduced by Achilles and Manaresi [3] and has
its origin in the intersection numbers of the Stückrad–Vogel algorithm in intersection
theory [9]. It follows from the work of Achilles and Manaresi that the multiplicity
sequence encodes information about the j-multiplicities at the prime ideals where I
has maximal analytic spread. Ciuperca [7, 2.7] showed that if the ideals I ⊂ J have
the same integral closure, then they have the same multiplicity sequence. It has since
been conjectured that the converse is also true like in Rees’ multiplicity theorem (see
e.g. [29, 11.6]):

123



Multiplicity sequence and integral dependence 953

Conjecture 1.1 Let I ⊂ J be arbitrary ideals in an equidimensional and universally
catenary Noetherian local ring. The ideals I and J have the same integral closure if
and only if they have the same multiplicity sequence.

This conjecture was inspired by the work of Gaffney and Gassler on hypersurface
singularities in 1999 [12]. For every reduced closed analytic subspace (X , 0) ⊂ (Cn, 0)
of pure dimension and every ideal I ⊂ OX ,0, they defined a set of invariants called
Segre numbers, which arise from the intersection of the exceptional divisor on the
blowup of I with generic hyperplanes. If I is the Jacobian ideal of a hypersurface
singularity, the Segre numbers are just the Lê numbers introduced by Massey in order
to study equisingularity conditions [15,16]. Later, Achilles and Rams [4] showed
that the Segre numbers are a special case of the multiplicity sequence. Inspired by
Teissier’s work, Gaffney and Gassler [12] proved a principle of specialization of inte-
gral dependence (PSID) based on Segre numbers. The PSID says, essentially, that two
ideal sheaves I ⊂ J defined on the total space of a family have the same integral
closure if they do so on the generic fiber and if suitable numerical invariants of I
are constant across the fibers of the family. As a consequence, two ideals I ⊂ J of
OX ,0 have the same integral closure if and only if they have the same Segre num-
bers. Therefore, Conjecture 1.1 has an affirmative answer in the analytic case. It has
been a great challenge to extend the results of Gaffney and Gassler to arbitrary local
rings.

In this paper we prove that two arbitrary ideals I ⊂ J in an equidimensional
and universally catenary Noetherian local ring have the same integral closure if and
only if they have the same multiplicity sequence, thereby solving Conjecture 1.1
in full generality. The basic idea is to test integral dependence locally at the prime
ideals where the ideal I has maximal analytic spread. We first prove a key technical
result that characterizes parameters that belong to none of these prime ideals in terms
of the multiplicity sequence. From this we deduce both the affirmative answer to
Conjecture 1.1 and the PSID based on the multiplicity sequence. The multiplicity
sequence, as opposed to the j-multiplicity or the ε-multiplicity, avoids the need to
consider localizations and, most notably, it is easily computable like the j-multiplicity,
using the intersection algorithm, and it behaves well in families like the ε-multiplicity,
as it satisfies a PSID.

We could not deduce the aforementioned criterion of Flenner and Manaresi from
our results. On the other hand, we can strengthen their criterion by showing that
two arbitrary ideals I ⊂ J in an equidimensional and universally catenary Noethe-
rian local ring have the same integral closure if and only if they have the same
reduced multiplicity sequence (see Sect. 5 for the definition). The reduced multi-
plicity sequence accounts for the contribution of the local j-multiplicities in the
original multiplicity sequence. In Stückrad’s and Vogel’s approach to intersection
theory, the reduced multiplicity sequence gives the degree of the part of the inter-
section cycle that is supported at the rational components of a fixed dimension;
these components are the distinguished varieties in Fulton’s intersection theory
[32].
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2 Preliminaries

In this section we recall some definitions and establish basic properties, mainly of the
multiplicity sequence, that will be used throughout.

General elements are instrumental in the study of multiplicities. To review the
definition, let R be a Noetherian local ring with an infinite residue field k and let I be
an ideal of R generated by a1, . . . , an . We say that x1, . . . , xs are general elements
of I , if xi = ∑n

j=1 λi j a j for λi j ∈ R and the image of (λi j ) ∈ Rsn in ksn belongs to
a given dense open subset of ksn .

Now let R be a Noetherian ring and I an ideal. The Rees ring of I is defined as
the standard graded subalgebra R(I ) := R[I t] ∼= ⊕v≥0 I v of the polynomial ring
R[t], the associated graded ring is GI (R) := R(I ) ⊗R R/I ∼= ⊕v≥0 I v/I v+1, and,
if (R,m, k) is local, the special fiber ring is F(I ) := R(I ) ⊗R k ∼= ⊕v≥0 I v/mI v .

Let J be an ideal containing I . One says that J is integral over I , or I is a reduction
of J , if the inclusion R(I ) ⊂ R(J ) is an integral extension of rings, equivalently,
if Jn+1 = I J n for n � 0, or yet equivalently, if every element x ∈ J satisfies an
equation of the form

xn + a1x
n−1 + · · · + an−1x + an = 0

with ai ∈ I i for 1 ≤ i ≤ n. Of particular importance for us is the fact, which is
obvious from the second characterization of integral dependence, that if I is zero-
dimensional and a reduction of J , then the equality of Hilbert–Samuel multiplicities
e(I , R) = e(J , R) obtains.

If (R,m, k) is a Noetherian local ring of dimension d, then the analytic spread of an
ideal I is defined as �(I ) := dim F(I ). The analytic spread of a proper ideal satisfies
the inequality ht I ≤ �(I ) ≤ d, in particular, �(I ) = d if I is m-primary. Moreover,
�(I ) = 0 if and only if I is nilpotent. Every ideal I has aminimal reduction, a reduction
minimal with respect to inclusion. If k is infinite, then all minimal reductions of I have
the same minimal number of generators, namely �(I ); this follows from the fact that
a sequence of elements in I minimally generates a minimal reduction of I if and only
if its image in I/mI forms a system of parameters of F(I ), a ring of dimension �(I ).
Thus one also sees that �(I ) general elements of I generate a minimal reduction of
I and, in particular, that d general elements of I generate a reduction. The notion of
minimal reduction and its relationship to multiplicities as well as analytic spread is
due to Northcott and Rees; we refer to [20] or [26] for more details.

Again, let (R,m, k) be a Noetherian local ring of dimension d and I an ideal.
Consider the doubly associated graded ring

G := Gm(GI (R)) =
⊕

u≥0

muGI (R)/mu+1GI (R).

This is a Noetherian standard bigraded k-algebra with bigraded components

Guv = mu I v + I v+1

mu+1 I v + I v+1 .
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Let

h(r , s) =
r∑

u=0

s∑

v=0

λ(Guv),

where λ(·) denotes length. It is well-known that for r and s sufficiently large, h(r , s)
is a polynomial function of degree at most d (equal d if I 
= R) of the form

d∑

i=0

ci (G)

(d − i)! i ! r
d−i si + terms of lower degree,

where ci (G) are nonnegative integers.
The multiplicity sequence of the ideal I is defined by Achilles and Manaresi [3] as

the sequence

ci (I ) = ci (I , R) := ci (G) for 0 ≤ i ≤ d .

We set ci (I ) := 0 for i < 0 and i > d. The reader should be warned that our definition
is slightly different from the one of Achilles and Manaresi in the sense that we index
the sequence using codimension rather than dimension.

From [3, 2.3(i)] or Proposition 2.1 below we know that

ci (I ) = 0 if i < d − dim R/I or i > �(I ).

If I is an m-primary ideal, then ci (I ) = 0 for i < d and cd(I ) = e(I , R), the
Hilbert–Samuel multiplicity of I [3, 2.4(i)].

For c0(I ) one has the formula

c0(I ) =
∑

p∈V (I ), dim R/p=d

λ
(
Rp

) · e(R/p), (1)

see [3, 2.3(iii)] or Proposition 2.1. For i ≥ 1 one can compute ci (I ) using general ele-
ments. The next proposition gives the relevant formula, which was proved by Achilles
and Manaresi [3, 4.1]. This formula has its origin in the Stückrad–Vogel algorithm in
intersection theory [9].

Proposition 2.1 (Length formula for Segre numbers) Let R be a Noetherian local ring
of dimension d with infinite residue field and I an ideal. If i ≥ 0 and x1, . . . , xi are
general elements of I , then

ci (I ) =
∑

p∈V (I ), dim R/p=d−i
p⊃(x1,..., xi−1): I∞

λ

(
Rp

(x1, . . . , xi−1)Rp : I∞Rp + xi Rp

)

· e(R/p),

where we use the convention that (x1, . . . , xi−1) : I∞ is 0 for i = 0 and is 0 : I∞
for i = 1.
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Notice that the case i = 0 is Formula (1).

Proof Writem for the maximal ideal of R. We may assume that I 
= R and that i ≤ d
since otherwise both sides of the equation are zero. Achilles and Manaresi proved the
above formula for a sequence x1, . . . , xi such that the images of x1, . . . , xi in I/mI
avoid a finite number of proper subspaces of I/mI . This implies that the formula holds
for general elements x1, . . . , xi of I . �

The above length formula can be used to derive the following properties of the
multiplicity sequence.

Corollary 2.2 Let (R,m) be a Noetherian local ring of dimension d and I an ideal.

(a) If H is an ideal contained in 0 : I∞ and dim R/H = d, then for i ≥ 1

ci (I , R) = ci (I , R/H) ;

(b) If k is infinite, grade I ≥ 1, and x is a general element of I , then

c1(I , R) = c0(I , R/(x)) ;

(c) If k is infinite, ht I ≥ 1, and x is a general element of I , then for i ≥ 2

ci (I , R) = ci−1(I , R/(x)) ;

(d) If S = R[y](m,y), where y is an indeterminate, then c0((I , y), S) = 0 and for
i ≥ 1

ci ((I , y), S) = ci−1(I , R).

Proof To prove item (a) let z be an indeterminate over R. Replacing R by R(z) :=
R[z]m[z] and I by I R(z) does not change ci (I , R) or ci (I , R/H). Thus we may
assume that k is infinite. We use the notation of Proposition 2.1. Notice that for i ≥ 1,
(x1, . . . , xi−1, H) : I∞ = (x1, . . . , xi−1) : I∞ because

(x1, . . . , xi−1, H) : I∞ ⊂ (x1, . . . , xi−1, 0 : I∞) : I∞ = (x1, . . . , xi−1) : I∞.

Now the assertion is a direct consequence of the Length Formula of Proposition 2.1.
For the proof of item (b) we notice that I is not contained in any associated prime

ideal of R since grade I ≥ 1. Therefore, 0 : I∞ = 0. Moreover, dim(R/x R) = d − 1
because x is not contained in any associated prime ideal of R. Applying Proposition 2.1
with i = 1 and x1 = x and with i = 0, respectively, we obtain

c1(I , R) =
∑

p∈V (I ), dim R/p=d−1

λ(Rp/x Rp) · e(R/p) = c0(I , R/x R).

Item (c) follows fromProposition 2.1, with x1 = x . Indeed, dim(R/x R) = dim R−
1 because I is not contained in any minimal prime ideal of R.
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Item (d) follows, most directly, from the definition of the multiplicity sequence.
Indeed,

G(m,y)(G(I ,y)(S)) = Gm(G(I ,y)(S)) = Gm(GI (R)[y�]) = Gm(GI (R))[y�],

where y� is a variable of degree (0, 1). Now, comparing the bigraded Hilbert functions
of Gm(GI (R))[y�] and Gm(GI (R)) yields the result. �

A Noetherian ring is called equidimensional if every minimal prime has the same
dimension and catenary if any two maximal strictly increasing chains of prime ideals
between two given prime ideals p1 ⊂ p2 have the same length.

Remark 2.3 If R is an equidimensional and catenary Noetherian local ring and a is
an ideal, then dim R − dim R/a = ht a. Therefore, we may replace the condition
dim R/p = d − i by ht p = i in Proposition 2.1 (and Formula (1)), and obtain

ci (I , R) =
∑

p∈V (I ), ht p=i
p⊃(x1,..., xi−1): I∞

λ

(
Rp

(x1, . . . , xi−1)Rp : I∞Rp + xi Rp

)

·e(R/p) for i ≥ 0 .

Multiplicity based criteria usually require the ambient local ring R to be equidi-
mensional and universally catenary, meaning that all finitely generated R-algebras
are catenary. This assumption is used for instance in Rees’ multiplicity theorem for
zero-dimensional ideals I ⊂ J , which says that J is integral over I if (and only if)
e(I , R) = e(J , R) [23]. Owing to Ratliff (see e.g. [17, 31.6 and 31.7]), a Noetherian
local ring R is equidimensional and universally catenary if and only if R is formally
equidimensional or quasi-unmixed, meaning the completion R̂ is equidimensional.
We now collect additional properties of the multiplicity sequence in this slightly more
restrictive setting.

Proposition 2.4 Let R be an equidimensional and catenary Noetherian local ring and
I an ideal.

(a) If i ≤ ht I , then
ci (I ) =

∑

p∈V (I ), ht p=i

e(I , Rp) · e(R/p) ;

(b) ht I = min{i | ci (I ) 
= 0};
(c) If R is universally catenary and I 
= R, then �(I ) = max{i | ci (I ) 
= 0}.
Proof Recall that ci (I ) = 0 if i < ht I or i > �(I ). Now item (a) follows from [3,
2.3(iii)], and (b) is an immediate consequence of (a). Part (c) follows from [3, 2.3(ii)]
and the fact that the associated graded ring GI (R) is equidimensional and catenary,
see [21, proof of 3.8]. �

Now we want to compare the multiplicity sequence of an ideal with that of its
localizations. The following lemmas allow us to work with elements that are general
in an ideal and in its localizations at finitely many primes.
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Lemma 2.5 (a) Let κ ⊂ K be a field extension with κ infinite. Every dense open subset
of K n contains a dense open subset of κn.

(b) Let A be a discrete valuation ring with infinite residue field κ and quotient field
Q, and consider the natural maps π : An � κn and η : An ↪→ Qn. For every
dense open subset U of Qn there exists a dense open subset W of κn such that
η(π−1(W )) ⊂ U.

Proof (a) Since any field extension is a purely transcendental extension followed by an
algebraic extension, we may assume that the field extension κ ⊂ K is either algebraic
or purely transcendental.

LetU be a dense open subset of Kn . We may suppose thatU is a basic open subset,
sayU = Kn \V ( f )with 0 
= f ∈ K [x1, . . . , xn]. We need to prove that V ( f )∩κn ⊂
V (I ) for some nonzero ideal I of the polynomial ring κ[x1, . . . , xn]. This is clear if
the extension κ ⊂ K is algebraic because then κ[x1, . . . , xn] ⊂ K [x1, . . . , xn] is an
integral extension of domains and therefore the ideal generated by f contracts to a
nonzero ideal I of κ[x1, . . . , xn]. If the extension κ ⊂ K is purely transcendental,
then K is the quotient field of a polynomial ring κ[{yi }]. After clearing denominators,
we may assume that f ∈ κ[{yi }, x1, . . . , xn]. We think of f as a polynomial in the
variables yi and let I ⊂ κ[x1, . . . , xn] be the ideal generated by its coefficients. Then
I 
= 0 since f 
= 0, and V ( f ) ∩ κn = V (I ) since the elements yi are algebraically
independent over κ .
(b) Again we may assume that U is a basic open set, say U = Qn \ V ( f ) with
0 
= f ∈ Q[x1, . . . , xn]. Multiplying f by a power of the uniformizing parameter t of
A, with exponent inZ, we may assume that f ∈ A[x1, . . . , xn]\(t A)[x1, . . . , xn]. Let
f be the image of f in κ[x1, . . . , xn] and notice that f 
= 0. The dense open subset
W := D f has the desired property. �
Lemma 2.6 Let (R,m, k) be a local ring and assume that k is not an algebraic exten-
sion of a finite field. Let R0 be the prime ring of R and k0 the prime field of k. If
char(k0) = 0 let y be an element of R0 , and if char(k0) > 0 let y be a preimage in
R of an element of k that is algebraically independent over k0 (such an element exists
by our assumption). Set A := (R0[y])m∩R0[y] and let κ := k0(y) be the residue field
of A. Let {p1, . . . , ps} be a finite subset of Spec(R) and let Ui be dense open subsets
of k(pi )n. There exists a dense open subset U of κn such that whenever the image
of (λ1, . . . , λn) ∈ An in κn belongs to U then the image of (λ1, . . . , λn) in k(pi )n

belongs to Ui for every 1 ≤ i ≤ s.

Proof Write p := char(k) ≥ 0. Notice that A is a local principal ideal ring with
infinite residue field κ and maximal ideal n := pA. If A is not Artinian, then A is a
discrete valuation ring with Q := Quot(A).

The prime ideals {p1, . . . , ps} contract to n if A is Artinian, and to n or 0 if A is
a discrete valuation ring; the corresponding residue field extensions are κ ⊂ k(pi ),
and κ ⊂ k(pi ) or Q ⊂ k(pi ), respectively. It suffices to show our assertion for one
pi . If κ ⊂ k(pi ), we apply Lemma 2.5(a) to this field extension. If on the other hand
Q ⊂ k(pi ), we apply Lemma 2.5(a) to this field extension and then Lemma 2.5(b). �

Recall that a local ring is called analytically unramified if its completion is a reduced
ring.
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Proposition 2.7 Let R be an equidimensional and universally catenary Noetherian
local ring and I an ideal. Let p be a prime ideal and assume that R/p is analytically
unramified. Then for i ≥ 0

ci (I , Rp) ≤ ci (I , R).

Proof The localization Rp is also equidimensional and universally catenary. After a
purely trans-cendental residue field extension as in the proof of Corollary 2.2, we
may assume that the residue field of R is not an algebraic extension of a finite field.
Write m for the maximal ideal of R. An application of Lemma 2.6, with p1 := m and
p2 := p, shows that we can use the same elements x1, . . . , xi in the length formula of
Remark 2.3 to compute ci (I , R) and ci (I , Rp). Now, to deduce our assertion we only
need to prove that e((R/q)p) ≤ e(R/q) whenever q ⊂ p. By [19, 40.1] this inequality
holds because dim R/p + ht (p/q) = dim R/q and R/p is analytically unramified.

�

3 The key technical result

The aim of this section is to prove a technical result, Theorem 3.3. This result will play
a crucial role in our solution to Conjecture 1.1. We begin with a lemma establishing
an inequality between Hilbert–Samuel multiplicities.

Lemma 3.1 Let R be a Noetherian local ring. Let x, t be a system of parameters and
assume that x is a regular sequence on R. Then

e((x), R/(t)) ≥ e((t), R/(x)).

Proof Since t is part of a system of parameters, we have

e((x), R/(t)) ≥ e((x, t), R)

by [9, 1.2.12], and as x, t is a system of parameters and x is a regular sequence,

e((x, t), R) = e((t), R/(x))

according to [9, 1.2.14]. Alternatively, one can use the multiplicity formula of Aus-
lander and Buchsbaum for systems of parameters [5, 4.3]. �

ByMin(·) we denote the set of minimal prime ideals of a given ideal or of the ideal
generated by a given collection of elements.

Lemma 3.2 Let R be aNoetherian local ring and let t be part of a system of parameters
of R. Then

∑

p∈Min(t)

e((t), Rp) · e(R/p) ≥ e(R).
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Proof We may assume that the residue field of R is infinite. Let y be a sequence of
general elements of the maximal ideal of R that form a system of parameters of R/(t).
Notice that the image of y in R/(t) generates a minimal reduction of the maximal
ideal, and hence the image of y in R/p generates a reduction of the maximal ideal for
every p ∈ Min(t). From this it follows that e(R/p) = e((y), R/p). Therefore,

∑

p∈Min(t)

e((t), Rp) · e(R/p) =
∑

p∈Min(t)

e((t), Rp) · e(y, R/p) ≥ e((t, y), R) ≥ e(R),

where the first inequality holds by [19, 24.7]. �
The next theorem provides a condition, in terms of multiplicity sequences, for when

a collection of elements is transversal to every prime ideal p ∈ L(I ). For an ideal I
of a Noetherian ring R, we denote by L(I ) the set of prime ideals p ∈ V (I ) where
the ideal I has maximal analytic spread, namely �(Ip) = ht p. The set L(I ) is finite.
Indeed, if p ∈ L(I ) then p is the contraction of a minimal prime of the associated
graded ring GI (R) (see also [18, 3.9 and 4.1]). The converse holds whenever R is
equidimensional, universally catenary, and local. As we will see in Theorem 4.1, L(I )
is also the collection of prime ideals that are critical for proving integral dependence.

Theorem 3.3 Let R be an equidimensional and universally catenary Noetherian local
ring of dimension d. Let t = t1, . . . , tr be elements in R that form part of a system of
parameters of R. Let I be an ideal of R and assume that ht (t, I , 0 : I∞) > r . If

ci (I , R/(t)) ≤ ci (I , R) for 1 ≤ i ≤ d − r ,

then t1, . . . , tr form part of a system of parameters of R/p for every p ∈ L(I ).

Proof We may assume that I is not nilpotent. Otherwise Ip is nilpotent for every
p ∈ L(I ), hence �(Ip) = 0 and so ht p = 0 because �(Ip) = ht p. In this case
t1, . . . , tr are part of a system of parameters of R/p because R is equidimensional. We
may also suppose that I 
= R since otherwise L(I ) = ∅. Thus the ideal (t, I , 0 : I∞)

is proper and therefore has height at most d. It follows that r < d.
We argue that we may replace R by R = R/(0 : I∞). First, we show our assump-

tions are preserved. Since I is not nilpotent, it follows that ht (0 : I∞) = 0. Moreover,
every associated prime of the ideal 0 : I∞ is an associated prime of 0. Hence, as R
is equidimensional, R is equidimensional of dimension d and t is part of a system
of parameters of R. Since R and R are equidimensional and catenary, we also have
ht (t, I )R > r . For i ≥ 1, the numbers ci do not change upon factoring out 0 : I∞, as
can be seen from Corollary 2.2(a).

Next, we show that if the conclusion of the theorem holds for I R, it also holds
for I . Let p ∈ L(I ). If p /∈ V (0 : I∞), then Ip is nilpotent. This implies �(Ip) = 0
and hence ht p = 0. Now as before, t1, . . . , tr are part of a system of parameters of
R/p. If p ∈ V (0 : I∞), then p R ∈ Spec(R) and, as before, ht p R = ht p. By the
Artin–Rees Lemma we have I n ∩ (0 : I∞) = 0 for n � 0, hence (I R)n = I n

for n � 0. Therefore, �(I Rp) = �(Ip) = ht p = ht p R. Since the assertion of the
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theorem holds for I R, we conclude that t1, . . . , tr are part of a system of parameters
of R/p R = R/p.

As R can be replaced by R, we may assume that 0 : I∞ = 0 or, equivalently,
grade I ≥ 1. Now, we are going to prove the theorem by induction on � := �(I ).

Let � ≤ 1. If p ∈ L(I ), then ht p = �(Ip) ≤ � ≤ 1 and therefore

ht (t, p) ≥ ht (t, I ) ≥ r + 1 ≥ r + ht p.

Thus t1, . . . , tr form part of a system of parameters of R/p, again since R is equidi-
mensional and catenary.

Let � ≥ 2. After a purely transcendental residue field extension, we may assume
that the residue field of R is not algebraic over a finite field. Let x be a general A-linear
combination of a finite generating set of I as in Lemma 2.6, and keep in mind that
by the same lemma, x is a general element of I . Since grade I ≥ 1, it follows that
x is a non zerodivisor on R. As moreover � ≥ 1, the element x is part of a minimal
generating set of a minimal reduction of I . Thus �(I S) ≤ � − 1, where S := R/(x).

We show that our assumptions pass from I ⊂ R to I S ⊂ S. Clearly S is equidi-
mensional and universally catenary. Since ht (t, I ) ≥ r + 1 and x is a general element
of I , we also have ht (t, x) ≥ r + 1. Therefore t1, . . . , tr form part of a system of
parameters of S. Notice that ht I (R/(t)) ≥ ht (t, I ) − r ≥ 1 and that the image
of x is a general element of I (R/(t)). By Corollary 2.2(c), we have for i ≥ 2,
ci (I , R/(t)) = ci−1(I , S/(t)) and ci (I , R) = ci−1(I , S). Therefore,

ci (I , S/(t)) ≤ ci (I , S) for 1 ≤ i ≤ (d − 1) − r = dim S − r ,

as required.
It remains to prove that ht (t, I , (x) : I∞)S > r or, equivalently, that

ht (t, I , (x) : I∞) > r + 1.

Since the ideal (t, I ) has height at least r + 1 by assumption, there are at most finitely
many prime ideals of height r + 1 that contain it. Let 
 be the set of these prime
ideals,


 = {p ∈ V (t, I )| ht p = r + 1}.

If 
 = ∅, then ht (t, I ) > r + 1 and we are done. Otherwise, we need to show that
for every p ∈ 
 one has (x) : I∞ 
⊂ p or, equivalently, Ip ⊂ √

(x)p. To this end, fix
p ∈ 
 and let �p be the set of all minimal prime ideals of (x) that are contained in p,

�p = {q ∈ Min(x)| q ⊂ p}.

Notice that these prime ideals have height one. Let �p be the set of all prime ideals of
height one that contain I and are contained in p,

�p = {q ∈ V (I )| q ⊂ p and ht q = 1}.
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To prove that Ip ⊂ √
(x)p it suffices to show that the inclusion�p ⊂ �p is an equality.

Finally, we introduce the set � of all prime ideals of height one that contain I ,

� = {q ∈ V (I )| ht q = 1}.

Since � ⊂ Min(I ) because ht I ≥ 1, the set � is finite as well. Moreover, for all q ∈ �

we have
{p ∈ 
| p ⊃ q} = Min((t)(R/q)) (2)

because the minimal prime ideals of (t, q) have height r + 1. By Lemma 2.6, the
image of x is a general element of the ideals I (R/(t))p for each of the finitely many
p ∈ 
. In particular, x generates a reduction of these ideals, as they are ideals of
one-dimensional rings. Also recall that x is a non zerodivisor on R.

To prove that �p = �p, we compare c1(I , R/(t)) and c1(I , R). We have

c1(I , R/(t)) =
∑

p∈


e(I , (R/(t))p) · e(R/p) by Proposition 2.4(a)

=
∑

p∈


e((x), (R/(t))p) · e(R/p) since x generates a reduction of I (R/(t))p

≥
∑

p∈


e((t), (R/(x))p) · e(R/p) by Lemma 3.1 since x is regular

=
∑

p∈


∑

q∈�p

λ((R/(x))q) · e((t), (R/q)p) · e(R/p) by the associativity formula

≥
∑

p∈


∑

q∈�p

λ((R/(x))q) · e((t), (R/q)p) · e(R/p) since �p ⊂ �p

≥
∑

q∈�

λ((R/(x))q)
∑

p∈
, p⊃q

e((t), (R/q)p) · e(R/p) by switching the summation

≥
∑

q∈�

λ((R/(x))q) · e(R/q) by Lemma 3.2 and (2)

≥
∑

q∈�

e((x), Rq) · e(R/q) by [18, 14.10]

≥
∑

q∈�

e(I , Rq) · e(R/q) since x ∈ I

= c1(I , R) by Proposition 2.4(a)
≥ c1(I , R/(t)) by assumption as r < d.

It follows that all inequalities above are equalities. In particular, �p = �p for every
p ∈ 
, as asserted.

We have now shown that our assumptions pass from I ⊂ R to I S ⊂ S. Since
�(I S) ≤ �− 1, the induction hypothesis shows that the assertion of the theorem holds
for I S ⊂ S. To lift the assertion from I S back to I , recall that x is a non zerodivisor on
R. Fix p ∈ L(I ). By Lemma 2.6, the element x is general in Ip and hence superficial.
It follows that the preimage of any reduction of I Sp is a reduction of Ip, see for
instance [26, 8.6.1], which gives �(I Sp) ≥ �(Ip) − 1 = ht p − 1 = ht pS, and hence
�(I Sp) = ht pS. Thus, by the induction hypothesis t1, . . . , tr form part of a system of
parameters of S/pS = R/p, as required. �

123



Multiplicity sequence and integral dependence 963

4 Integral dependence

We begin by recalling the known fact that integral dependence over an ideal I can be
checked locally at the finitelymany prime ideals in L(I ) = {p ∈ V (I ) | �(Ip) = ht p}.
Theorem 4.1 Let R be an equidimensional and universally catenary Noetherian local
ring and let I ⊂ J be ideals. The ideal J is integral over I if and only if Jp is integral
over Ip for every prime ideal p ∈ L(I ).

Proof Let I denote the integral closure of I . It suffices to prove that J ⊂ I if Jp ⊂ (I )p
for every p ∈ L(I ). This follows because every associated prime of I belongs to L(I )
by [18, 3.9 and 4.1]. �

We will use Theorem 4.1 to prove Conjecture 1.1. The main idea is to replace the
ideals I ⊂ J by ideals I ∗ ⊂ J ∗ in a new local ring S which contains an element
t such that I ∗

p = J ∗
p if t /∈ p and to use Theorem 3.3 to show that the condition

ci (I , R) = ci (J , R) forces t /∈ p for every p ∈ L(I ∗). Then J ∗ is integral over I ∗ by
Theorem 4.1, which implies that J is integral over I .

Theorem 4.2 (Integral Dependence) Let R be an equidimensional and universally
catenary Noetherian local ring of dimension d and let I ⊂ J be ideals. The following
are equivalent :
(1) ci (I ) ≤ ci (J ) for 0 ≤ i ≤ d ;
(2) ci (I ) = ci (J ) for 0 ≤ i ≤ d ;
(3) J is integral over I .

Proof That (3) implies (2) was proved in [7, 2.7] (see also [29, 11.5]). Since (2) implies
(1), we only need to show that (1) implies (3). Write m for the maximal ideal of R.
Replacing R by the localized polynomial ring R[y](m,y) and I , J by the ideals (I , y),
(J , y), we may suppose that ht I > 0. According to Corollary 2.2(d), the inequalities
in (1) are preserved.

Consider the localized polynomial ring S = R[t](m,t) and the ideal H = I S +
t J S ⊂ J S. One has ht (t, H , 0 : H∞) ≥ ht (t, I ) > 1. Notice that J SmS = H SmS

because t is a unit in SmS . For 1 ≤ i ≤ dim S − 1 = d we obtain

ci (H , S/(t)) = ci (I , R) ≤ ci (J , R) = ci (J , SmS) = ci (H , SmS) ≤ ci (H , S),

where the last inequality follows from Proposition 2.7 since S/mS is analytically
unramified. By Theorem 3.3, t /∈ p for every prime ideal p ∈ L(H). Therefore,
Hp = (J S)p for all such primes p. By Theorem 4.1, this implies that J S is integral
over H . Reducing modulo t we see that J is integral over I . �
Remark 4.3 The idea of considering the ideal H = I S + t J S in the localized poly-
nomial ring S = R[t](m,t) is due to Gaffney and Gassler [12, proof of 4.9]. In
the analytic set-up, H is a family of ideals parametrized by t with H(0) = I and
H(t) = J for t 
= 0. The assumption ci (I ) = ci (J ) for 0 ≤ i ≤ d means that the
map t �→ (c0(H(t)), . . . , cd(H(t))) is constant. By the principle of specialization of
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integral dependence proved by Gaffney and Gassler [12, 4.7], this implies that J is
integral over I . Their proof of the principle of specialization of integral dependence
in the analytic case is intricate.

Our approach can also be used to prove the following principle of specialization of
integral dependence (PSID) for arbitrary ideals.

Theorem 4.4 (PSID) Let ϕ : T → R be a local homomorphism of Noetherian local
rings. Assume that T is regular with residue field k and quotient field L, that R is
equidimensional and universally catenary, and that dim k ⊗T R = dim R − dim T .
Further suppose that there is a homomorphism of rings ψ : R → T with ψϕ = id
and write ℘ = kerψ . Let I be an ideal of R such that ht I (k ⊗T R) > 0 and let
J ⊃ I be another ideal.

If L ⊗T J is integral over L ⊗T I and

ci (I , k ⊗T R) ≤ ci (I , R℘) for 1 ≤ i ≤ dim k ⊗T R,

then J is integral over I .

Notice that R℘ = (L ⊗T R)L⊗T ℘ , where L ⊗T ℘ is a prime ideal of L ⊗T R,
because ϕ−1(℘) = 0. Here L⊗T R is the ring of the generic fiber of ϕ. Thus the PSID
above says, in particular, that J is integral over I on the total space of the family, if
it is so on the generic fiber and if the multiplicity sequence of I on the special fiber
coincides with the one on the generic fiber locally along the parameter space V (℘).

Proof ByTheorem4.1, it suffices to show that Jp is integral over Ip for every p ∈ L(I ).
To do so, we apply Theorem 3.3, with t = t1, . . . , tr the image in R of a regular system
of parameters of T .

Notice that R/(t) = k ⊗T R. Hence by our hypotheses, t form part of a system of
parameters of R and ht (t, I ) > r . Moreover, ci (I , R℘) ≤ ci (I , R) by Proposition 2.7
since R/℘ ∼= T is analytically unramified. Thus,

ci (I , R/(t)) ≤ ci (I , R)

for 1 ≤ i ≤ dim k ⊗T R = dim R − r .
Let n denote the maximal ideal of T . Theorem 3.3 implies that ht n = r =

ht n(R/p) for every p ∈ L(I ). On the other hand, ht n(R/p) ≤ ht n/ϕ−1(p)
since by Krull’s Altitude Theorem, the height of the maximal ideal of a Noethe-
rian local ring cannot increase when extended to a Noetherian extension ring. Thus,
ht n ≤ ht n/ϕ−1(p). We deduce that ϕ−1(p) = 0 as T is a domain. In other words,
Rp is a localization of L ⊗T R, and so Jp is integral over Ip by assumption. �

Remark 4.5 This proof shows that the conclusion of Theorem 4.4 holds with the
weaker, though geometrically less significant, hypothesis that ci (I , k ⊗T R) ≤
ci (I , R) for 1 ≤ i ≤ dim k ⊗T R.

123



Multiplicity sequence and integral dependence 965

5 Multiplicity sequence and local j-multiplicities

In this section we discuss the relationship between the multiplicity sequence and the
j-multiplicity of an ideal with respect to integral dependence.
Let (R,m) be a Noetherian local ring of dimension d and I an ideal in R. Let

G := ⊕n≥0 I n/I n+1 be the associated graded ring of I . The j-multiplicity of I was
introduced by Achilles and Manaresi [2] as the invariant

j(I ) :=
∑

p∈V (mG), dimG/p=d

λ(Gp) · e(G/p).

It can be also interpreted as the multiplicity of the graded module H0
m(G) [9, Sec-

tion 6.1].
Note that there existsp ∈ V (mG)with dimG/p = d if and only if dimG/mG = d.

Since F(I ) = G/mG for I 
= R and �(I ) = dim F(I ), it follows that j(I ) 
= 0 if
and only if �(I ) = d and I 
= R. Thus, the j-multiplicity of I is supported precisely
on the set L(I ), meaning that L(I ) = {p ∈ Spec(R) | j(Ip) 
= 0}.

The j-multiplicity can be considered as a generalized Hilbert–Samuel multiplicity,
because j(I ) = e(I , R) when I is an m-primary ideal. In general, we have j(I ) =
cd(I ) [3, 2.4(ii) and 2.3(i)].

It follows from the work of Flenner and Manaresi [8, 3.3] that two arbitrary ideals
I ⊂ J in an equidimensional and universally catenary Noetherian local ring have the
same integral closure if and only if j(Ip) = j(Jp) for all p ∈ L(I ). This result can be
strengthened as follows.

Let N := {n(p)| p ∈ L(I )} be a given set of positive integers. For 0 ≤ i ≤ d, we
define

cNi (I ) :=
∑

p∈L(I ), dim R/p=d−i

j(Ip) · n(p).

The idea is to encode all local j-multiplicities j(Ip) in a given dimension by means
of a single invariant. For instance,

cNi (I ) =
∑

p∈L(I ), dim R/p=d−i

j(Ip)

if n(p) = 1 for all p ∈ L(I ). Recall that j(Ip) = 0 if p /∈ L(I ).

Theorem 5.1 Let R be an equidimensional and universally catenary Noetherian local
ring of dimension d and let I ⊂ J be ideals. The following are equivalent :
(1) cNi (I ) ≤ cNi (J ) for 0 ≤ i ≤ d ;
(2) cNi (I ) = cNi (J ) for 0 ≤ i ≤ d ;
(3) J is integral over I .

Proof The case where n(p) = 1 for all p ∈ L(I ) was already proved by Ulrich and
Validashti [30, 3.4]. Their proof also works in the general case. �
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We could not deduce Theorem 5.1 from Theorem 4.2 and vice versa. It would be of
interest to understand why the condition cNi (I ) = cNi (J ) for 0 ≤ i ≤ d is equivalent
to the condition ci (I ) = ci (J ) for 0 ≤ i ≤ d.

We now consider the case where n(p) = e(R/p) for all p ∈ L(I ). Define

c∗
i (I ) :=

∑

p∈L(I ), dim R/p=d−i

j(Ip) · e(R/p).

The remainder of this section is devoted to the comparison between c∗
i (I ) and ci (I ).

Lemma 5.2 Let R be a Noetherian local ring of dimension d and I an ideal. Then
c∗
i (I ) ≥ ci (I ) for i ≤ d − dim R/I .

Proof If p ∈ V (I ) is a prime ideal with dim R/p = d − i and i ≤ d − dim R/I ,
then dim R/p ≥ dim R/I . This implies p ∈ Min(I ). Clearly Min(I ) ⊂ L(I ). So we
conclude that the set of primes p ∈ V (I ) with dim R/p = d − i is equal to the set
of primes p ∈ L(I ) with dim R/p = d − i . Since every such p is in Min(I ), we also
have j(Ip) = e(I , Rp). Therefore,

c∗
i (I ) =

∑

p∈V (I ), dim R/p=d−i

e(I , Rp) · e(R/p).

On the other hand according to [3, 2.3(iii) and 2.3(i)],

ci (I ) =
∑

p∈V (I ), dim R/p=d−i
ht p=i

e(I , Rp) · e(R/p).

�
Proposition 5.3 Let R be an equidimensional and universally catenary Noetherian
local ring and I an ideal. Then c∗

i (I ) ≤ ci (I ) for i ≥ 0, and equality holds for
i ≤ ht I .

Proof The second statement follows from the first and Lemma 5.2. To prove the first
statement, we may assume that the residue field of R is not algebraic over a finite field,
as c∗

i cannot decrease (in fact stays the same) under a purely transcendental residue
field extension. Let x1, . . . , xi be general A-linear combinations of a finite generating
set of I as in Lemma 2.6, and keep in mind that by the same lemma, x1, . . . , xi are
general elements of I . Write d = dim R. From Proposition 2.1 we have

ci (I ) =
∑

p∈V (I ), dim R/p=d−i
p⊃(x1,..., xi−1): I∞

λ

(
Rp

(x1, . . . , xi−1)Rp : I∞Rp + xi Rp

)

· e(R/p).

Consider the prime ideals p ∈ L(I ) with dim R/p = d − i . Since R is equidi-
mensional, catenary, and local, we have dim Rp = ht p = d − dim R/p = i and
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therefore j(Ip) = ci (Ip) [3, 2.4(ii)]. As L(I ) is a finite set, x1, . . . , xi are also general
elements of Ip according to Lemma 2.6. Hence, we can use x1, . . . , xi to compute
j(Ip) by the length formula for ci (Ip) of Proposition 2.1. Notice that j(Ip) 
= 0 and
that pRp is the unique prime ideal in Rp with dim Rp/pRp = 0. So we must have
p ⊃ (x1, . . . , xi−1) : I∞ and

j(Ip) = ci (Ip) = λ

(
Rp

(x1, . . . , xi−1)Rp : I∞Rp + xi Rp

)

.

Therefore,

c∗
i (I ) =

∑

p∈L(I ), dim R/p=d−i
p⊃(x1,..., xi−1): I∞

λ

(
Rp

(x1, . . . , xi−1)Rp : I∞Rp + xi Rp

)

· e(R/p) ≤ ci (I ).

�
In light of Proposition 5.3 we call c∗

0(I ), . . . , c
∗
d(I ) the reduced multiplicity

sequence of I . One may be tempted to ask whether c∗
i (I ) = ci (I ) for 0 ≤ i ≤ d.

If this were true, it would follow directly that Theorem 4.2 and Theorem 5.1 with
n(p) = e(R/p) are equivalent. However, there are examples where c∗

i (I ) < ci (I ). We
will construct such an example using Stückrad’s and Vogel’s approach to intersection
theory (see [9]), and we will explain how the multiplicity sequence and the reduced
multiplicity sequence appear in the Stückrad–Vogel intersection algorithm.

Let X ,Y be equidimensional closed subschemes ofPn
k , where k is an arbitrary field.

In order to obtain a Bézout theorem for improper intersections, Stückrad and Vogel
assigned an intersection cycle to X ∩ Y as follows.

Let IX and IY denote the defining ideals of X and Y in k[X0, . . . , Xn] and
k[Y0, . . . ,Yn], respectively. Let k(u) := k({ui j | 0 ≤ i, j ≤ n}) be a purely transcen-
dental field extensionof k. Consider the ring R := k(u)[X0, . . . , Xn,Y0, . . . , Yn]/(IX , IY )

and the ideal I := ({Xi − Yi | 0 ≤ i ≤ n})R. Define xi := ∑n
j=0 ui j (X j − Y j ),

0 ≤ i ≤ n. Then the intersection cycle of X and Y is the sum of the cycles

vi :=
∑

p∈V (I ), ht p=i
p⊃(x1,..., xi−1): I∞

λ

(
Rp

(x1, . . . , xi−1)Rp : I∞Rp + xi Rp

)

· [p],

where [p] denotes the cycle associated to p. By [3, 4.2] we have

ci (I ) = deg vi =
∑

p∈V (I ), ht p=i
p⊃(x1,..., xi−1): I∞

λ

(
Rp

(x1, . . . , xi−1)Rp : I∞Rp + xi Rp

)

· e(R/p).

An irreducible component [p] of the intersection cycle of X and Y is called k-
rational if it is defined over k. By a result of van Gastel [32, 3.9], the k-rational
irreducible components of the intersection cycle are the distinguished varieties in
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Fulton’s intersection theory [10, p. 95]. From the definition of vi above one sees that
[p] is k-rational if and only if p ∈ L(I ); for this and related results see [1, 2.2].
Therefore, the proof of Proposition 5.3 shows that c∗

i (I ) is the degree of the part of
the cycle vi that is supported at the k-rational components of codimension i .

To construct an example with c∗
i (I ) < ci (I )we only need to find an example where

not all (d − i)-dimensional components of the intersection cycle are k-rational.

Example 5.4 Let X = Y be the curve in P
3
k given parametrically by (s6 : s4t2 : s3t3 :

t6), where char(k) 
= 2, 3. It was shown in [25, Example 2, p. 269] that the intersection
cycle of X and Y has non k-rational components. From the same reference it follows
that c∗

3(I ) = 11 and c3(I ) = 18, where I is the ideal defined above.

With regard to Theorem 5.1, it is of interest to find a practical way to compute the
invariants c∗

i (I ). For this reason we raise the following question.

Problem 5.5 Does there exist a bivariate polynomial such that the invariants c∗
i (I ),

0 ≤ i ≤ d, are the normalized coefficients of its leading homogeneous component?
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