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Abstract: We continue our work on the residual intersections of the ideals I generated
by the 2 x 2 minors of a 2 x n generic matrix with n > 4, which we initiated in [5]. In
this paper we study the Rees algebras over these residual intersections, computing in
particular their depths and canonical modules.
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Introduction

We feel that this paper is particularly appropriate for a volume celebrating the life and
contributions of our friend and mentor Wolmer Vasconcelos, since it combines several
of his core interests: Rees algebras, residual intersections, and (for discovering the re-
sults) computational algebra.

Recall that a proper ideal K in a commutative ring S is called an s-residual intersec-
tion of an ideal I if, for some elements a;,...,a, in I, we have K = (a,...,a,) : I and
K has codimension > s. The residual intersection is geometric if in addition I + K has
codimension > s + 1.

In [5] we initiated the study of the (sufficiently general) s-residual intersections R; =
S/K of the ideal I generated by the 2 x 2 minors of a 2 x n generic matrix with n > 4.
These are interesting because for n—1 < s < 2n-3 they are among the simplest examples
of residual intersections of Cohen—-Macaulay ideals that are not Cohen-Macaulay (here
n—-1and 2n-3 are the codimension and the analytic spread of I, respectively). However,
they are residually S,: this follows from a general theorem from [3] and a computation
of [12] showing the vanishing of certain Ext groups of powers of I.

In [5] we showed that when s = 2n - 4, the largest interesting value, the ideal (IRs)f
is an (up to shift) wg -self-dual Ulrich module whenever j > n — 3, and we constructed
an explicit desingularization of R;. In this case R, has depth 1 and dimension 4.
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In [6] we studied the modules (IRs)j for0 < s <2n-4andj > -1, and computed
their depths (they are Cohen—Macaulay, for example, when j = 1 and s = n, which was
a surprise to us). We also proved that for generic residual intersections with s < 2n -5,
the class of IR, generates the class group of Rq.

In the current paper we build on this information to study the Rees algebra R of the
ideal IR, c R,. In parallel to our discovery of the unexpected properties of the powers
(IRs)j in [5] and [6], we also study the truncations (Ry);. We compute the canonical
modules of the Rees rings and the depths of all the modules (Ry);, and we prove a
duality among them.

Perhaps most surprising is that the statements about the R are so similar to those
about the R. In the case s = n + 1 for example, we show that the truncation (Ry)., is a
maximal Cohen-Macaulay R-module, although depth R = dim R - 4.

In a preliminary section we prove a bigraded version of Theorem 2.4 of [8] com-
puting the canonical modules of the Rees ring and the associated graded ring of an ar-
bitrary homogeneous ideal, under the assumptions that the associated graded ring is
Cohen—-Macaulay and that its canonical module is generated in one degree. We apply
these results to the Rees rings and associated graded rings of an ideal modulo its link.
This will be used in our results about determinantal ideals to handle the cases s < n-1.

1 The canonical modules of gr,(S) and R(I)

In most of this section we will use the natural grading of the Rees algebra: if I is a homo-
geneous ideal of a graded ring S, then the natural grading on R(I) = S[It] is the grading
induced from the bigrading of the polynomial ring S[t] where t has degree (0, 1). This
induces the natural grading of the associated graded ring gr;(S) = R(I)/IR(I).

Theorem 1.1. Suppose S is a generically Gorenstein positively graded algebra over a field
andI ¢ S is a homogeneous ideal of codimension g > 0 that is generically a complete
intersection. If G := gr;(S) is Cohen—Macaulay, with graded canonical module generated
in degrees (x, s) for fixed s, then in the natural bigrading:

(@) wg = gry(ws)(0,-8),

(b) R(I) is Cohen—Macaulay, with graded canonical module

o _ [osttR® ifg =1,
RO 7w f HRA)  ifg =2,

considered as a submodule of wg ®g S[t].

Proof. Note that S must be Cohen—-Macaulay because G is. We next prove that R := R(I)
is Cohen—Macaulay. For this, it suffices by [14, Theorem 1.1] to show that a(G) = -s < 0.
Let P be a minimal prime of I of codimension g. Since wy; is generated entirely in degree
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(*,s), it follows that (ws)p = wg, is generated in degree s, and Gj is a polynomial ring
in g variables. Thus a(G) = —g, and R(I) is Cohen—-Macaulay.

By [8, Theorem 2.4 and its proof], w; = gr;(ws)(u, v) for some integers u, v, and by
the argument above v = —g.

To identify u and prove part (b), let K be the total ring of quotients of S. We represent
W as a graded submodule of K ®; W = Wge g, Which we identify with tK[t]. Thus, as
a graded module, w has no components in degree (*, < 0), and we may write it as

oasd .
WR = @wit’,
=1

where the w; are graded fractional ideals of S.
Next consider the two exact sequences

0->ItR—-> R—->S8S—-0,
0-IR-> R-G-0.

Since R is Cohen—Macaulay, dualizing into ws, yields exact sequences

0— wWr — HomR(It’R,, (1)73) - Wg — 0,

0— Wr — HomR(IR,(UR) — Wg — 0.

We may identify Homy (IR, w) with wy () I. After tensoring with K, the ideal I
becomes the unit ideal, s0 wg k) I € K ® wy = tK[t] by our previous identification.
Thus

CUR :K(l) I = OJR :K[ll I
Also, wyp, gy I and wy, are 0 in all degrees (, < 0). Furthermore,
HOmR(ItR, wR) = CUR :K(l) It = (wR :K(t) I)t 1 = (wR :K[l] I)t 1.

With these identifications, the second pair of exact sequences becomes

0> wg = (g kg Dt ' - wg >0, 9.0)

0 - wgp = wg xy I - gr(ws)(U,-g) — 0, 9.2)

where the left-hand maps are the natural inclusion maps. We may decompose wz, g, I
into graded components

oy .
Wp :K[l] I= @uit',
i=1
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where the q; are graded fractional ideals of S. Note that
1_ '
(g kg Dt = €D apat'.
i=0

Using sequence (9.1) and the fact that (wg), o) = 0, we see that a; = wg. On the other
hand, for i > 0 we have (wg),, ; = 0,50 w; = a;,,. Using sequence (9.2) and the fact that
the component (gr;(ws)(U, —£)).,i) = 0fori < g -1, we see that w; = a; and thus if g > 2,

By sequence (9.2), ws = a, maps surjectively to (wg/Iwg)(u), so u = 0, proving part (a) of
the theorem.

For part (b) of the theorem, we will prove by induction that, fori > g, a; = I' £q,
starting with the case i = g, already proven. For i > g, we use sequence (9.2), giving an
exact sequence of graded S-modules

i-g

n I"°w

0 - w —a — #
I 8w

By induction, a; = I'¥a,. The kernel of the map 7 obviously contains Ia;. It factors
through an isomorphism a;/Ia; = I' ¥wg/I' ¥+ w;. Since a surjective endomorphism of
a finitely generated module is an isomorphism, the kernel, which is w;, must be exactly
Ia; = I'*1q,. This completes the induction because ; = aj,;.

Putting the components together, we see that w; = a;,; = I i‘g“al fori > g, where
4, = ws. Thus if g = 1then wy = a,ItR = wltR, while for g > 2, wy = a;(1, 1) %R =
ws(1, )8 %tR. O

Corollary1.2. Let S, I, G be as in Theorem 11. Let a,,...,a; be forms in I that are a

superficial sequence for I and generically part of a minimal generating set for I. Write
= §/(ay,...,a;) and assume R is generically Gorenstein. If i < g then in the natural

bigrading:

(@) gri(R)is Cohen—Macaulay, with graded canonical module

Wer &) = BR(WR)(0,1 - 8).

(b) R(IR) is Cohen—-Macaulay, with graded canonical module

{wRItR(IR) ifi=g-1,

WRR) = g-i-2 o

wp(L ¥ THRUR)  ifi<g-2.

Proof. Since a,...,a; form a superficial sequence for I with i < g and G is Cohen-
Macaulay, the initial forms a;,...,a; in G, ;, are a G-regular sequence. So a;, ..., a; are
an R-regular sequence and
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grr(R) = G/(ay,....a;).

The assertions now follow by applying Theorem 1.1to IR c R. O
Combining the previous result with [8, Theorem 2.6], we get:

Corollary 1.3. With asgumptions as in Corollary 1.2 with i < g — 2, the R(IR)-modules
wg(L, tYR(IR) and (1, tY R(IR) are Cohen-Macaulay for -1<j< g-i-1

Theorem 1.4. Let S, I, G be as in Theorem 1.1. In addition, suppose that S is Goren-
stein with wg = S(a), and S/I is Cohen-Macaulay. Let aj,...,a, be forms in I of de-
grees d,,...,d, that are a superficial sequence for I and generate I generically. Set
K:=(ay,....ag):1 and R := S/K, and assume R is Gorenstein locally in codimension one.
In the natural bigrading:

(@) gri(R) is Cohen—-Macaulay, with canonical module

wgrm(R) = ngR(R)<a + Z dl ) 0)
i (*,21)

() R(IR) is Cohen—-Macaulay, with canonical module
Wrar) = (It)ZR(IR)(a +Yd ,1).
i

Proof. We may harmlessly assume I # (aj,...,a,) since otherwise R = 0. As in the
proof of Corollary 1.2, we may factor out the regular sequence a;,...,a, and assume
codim/ = 0 and wg = S(a+Y ;d;). By Theorem 1.1, we have wg; = gr;(wg) = G(a+Y;d;,0).

In this situation, I is generically 0 and K = 0 : I is a geometric link,soI n K = 0.
Since I’ n K = 0 for all j > 0, there is an exact sequence of graded G-modules

0—>I+TK—>G—>gTIR(R)—>O.

Note that (I + K)/I = wg;(-a - };d;,0) is a maximal Cohen-Macaulay G-module since
S/I is a maximal Cohen-Macaulay G-module. As G is also Cohen-Macaulay, it follows
that depth grjz(R) > dim G — 1. We dualize into wg obtaining

I+K
0 = Wg, @ — Vg —— Homr;(T»wc) — Extg(griz(R), wg) — 0.

To prove that grjz(R) is Cohen-Macaulay, it suffices to show that 7 is surjective.
The map 7 is the dual of a nonzero map of maximal Cohen-Macaulay G-modules,
so it is nonzero. Moreover,

Hom(;(“TK, wG) = Homg (g, wG)(a + Zd,-, 0) = (S/I)(a + Zdi, o),

W e N oV s W N =
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where the last equality uses the identification Homg(ws,;, wg) = Homg(G, S/I). Since
wg = G(a+Y;d;,0),the source and target of 7 are both generated in degree (-a-Y ; d;, 0)
and the components of that degree are k := S, a field. So 7t is the projection of G onto the
(*,0) component, up to multiplication by a nonzero element of k. Thus gr,(R) is Cohen—
Macaulay, and

Wgr, R = (W6)(u 1) = G(a +y d; ,o) = gr,R(R)(a +y d; ,o) )
i (%,>1) i (+,>1)
proving part (a).

By linkage the ring R is Cohen-Macaulay, wy = IR(a + Y ; d;), and IR is unmixed of
codimension 1. Recall that R is Gorenstein locally in codimension 1, hence IR is generi-
cally a complete intersection. The assumptions of Theorem 1.1 are now satisfied for the
ideal IR c R, so R(IR) is Cohen—Macaulay and

WR(r) = Wg - IRt - R(IR) = IR - IRt - R(IR)(a + Zdi ’0>

t

= (It)ZR(IR)<a + Z d; ,1),

proving part (b). O

In the case where S is a standard graded algebra over afield kand I ¢ Sis generated
by forms of a single degree d, we may regard R(I) as a bigraded subalgebra of S[t],
giving the linear forms of S degree (1,0) and giving t degree (-d, 1). This also induces
a bigrading on gr;(S). We call these the standard bigradings; with these gradings the
k-algebras R(I) and gr;(S) are generated in degrees (1,0) and (0,1).

Corollary 1.5. Let m < n be positive integers, and let

X110 Xin

Xm1 *° Xmn

be a generic m x n matrix over the standard graded polynomial ring S = k[Xy1, ..., Xmpn]
overafield. LetI c S be theideal of mxm minors of X. Therings G := grg(I) and R := R(I)
are Cohen-Macaulay domains and in the standard bigrading:

@ wg=Gm- m?, -n+m- 1), so G is Gorenstein.

b)) wg =@1,0)" ™ R(m - mn,-1).

Proof. The Cohen—Macaulay property of the Rees ring is proven in [4, Proposition 2.6],
and the fact that G is a Cohen—-Macaulay domain follows from [10, Proposition 1.1 and
Corollary 2.1]. Since G is a Cohen-Macaulay domain, it is Gorenstein by [8, Proposi-
tion 1.1] following [9, Proposition, p. 55].
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Thus I c S satisfies the assumptions of Theorem 1.1, where I is generated by forms
of degree m, g = n— m +1, and wg = S(—mn). We apply the theorem, noting that now ¢
has degree (-m, 1) instead of (0,1). An ungraded version of the computation of w5 also
follows from [8, Theorem 2.4 and Corollary 2.9]. O

2 Depths of truncated Rees algebras

We use the following notation throughout the rest of this paper: Let

X = (xl.l - xl,n)
X1 't Xon

be a generic 2 x n matrix over the ring S = k[x,,...,X; ,], where k is a field of charac-
teristic 0 and n > 4 (the case n = 3 being easy and special). Write m for the maximal
homogeneous ideal of S, and let I = I,(X) be the ideal of 2 x 2 minors of X. The codimen-
sion and analytic spread of I are g := n —1and ¢ := 2n — 3, respectively (for the notions
analytic spread, reduction, and superficial sequence, we refer the reader to [13]). Let J
be a homogeneous minimal reduction of I and a;,...,a, be general quadrics in J that
generate J. Set J; = (ay,...,a;)) c I, K; = J; : I, and R; = §/K;. Since dimS/(J : I) = 0
and ay, ..., a, are chosen generally in J, it follows that K; is a geometric i-residual inter-
section (see, for instance, [2, Lemma 2.3] or [15, Corollary 1.6(a)]), and aj, ..., a, form a
superficial sequence for I. We henceforth assume that 0 < i < £ -1 = 2n - 4 because
the £-residual intersection would be primary to the maximal homogeneous ideal. By [5,
Corollary 3.2], R; is unmixed of dimension 2n — i. We write R; = R(IR;) c R;[t] for the
Rees ring of IR; c R;, and we give t bidegree (-2,1), making R(IR;) a standard bigraded
algebra over k.

Write n := mR; + ItR; for the maximal ideal of R; that is homogeneous in the total
grading, where i will be clear from context.

If a c T is an ideal in any ring we write a” = T and, forj < 0,0’ = T ‘Quot(T) a’.

Theorem 2.1. Assume that 0 < i < € - 1. With hypotheses as above:

(@) Therings R; are locally Cohen-Macaulay away from n. They are Cohen—-Macaulay if
i<g=n-1

(b) The canonical module of R; is

wg, = (ItRY) #*¥(-4,i-n+2) 9.3)
= (LOR)E *@i-2n+2,-1). 9.4)

(© Ifi>g+1=nthendepthR; = dimR; - 4 = 2n - i - 3 and the local cohomology
of R; with support in n is nonzero only in cohomological degrees depthR; and
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dim R;. Using part (a) it follows that if i < £ — 2 = 2n — 5 then R; satisfies Serre’s
condition S,.

Proposition 2.2. Assume that0 < i < €£-1. With hypotheses as above, if j > 0ori< g-2,
then (ItR;)’ = ("L, HR) 7.

Theorem 2.3. Assume that0 <i < ¢ -1andj > 0. With hypotheses as above:
(@) The R;-module (ItR;)’ is Cohen-Macaulay away from nforj <i-g +3.
(b) Ifj < 2 then the local cohomology of (ItR;)’ with support in n vanishes except at the
depth, given below, and the dimension, 2n — i + 1.
(¢) Ifj <i- g+ 3and one of the conditions
(i) i<e-2o0r
(i) i=¢-1andj>i-g,
is satisfied then the multiplication maps

IR @, (tR)EDT - (ItR)" &
induce duality isomorphisms
Hompg ((ItR)" 27,0y ) = (IR (-4,i - n+2), &)

and thus (ItRi)j satisfies Serre’s condition S,.
Furthermore, if2 < p < dimR; — 1, then

Hgim‘R.‘+1—P((Imi)(i—g+2)—]')v ~ Hf’,((ItR,-)j)(—4, i-n+2), W)

where -V denotes the graded k-dual.
(d) See Figure 9.1 for a graphic representation of the following:

dim R, ifi-g<j<i,

dimR; -4 ifj <min{2,i- g -1},
depth(It’R,-)"= ) n+3 iff=2andi<g-1,

dim R; iff=2andg<i<g+2,

min{dimR; -4, 5} if3<j<i-g-1,

5 otherwise, that is, if max{3,i- g} <j.

Remark 2.4. As a consequence of Theorem 2.3, we see that (ItRi)f is a maximal Cohen-
Macaulay R;-module if and only if:

- i-g<j<lor

- j=2andg-1<i<g+2o0r

- i-g<jandi=¢-1

W e N o N s W N =

BB A W W WWw W Ww W WwWw W NN NN NN N N = = @ o b @ o
N—\ouooo\lcnmaww—-osooo\lmmhw“—-owm\la\mbwwﬂo



-

o N Y N B W N

Rees algebras over residual intersections =— 287

h 0 1 2 3 4 . . . ¢ n—8 n—T n—6 n—5 n—4 n-—3

0 2n+1 2n+1 n+3 5 5 . . . . 5 5 5 5 5 5

5 in every position

n+3 n—6 n—6 n—6

5
. . . . . .
. . . . . ™ .
.
. . . . . \\ s .
. . . . . S .
)
2
2n—9 6 6 6 5 \.9\ 5
Z
2n — 8 5 5 5 5 5
2n -7 4 4 4 4 4 . . . . 4 4 5
2n—6 3 3 3 3 3 e e o o 3 3 3 5
2n — 5 2 2 2 2 2 e o e o 2 2 2 2

2n—4=¢(-1 1 1 1 1 1 . . . . 1 1 1 1 1 5 ‘

Figure 9.1: Depth of (ItR;)’.

Proof of Proposition 2.2. Suppose first j > 0. Because It(t™,1) c R;, the product
ItR)((tY, )R,) is in R;, and thus (ItR;)’ ¢ ((¢"},1)R;)”. On the other hand, the frac-
tional ideal ((t },1)R;)’ contains R, so (((t *,1)R;)’) ! is a homogeneous ideal in R;.
Since t7 ¢ ((t‘l,l)Ri)i, the inverse ideal must have initial t-degree > j, and thus is
contained in (ItRi)j .

Nextifi < g—2andj = —k is negative, then the product of(IrR,-)k and ((t %, 1)R,~)" is
contained in R;, so (ItR;) ¥ > ((t },1)R,)X. For the other inclusion, we note that i < g —
2 < g -1, so theideal IR; has positive codimension and by Corollary 1.2(a), which applies
due to Corollary 1.5(a), the associated graded ring gry (R;) is Cohen-Macaulay. Hence the
irrelevant ideal of gryg (R;) has positive grade. It follows that (IR)¥*¢ R, (IR)¥ = (IR)*
for any € > 0. Since i < g — 2 the grade of IR; is > 2, and thus (ItR,-)‘k c Ri[t,t" '] and is
homogeneous with initial t-degree > —k, as (ItR,)* has initial t-degree k.

The ideal ((t™,1)R,)¥ is 0 in degrees < -k, coincides with R;[t,t”!] in degrees
—k,...,0, and coincides with R; in positive degrees. Thus to prove that (ItRi)"" C
(= l)Ri)k , it is enough to show that, in strictly positive degrees, (ItR;) k is contained
in R;.

-
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If uth € (It’R,-)‘k withu € R; and h > 1, then
ut" (IR ¢ ¢ (IR ¥,
sou € (IR)**" ‘R, (IR)* = (IR)", completing the proof of Proposition 2.2. O

Proof of Theorems 2.1 and 2.3. Ifj > 0, we set

N;j = (IR = (Ry); = DUR)'T".

v=j

We regard (IR;)’t’ and a;,,(IR;) ! as bigraded R-modules via the natural map R —
R/ItR =R.

For the proofs, we will use the three families of short exact sequences of bigraded
R-modules:

Ajyqt

(@;) 0——N;;j4(0,-1) N;; Ny j 0 forj>1,
(byj) 0 Nij l Nija (R 1 ——0 forj>1,
=W, Nij .
(cij) 0——ai (IR 't GV, Niaj 0 forj>1,
Nio
(cio) 0——K;j1R; GintNig Nii1o 0.

We begin by proving that these sequences are exact. The exactness of (a; ;) for j > 1and
of (¢; i) forj > 0 follows directly from the exactness of the sequences (*;,_;) in item (IV)
of [6, Section 3], which give

(IR)Y v
G R T (IRy}1)
forv > 0and a;,,(IR;) " = K;,R;. In the sequence (b; ), the map ¢is the natural inclusion,
and the exactness follows directly from the definitions.
We are now going to prove parts (a) and (d) of Theorem 2.3, except for the upper
bounds in (d), together with
(*) Let U be the polynomial ring S[{y ¢}1<p<q<n], Which is the ambient polynomial ring
of the Rees algebra R(I), graded with both the x; and the Ypaq of degree 1. Let I-‘f‘j be
the minimal U-free resolution of N; ;(j). If j > i — g then Ff(‘j is generated in degree k
fork >i+(}).

Suppose first that i = 0. We do induction on j. If j = 0 then (ItR,-)j = R(I) = Ny is
Cohen—Macaulay by [4, Proposition 2.6] and items (a) and (d) follow immediately. It also
follows that the projective dimension of Ny ; = (ItR)! as a U-module is < (5), proving (¥).
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If j = 1 we use the exact sequence (b, ;). From the Cohen—Macaulayness of N , and
the depth of S, we see that N, is also a maximal Cohen-Macaulay module, and again
this implies all the assertions.

Item (a) is vacuous forj # 0. Using the sequence (b, ;), the depth assertion of item (d)
follows from the induction hypothesis because I’ * has depth n+2 when j = 2 and depth
4 when j > 3; the last assertion follows from [1, Theorem 5.4 and the beginning of its
proof]. The same reference also shows that I/~(2j — 2) has linear resolution for j > 2.
Thus using the long exact sequence in Tor associated to (b, ;) and applying the inductive
hypothesis, we obtain the assertion of (*). This finishes the case i = 0, so from now on
we suppose that i > 1.

Item (a)

We must show that if P is a prime of R; not containing n = mR; + ItR; then (N;;)p is
Cohen—-Macaulay wheneverj < i—g+3.If P does not contain It, we first consider the case
Jj = 0, and use the exact sequence (c; ;o). The R; ;-module K;R; ; is concentrated in one
degree in the y, ;, and is thus annihilated by It, so (R;_1/(a;t))p = (R;)p by the same ex-
act sequence. On the other hand, g; is a nonzerodivisor on R; 4 by [6, Proposition 2.4(d)].
Thus a;t is a nonzerodivisor on R;_;. By induction (R;_;), is Cohen-Macaulay, complet-
ing the argument in this case. Also, (N;;)p = (R;)p.

Next suppose that mR; ¢ P, and let p := S§ n P. We do induction on j, starting with
the case j = 0. The ideal I, is either the unit ideal or a complete intersection equal to
(Je)p and, as above, IR; contains a nonzerodivisor on R;. Thus by [11, Theorem 3.1 (i) and
(iii)] (Ry)p is Cohen-Macaulay and URppisa strongly Cohen-Macaulay ideal.

For g any prime ideal of SwithI ¢ ¢ ¢ p ¢ m,lett = dim §,. Notice that I, = ], is
generated by ¢ elements. We claim that in fact I, is generated by t elements. If t < £ then
K, is a geometric t-residual intersection of I, and it follows that I, = (a;,...,a,)S,. So
(IR))q = (@1, ..., a,)(R;)q can be generated by t — i = dim(R;), elements. By [7, Theorem
2.6] (in the case where the ideal has positive height), the Rees algebra (R;), is Cohen-
Macaulay, and thus the further localization (R;)p is also Cohen—-Macaulay, completing
the proof of item (a) in the case j = 0.

Now suppose j > 0. We use the exact sequence (b; ;) in the localized form

-1
00— (Nij)p . (Njj1)p— (IRit),], —0.

By [6, Theorem 1.3(b)], the module (IR,-t){;"1 is a maximal Cohen-Macaulay (R;) p-module
because j —1 < i - g + 2. On the other hand,

1+ dlm(R,)p = dlm(R, ®Rl (Rl)p) 2 dim(Ni_j_l)p = dlm(N,J)P
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Thus (Nj ;)p is @ maximal Cohen-Macaulay (R;)p-module. This completes the proof of
item (a).

Statement (*) and the lower bounds in (d)

We first note that for i < g and j = 0 the module N; ; is Cohen—Macaulay. This fol-
lows from Corollary 1.2(b) and Theorem 1.4(b), which apply by Corollary 1.5(a) (and
because K, is a geometric (g + 1)-residual intersection, so R, is Gorenstein locally in
codimension one). B

The assertion of (*) for i = 0 is proven above. For j = 0, the modules F,'(” are zero
because N; ; is Cohen-Macaulay of dimension 2n — i + 1. Now using induction on i and
the sequences (a;_;, i the assertion of (*) follows in general.

As for item (d), we begin by establishing the given depth of N; ; as a lower bound
in the cases j > i — g. The case j = 0 has just been treated. For 1 < j < 3, the sequences
(aj_4,j), together with induction on i and j, suffice, except when j = 3and n < 5. However,
i<2n-4=¢-1sointhecasesj = 3and eithern =4orn =5wehavei< g+1or
i < g +2, respectively. Therefore the sequences (a;_4 ;) suffice in these cases as well.

If now j > 4 we must show that depth N; ; > 5. By induction on i and j, the depths of
N; 4 1and N; ,j are atleast 5. By (%), F, ,‘( 171 s generated in degree k for k > i—1+ )
In particular, this holds for k > 2n +(}) -5 since i < 2n—4. From sequence (a;_; ;) and [6,
Proposition 2.2(a)], the inequality depth N; ; > 5 follows.

Finally, we come to the cases j < i — g — 1. First, if j = 0, we do induction on i using
the sequence (c;_; o). From the definition of R;, we have an exact sequence

0 b d KiRi—l b d Ri—l bl Ri b d 0

From [6, Theorem 1.2(a)], we know that depthR; ; >2n —i -2 and depthR; > 2n-i-3,
so depthK;R;_; = 2n — i - 2. By induction, R;_; has depth > 2n - i — 2. Also, as above, a;t
is a nonzerodivisor on R; ,, so the sequence (c; 1) shows that depthR; > 2n—i -3, as
required for the casej = 0.

Next, if j > 1, we use the sequence (b;;) and induction on j. If j < 2, we have
depthN;; ; > 2n - i - 3 by induction, while depth(IR))’" = 2n - i - 3 by [6, Theo-
rem 1.3(e)]. Thus depth N; ; > 2n—i-3.1If, on the other hand, j > 3, we have depth N; j_; >
min{2n-i-3, 5} by induction, while depth(IRi)i -1 = min{2n-i-3,4} by [6, Theorem 1.3(e)],
sodepth N; ; > min{2n—i-3, 5}, completing the proof of the lower bounds initem (d). [

The canonical modules

We next prove Theorem 2.1(b). By Proposition 2.2, the expressions (9.3) and (9.4) are
equal.
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Corollary 1.2(b) applies because of Corollary 1.5(a), and proves this result fori < g—2.
We now do induction on i, and suppose that i > g — 1. We claim that

wr
“r, = [(ﬂlfﬂ’n )(0 1)](->1) @)

Dualizing the exact sequence (¢; ;) into wy, we get an exact sequence

0> wr =W =, _’ExtdlmUdlmR
¢ (“"Ril)

“Y(KiRi_1, wy).

Local duality shows that the right-hand module is concentrated in degree (*, 0).
We claim that WR, is concentrated in degrees (x, > 1). To see this, let L be the total
ring of quotients of R;, and observe that

wRi C L ® wR‘ = wL@Ri'

However, L ® R; = L[t] because I contains a nonzerodivisor on R; (see [6, Proposi-
tion 2.4(d)]), s0 wyer, = tw; &, L[t] is concentrated in positive t-degrees, proving the
claim.

This shows that

WR, = [w(%)](h)n. 9.6)
To understand the right-hand side of the last expression, we consider the sequence
0 - R; 1(0,-1) —— R; 1 = R 1/(aitR; 1) — 0.
Dualizing into wy;, we get

a;t dimU-dimR; ,+1
wr,, —— Wr,,(0.) >0 =, - Ext;;™ YRy wy)-

allT{‘ 1

We are now going to show that the last module in the sequence vanishes. By local
duality,

Exti VAR (R, | wp) = (HERe (R, )Y,

where (-)¥ indicates the graded k-dual. Furthermore, if i < g +1, the ring R;_, is Cohen-
Macaulay by the lower bound (d), so this local cohomology vanishes.
On the other hand,

H:lm R I(Ri—l) = Hfm Rt l(HomR;—l(‘uR(J’an—l)) = Hi(wRH ),

where the first equality holds because R;_; satisfies Serre’s condition S, by item (a) and
the lower bound in (d), and the second follows from [6, Proposition 2.3], which applies
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because wy | is Cohen-Macaulay on the punctured spectrum, by item (a). By induction
on i, Wg,  is up to shift isomorphic to N 1; 4,,. Hence, by the lower bound in (d), the
depth of wy,  is atleast 3 becausei - g +1> (i-1) - g, proving the vanishing.

This shows that

w
D (L)(o,n. 9.7
4R 4 a,'tle_l

Combining equations (9.6) and (9.7), claim (9.5) follows.
By induction, wp, = (ItR;_;)" ¥*1(~4,i - n+1). Now (9.5) gives

" =[( (IR ) 8"
R [\ qeer, ) &1
_( (IR y) 8"
~\qt(itr )6

)(—4,i— n+ 2)]

(%,>1)

)(—4, i-n+2).

This is isomorphic to
(ItR) & (-4,i-n+2)

by the exactness of the sequence (a; 1 _g.7) asi—g+2>1. O

Duality

We now turn to Theorem 2.3(c). Notice that for every integer k, the fractional ideal
(ItRi)" contains a homogeneous nonzerodivisor of R; of degree (*,k); if k < 0 this
holds because t* ¢ (ItR,-)", and if k > 1 one uses the fact that IR; contains a nonzerodi-
visor on R; by [6, Proposition 2.4(d)]. Now it follows by degree reasons that the inclusion

(ItR,.)j C (ItR,.)i‘g+2 ‘R, (ItRi)(i_g+2)_j

is an equality.
Writing K; for the total ring of quotients of R;, we claim that the inclusion

(IR & i (IR EDT ¢ (1tR)TEE i (1R EDT
is also an equality. Because
IR &2 . (ItRYCEDT = (1tRy)!

has depth > 2 by the lower bound in Theorem 2.3(d), it suffices to check equality locally
on the punctured spectrum, and there we must prove that

IRy 82 (tRYEDT c Ry,
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One has

ItRY &% 1 (ItRYTEDT c (IR &% 1 (IR EY
= Ende(wfR()) b Ri'

Here the equality holds because up to a shift wr, is isomorphic to (ItR,-)i £*2 by Theo-
rem 2.1(b), and the last containment is an equality locally on the punctured spectrum
because there R; is Cohen—-Macaulay by Theorem 2.1(a).

Finally,

UItR) " i (1tR)EPT = Homy ((ItR) 427, (1tR))#*?)

and (ItR,)! 6*2 = wg,(4,n~i-2) by Theorem 2.1(b), completing the proof of equation (1)
in Theorem 2.3(c).

Equation (2) in Theorem 2.3(c) is a consequence of (1) in Theorem 2.3(c) and [6,
Proposition 2.3] once we have shown that (ItR;)¢*?7 is Cohen-Macaulay locally on
the punctured spectrum. If (i — g + 2) — j > 0, this holds by Theorem 2.3(a). Otherwise
(i-g+2)-j = -1and (It‘R,-)‘1 = Homg, (ItR;, Ry) satisfies S, locally on the punctured spec-
trum because R; does according to Theorem 2.3(a). So the wy, -dual of the isomorphism
(1) in Theorem 2.3(c) implies that for every prime ideal P of R; with P # n, (ItRi);,1 isiso-
morphic to Homp, ((Imi)i‘g 3 WR,)ps which is Cohen—Macaulay by Theorem 2.3(a). [

One intermediate local cohomology

We next prove Theorem 2.3(b), and assume j < 2. If i < g then N;, and N;; have depth
equal to dim R; by the lower bound in Theorem 2.3(d). Moreover, the R;-module IR; has
dimension dim R; — 1 and at most one more nonvanishing local cohomology module
according to [6, Theorem 1.3(c)]. So the sequence (b;,) shows that also N;, has at most
two nonvanishing local cohomology modules. Hence we may assume thati > g + 1.
The duality statement (2) of Theorem 2.3(c) implies that, up to twist, H? (Njj) is the
graded dual of HI™ Re+1-P (Njj_g42-) for 2 < p < dimR; - 1; notice that this statement
applies becausei-g<i-g+2-j<i-g+3.Againsincei-g+2-j > i- g, thelower
bound in Theorem 2.3(d) shows that Nj;_,, j has depth > 5, except possibly when n = 4
and i = n + 1. But this possibility is ruled out by our blanket assumption i < 2n - 4.
Thus Hy™ ** PN, 4,5 ;) = 0for p > dim R; - 3, so H4(N; ;) = 0 for diim R, - 3 =
max{2,dim R; - 3} < p < dim R; - 1. This suffices because depth N; ; > dim R; - 4 by the
lower bound of Theorem 2.3(d). O
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Upper bound on depth

Finally, we prove equality in Theorem 2.3(d). The lower bound for the depth of N; ; that
we have already proven is equal to the dimension of N; ; ifj > i - g = i - n +1and one
of the following holds:

j<1,
j=2 and i=n-2,
i=2n-4.

Next,ifj = 2and i < n-3, then depth N;; > n+4. By [6, Theorem 1.3(e)], depth IR; = n+2,
so using the sequence (b;,) we see that depth N;, = n + 3 as claimed.

In the case i = 2n — 4, we must show that if j < n - 4 then depth N; ; < 1. We have an
inclusion ay, 3t(ItRy, 1)’ ¢ (ItRy, 4)’*. Let Q be the quotient.

We claim that this is an equality away from n = mR,,_4 + ItR,,_, and thus Q has
finite length. Let P be a prime ideal of the polynomial ring U = S[{yp,¢}1<p<g<n]- Recall
that the elements a,, ..., a,, ; generate a reduction of I. If P does not contain m, then the
ideal I, is a complete intersection, so ay, ..., @y,_; generate Ip. As a,, ..., @y, 4 Map to 0
in Ry, _4, the claim follows in this case.

On the other hand, if the image of P in R,, , does not contain ItR,, 4 then it
does not contain a,, 5tR,, 4 because VI = /(ay,...,ay, 3)S and thus {ItR,, , =
\ay,_3tRy,_4, proving the claim in this case as well.

By [6, Proposition 2.4(d)], the element a,,_3t is a nonzerodivisor on R,,_4. Proceeding
by contradiction, suppose that depth(ItR,, 4)j > 2 for some j < n — 4. It follows that
depth ay,_5t(ItR,,_4)’ > 2 as well. Since Q has finite length, we see that Q = 0. Thus

gy 3t(ItRyy 4)) = ([tRyy 4)*.

N

It follows that (ay, 3t)” 7(ItRy, 4)) = (ItRy, 4) for allj’ > j, 50 IRy, 1) = Ry, 4) .
But, by [6, Theorem 1.3(e)], the former has depth 1 and the latter, when j' > 0, has
depth 4, a contradiction, showing that depth N; ; < 1in this case.

Next we consider the case wherei > ¢ -4 = 2n-7andj<i-g-1=1i-n,
and we do decreasing induction on i to show that depth N; ; < dim R; — 4. The previous
case establishes this for i = 2n — 4, so we assume that i < 2n - 5. Since N; j,; has depth
> dim R; — 4, the sequence (g; j,;) and the induction hypothesis show that depth N; ; <
dim R; - 4 as required.

By the duality isomorphism (2) in Theorem 2.3(c), if

i<2n-5 j<i-g+3 2<p<dimR;-1,
then

HEMRAP(N, o )Y = HOWN, )(-4,1 - n+2),
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where - denotes graded k-dual.

Now assume that2n -7 < i < 2n-5andj = i — g. From the depth computation
above, we know that depth N;, = dimR; - 4, which gives Hdim Rt 5(N,-,Z) # 0. By the
duality isomorphism, Hi(N,-, ;) # 0, and therefore depth N; ; < 5 as asserted.

Next suppose that we are in one of the cases

j=3 and i<2n-8 or
jzi-g+1 and i>2n-7.

In these cases depth(IR;)’ ! = 4 by [6, Theorem 1.3(e)] and depth N;j_4 2 5, s0 using the
sequence (b; j) wesee that depth N; js5as claimed.

Fmally, 1f j<min{2,i- g -1} andi < 2n - 8, then by the duality isomorphism above
Hd‘mn (Nj) is, up to a shift, the graded dual of H> aWVii-gi2-j)- Smce] i-g-1we
havei—g +2-j > 3. By the previous case, depth N;; g, j = 5, s0 HS a(Nii—gs2-j) # 0. Thus

Hdmm 4(N, j) # 0 and therefore depth N; ; < dim R; — 4, completing the argument for
Theorem 2.3(d). O

This also completes the proof of Theorem 2.1(a) and (c): part (a) follows from The-
orem 2.3(d), Theorem 2.3(a), and Theorem 2.3(c); while part (c) follows from Theo-
rem 2.3(d) and Theorem 2.3(b). O
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