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ABSTRACT. Let (R, m, k) be a Golod ring. We show a recurrence formula for high syzygies of k
in terms of previous ones. In the case of embedding dimension at most 2, we provided complete
descriptions of all indecomposable summands of all syzygies of k.

1. INTRODUCTION

Since the seminal work of Hilbert significant advances have been made in understanding the
structure of finite free resolutions. However, much less is known about infinite free resolutions,
which are quite common, as most minimal free resolutions over Noetherian local rings are infinite.
Unfortunately, the standard techniques used to study finite free resolutions rarely apply to infinite
resolutions.

This paper deals with minimal free resolutions of finitely generated modules over Noetherian
local rings, with emphasis on the residue field. While there are numerous results and conjectures
about Betti numbers |11, 12, 13, 3, 16, 5, 1, 18], our focus instead is on the structure of syzygy
modules and finiteness properties of these in general infinite resolutions.

We will focus on Golod rings. They appear naturally in many contexts. Suppose that R = S/I
with (9,n) regular local (or graded) of dimension e and I C n? (so that e is the embedding
dimension of R). Then R is Golod, for example, if I has codimension one [0]; or if e = 2 and
R is not a zero-dimensional complete intersection [20]; or if R is a local Cohen-Macaulay ring of
“minimal multiplicity” e — dim R 4+ 1 [3]; or if R is graded and I has linear resolution [7] or is
componentwise linear [15]; or if I is a Borel fixed monomial ideal |1, 19]; or if R is graded over a
field of characteristic zero and I = J* is a power (or a symbolic power) of a homogeneous ideal
with s > 2 [14]. The Golod property is stable under factoring out a regular sequence that is part
of a regular system of parameters of S [3].

Let (R, m, k) be a Noetheran local ring of embedding dimension e. We prove that if R is Golod
then every syzygy module of the R-module & is a direct sum of copies of the first e + 1 syzygy
modules, syzZR(k:) for 0 < i < e, and we give a recursive formula for the number of copies:

Theorem 1.1. Let (R, m, k) be a Noetherian local ring of embedding dimension e. Let Ko be the
Koszul complex of a minimal set of generators of m. If R is Golod then

e—1
syzfﬂ(k’) = @ syzﬁ(k:)he*f
§=0
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and, more generally, for every i > e,

vl = @ syl

i—e—1<5j<i—2
where hi—j—l = dimk(Hi_j_l(K.)).

This structural result provides a new explanation of Golod’s well-known formula [9] for the
ranks of the free modules in the minimal resolution of k, which is an immediate consequence. It
also implies another well-known result that the Poincare series of any finitely generated module
M over a Golod ring is rational (see for instance [6]), since the sequence {dimy, Torl*(k, M)} =
{dimy, Torfz(syzf_ 1k, M)} satisfies a linear recurrence coming from the decomposition of syzygies
described above.

Furthermore, Theorem 1.1 implies that the direct sum decompositions into indecomposables
for the first e 4+ 1 syzygy modules determine such decompositions for all syzygy modules of k.
This is in stark contrast to the case of a zero-dimensional Gorenstein ring R with e > 2, where
the (infinitely many) syzygy modules of k are all indecomposable and non-isomorphic.

We will next focus on the case e = 2, where the Golod assumption in Theorem 1.1 simply
means that R is not a zero-dimensional complete intersection [20]. In this case we will give an
explicit description of the direct sum decompositions into indecomposables of the syzygy modules
syzl*(k) for all 4. By Theorem 1.1 it suffices to do this for syz{*(k) = m and syzL(k) = syzf(m).

All our results are preserved and reflected by completion. For example, the number of
summands of a finitely generated R-module M that are isomorphic to the residue field k is
dimy (Soc(M)/(mM N Soc(M)), and this does not change upon completion. Thus we may as-
sume, without loss of generality, that R = S/I, where S is a regular local ring and I C n?. Let
e := dim .S be the embedding dimension of R. This will be our notation throughout this paper.

Assume that e = 2 and I C n? is not an n-primary complete intersection. We prove that
syzi*(k) = m is decomposable if and only if xy € I for some regular system of parameters x,y
of S (see Theorem 3.2). In this case m = R/(0: z) & R/(0 : y) is the direct sum decomposition
into indecomposables. For syzZ (k) = syz{'(m) we obtain (see Proposition 4.1):

Proposition 1.2. If m is decomposable then syz(k) = m @ k®, where
2 ifdmR=0
a=11 ifdepthR=0anddmR=1
0 if R is Cohen-Macaulay of dimension 1.

It remains to treat the more general, and more difficult, case where m is indecomposable. We
only need to give the direct sum decomposition into indecomposables of syz& (k) = syz*(m). The
following result combines Theorem 2.1 and Theorem 4.3:

Theorem 1.3. If m is indecomposable, then
Syzg(k) = SYZ{%(m) >~ Hom(m,R) 2 N @ k*,

where a = dimy, (n(i}n)> and N is indecomposable.

We can make the decomposition of syz!f(m) in Theorem 1.3 very explicit. Let x,y be minimal
generators of n and hq,..., h, be minimal generators of I, write h; = f;x + g;y, and let a be as
in Theorem 1.3. Choose generators of I so that the images of the last a generators h; form a

k-basis of %In) and choose the corresponding f; and g; in I : n. With this notation we will show
that syzf*(m) is the submodule of R? generated by the columns of the matrix

(y o fn>
T g1 --- Gn
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where ~ denotes images in R. Now let N and N’ be the submodules of R? generated by the first
n + 1 — a columns and by the last a columns, respectively. For these particular submodules N
and N’ we have:

Corollary 1.4. If m is indecomposable, then
syzi(k) = N @ N,
where N' = k® and N is indecomposable.

We generalize the first isomorphism in Theorem 1.3 to second syzygies of some cyclic modules
other than k. For instance, if R is Artinian and J is an ideal so that the ring R/J is a complete
intersection, then using linkage we show that, if Fitto(/)R C J, then syzf(R/J) = J* :=
Hom(J, R) (see Theorem 2.5).

A consequence of these results is that at most three non-isomorphic indecomposable modules
appear in the direct sum decompositions of all the syzygy modules of k£, and that these indecom-
posable modules are summands of k, m, m* (see Theorem 5.2). We are also able to characterize
when, for any given i, the syzygy module syz*(k) is indecomposable (see Theorem 5.3).

In experiments with rings of embedding dimension > 2 we have seen an analogous phenomenon:

Conjecture 1.5. If (R, m, k) is a local Golod ring of embedding dimension e, then there is a
set of at most e + 1 indecomposable modules from which every R-syzygy of & may be built as a
direct sum.

Our results were suggested by Macaulay 2 computations [10], performed at an AIM meeting in
September 2023 with the help of Mahrud Sayrafi and Devlin Mallory, using their DirectSummands
package [17]. Without this support we might never have guessed that the results of this paper
could be true.

2. syzf(m) 18 m*

Theorem 2.1. If (R,m) is a Noetherian local ring of embedding dimension 2 that is not a

~Y *

zero-dimensional complete intersection, then syzit(m) =2 m*.
We postpone the proof until after Theorem 2.5.
Theorem 2.2. Let S be a ring and let I C J be ideals of S. Set R = S/I and write (—)* =

Homg(—, R) for the R-dual. The following conditions are equivalent:
(1) The dual (JR)* — J* of the natural surjection J — JR is an isomorphism.
(2) The restriction map J* — I* is 0.
(8) The natural map Exth(S/J, R) — Exts(S/J, R) is an isomorphism.

If these conditions are satisfied for J then they are satisfied for any ideal containing J.

Example 2.3. The conditions (1)—(3) of Theorem 2.2 are satisfied if the R-ideal J/I = JR
contains a nonzerodivisor. The natural exact sequence of R-modules

0—1/IJ—-J®sR—JR—0

gives an exact sequence
0— (JR)* — J* — Hom(I/IJ,R).
But Hom(I/IJ, R) = 0 since the R-module I/I.J is annihilated by JR. Thus the map (JR)* —
J* is an isomorphism as in condition (1) of Theorem 2.2.
Proof of Theorem 2.2. (1)<= (2): Dualizing the exact sequence
0—-I—J—(J/I=JR)—0
yields the result.
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(1) <= (3): We have a diagram

0 » JR » R > R/JR > 0
0 - J - S - S/J -0

Dualizing into R, we get the diagram

0 < Exth(R/JR,R) <— (JR)™ = R < (R/JR)* «—— 0
0 < Ext5(S/J, R) = J* < R <« (S/J)* «=—— 0

The equivalence now follows from the “five lemma”.
The last statement follows at once from condition (2). |

Proposition 2.4. With notation as in Theorem 2.2, if J is generated by an S-reqular sequence
r,y, then J* = syzf(JR) wvia the map f — (f(y), —f(x)). In particular, if J* = (JR)* then f
mdices an isomorphism

syzl(JR) = (JR)*.

Proof. We may write syzi'(JR) = {(@,b) | ax + by € I} where ~ denotes images in R. Consider
the maps
(%) oo o
—x b a
S - S° ~ R.
The composition is 0 if and only if ax + by € I, and since J is the cokernel of <—yx> , this is the

condition that (—b,a) induces a homomorphism J — R. |

Theorem 2.5. Let S be a Noetherian local ring and let x,y be an S-reqular sequence. Let I C S
be an ideal of projective dimension one, so that we may write I = al’, where I' is perfect of grade
2 and a 1s a nonzerodivisor.

If I' C J := (x,y) then conditions (1) — (3) of Theorem 2.2 are equivalent to the condition
that a - Fitto(I) C J.

Proof. Write R = S/I and (—)* = Homg(—, R). We denote images in R by ~.

We will show that the restriction map p : J* — I* is 0 if and only if a - Fitta(I) C J.

Let hf,...,hl, be generators of I’ so that the elements h; = ah) generate I. Extending the
ground field if necessary, we may assume that h/, h;- form a regular sequence for every ¢ # j and
that h},a form a regular sequence for every 7. Let

/ /
T
¥ (gi g&)

be a matrix with entries in S satisfying (b} ... h}) = (z y)-¢, and let ¢ = ay'.
We first prove that p = 0 if and only if aly(¢’) C I'. Consider presentations of J and I with
respect to the generators z,y and hq, ..., h,, respectively, and a morphism between them,

()

> S2 >
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Dualizing into R we obtain a commutative diagram with exact rows

Rn+1

| - |

0 I* Sn* — Rpn* Snfl* — Rnfl* .

Thus p = 0 if and only if ©* is zero when restricted to the image of J*. This image is the syzygy
module of 7, —% in R?", which in turn is generated by the columns of the matrix 1), where

(@ .. g
w—<y "R —fn)‘

Therefore p = 0 if and only if p*¢ = 0.

Since
h1 0 Ao ... Ay,
t he —Dis 0 ... Asy,
=1 . : . :
hn —A1n —Do, ... 0

where A; ; is the determinant of the submatrix of ¢ involving columns i, j, we see that p = 0 if
and only if I5(p) C I, and this is the case if and only if als(¢') C I', as claimed.
/ /!
Let A} ; be the minor of ¢ involving columns 4, j. Since (B ah}) = (z y)- <£3 Z?) and
i J
hi,ah form a regular sequence, a theorem of Gaeta (see for instance [2, Example 3.2(b)]) gives

(hi,ah}) : J = (hi,ahly, ali ;).

As I' is perfect of grade 2, it follows that a - A}, € I" if and only if (h{,ah}) : I C J by the
symmetry of linkage.

By the same theorem of Gaeta, the link (h;, ah’) : I’ of I' is generated by hj and a times the
n — 2 minors of the presentation matrix of I’ = I with rows ¢ and j deleted. This proves that
a-Ir(¢') C I' if and only if a - Fitta(I) C J. [

Proof of Theorem 2.1. We apply the previous results with J = n. If I is principal, we use Exam-
ple 2.3 and Proposition 2.4. If I is not principal, we may write I = al’ with I’ perfect of grade 2.
We see from Proposition 2.4 and Theorem 2.5 that the result holds unless both (a) and Fitta(])
are unit ideals. If @ is a unit, then I = I’ has grade 2. If in addition Fitte(I) = S, then I is a
zero dimensional complete intersection. |

3. THE DECOMPOSITION OF m

In this section (S, n, k) denotes a regular local ring of dimension 2 and I C S is an ideal. Write
R=S/I and m =nR.

Lemma 3.1. Suppose that n = (z,y). If zy € I then I can either be written as

(a) I = (zy,uz® + vy®) where u,v are each either 0 or units and a, B are non-negative
integers; or as
(b) (xy,z*,9%), where o and B are positive.
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Proof. If I has codimension 1 then I has a proper common divisor, which we may take to be
x. Writing I = z(J + (y)), we see that either I = (zy) or I = (zy,xz®) for some a > 1 because
S/(y) is a discrete valuation ring with parameter z.

Any element of an Artinian local ring can be written as a polynomial in the generators of the
maximal ideal with unit coefficients. In particular, if I has codimension 2, then any element of
S/(zy,nI) is the image of an element of the form f = uz® 4 vy®, where each of v and v is either
0 or a unit of S and «, § are non-negative. Note that if 4 # 0 then, modulo zy, every z* with
© > « is a multiple of f and similarly for v and y.

If I/(zy) is principal, then we may write I = (zy, uz® 4+ vy®), and we are done. Otherwise,
modulo 2y, we may write two of the generators of I as uz® 4+ vy®, pzY + qy°, where u and ¢ are
units and « and ¢ are minimal. Thus we may assume that p = 0, and v = 0, so I = (zy, 2%, y5).
Notice that a, 8 have to be positive. |

Theorem 3.2. The following are equivalent:

(1) The module m is decomposable.
(2) We may write n = (z,y) with xy € I and R is neither a discrete valuation ring nor a
zero-dimensional complete intersection.
(3) We may write n = (x,y) in such a way that I = (xy,uz®, vy®), where each of u,v is a
unit of S or 0 and o, B are > 2.
In this case m = R/(0:x)® R/(0: y).

Proof. (1) = (2) If m is decomposable, then it has to decompose as m = xR & yR where
m = (z,y). This implies xy € I. Every ideal of a domain is indecomposable, and every non-zero
ideal of a zero-dimensional local Gorenstein ring contains the socle, and thus is indecomposable.
(2) = (3) This follows from Lemma 3.1 because R is not a discrete valuation ring or a zero-
dimensional complete intersection.

(3) = (1) One easily check that (I,z)N (I,y) = I. [

4. THE DECOMPOSITION OF syz& (k) = syzf(m)

Again in this section (S,n,k) is a regular local ring of dimension 2 and I is an ideal. Set
R =5/I and m = nR. We denote images in R by ~.

Proposition 4.1. If m is decomposable then syzd (k) = syzit(m) = m @ k2, where

2 ifdmR=0
a=4¢1 ifdepthR=0anddimR=1
0 if R is Cohen-Macaulay of dimension 1.

Proof. We apply the analysis of Theorem 3.2. This shows that I C n? and we may assume
m = ZR ®yR. Furthermore, if dim R = 0 then we can write I = (2%, zy, y®), where «, 8 are > 2.
In this case ZR = R/(z*"%,y) and JR = R/(z,7°~'). Thus syzf(m) = (z*1,9) @ (z,7°1) =
E@TROTR® k= m® k? since %1, 771 are in the socle of R.

If depth R = 0 and dim R = 1, then Theorem 3.2 shows that we may write R = S/(zy, ) with
a>2. Now TR = R/(y,7*!) and yR = R/ZTR, so syzi(m) = (7,7 ) TR JRO k O TR =
m @ k because 7! is in the socle of R.

Finally, if R is Cohen-Macaulay of dimension 1, then I = (zy) by Theorem 3.2 and all the

modules syz?(k) for i > 1 are isomorphic. [ |

Given generators x,y of n and hy, ..., h, of I we consider, as in the proof of Theorem 2.5, a
2 x (n+ 1) matrix with entries in S

L=(Ly Li ... Ln)_<_yl= 51 §Z>
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i o
such that (hy ... hy) = (z .
(o )=o) (I
Lemma 4.2. Suppose that m is indecomposable, and let L be a matriz as above. If R is not a
complete intersection, then:

(a) I+n3 does not contain any element xy such that n = (z,y).

(b) dimg(I +n3)/n < 1.

(¢) There exists a choice of generators x,y of n and a choice of f;, g; such that the entries of
every column of the form Lo+ Y ,o 0 AiLi generate n for all \; € S.

Proof. Since R is not a complete intersection, we must have I C n?.

(a): Suppose first that dim R = 1. Since S is factorial and I is not a complete intersection, we

may write I = al’ where I’ is an ideal of codimension 2. If I contains an element of order 2,

then a must have order 1. By condition (2) of Theorem 3.2, any element of I’ that has order 1

must be a multiple of a, completing the proof in the 1-dimensional case.

Now assume that dim R = 0. Suppose that I contains an element xy + f with ord f > 3 such
that n = (z,y). If n?» C I and ord f > p then zy € I, which is impossible by Theorem 3.2(2).
Otherwise, suppose there is an expression zy + f € I such that n = (x,y) with order ord f
maximal and < p.

We may write f = xf1 + yf2 + g with min{ord f;,ord fo} > ord f — 1 and ord g > ord f. Thus
xy+ f=(x+ f2)(y+ f1) + (9 — f1f2). Note that ord(g — f1 f2) > ord f. We may replace z,y by
x + f2,y + f1, thus increasing the order of f, a contradiction.

(b): Suppose on the contrary that az? + bxy + cy?, a’x? + V'xy + ¢'y? are linearly independent
elements of I + n3/n, where z,y are generators of n/n? and the coefficients a,...,c are in k.
By taking a linear combination, we may assume that ¢ = 0, in which case we are done by part
(a) unless also b = 0. If on the other hand b = 0, then ¢ # 0, so we may assume that ¢/ = 0.
Now we are done unless b’ = 0. If ¥’ = 0, then 22 and %2 are in I + n®/n3, but xy is not by part
(a). Thus the associated graded ring of R, and with it R itself, is a zero-dimensional complete
intersection, a contradiction. This shows that dimy (I + n?®)/n? < 1, completing the proof.

(c): By part (b) the quotient (I+n3)/n? is cyclic. If I+n3 = (¢£2)+n? for some element ¢ of order
1, we choose generators x = £,y for n. Otherwise we make an arbitrary choice. Furthermore, we
may choose f; and g; to be in n? for i > 1. If I C n3 we also choose f; and g; to be in n?. If
I +n3 = (22) 4+ 13, we choose fi = zmod n? and g; € n%.

Now consider the 2 x 2 matrix

NS
L= (Lo L'):=("Y 2is0 A Z) )
( ‘ 1) (—x > is0 Aibi

If \y €nor I Cnd then Lo+ L) = Lomod (n? ®n?) and the claim follows. Thus we can assume
that A1 is a unit and I ¢ n®. In this case det(L') & n®. Moreover det(L’) € I by the definition of
the matrix L. The determinant of L’ is also the determinant of the 2 x 2 matrix (Lo + L} L}).
If the entries of Lo + L were linearly dependent modulo n?, then the determinant would factor
modulo n®. Therefore I +n® = (22) + n3 by part (a). But then, modulo n? the matrix L' must

be
Yy x
—x 0/)°
Thus the entries of Ly + L] generate n as claimed. |

The significance of the matrix L considered in Lemma 4.2 is that the columns of L are obviously
a generating set of syzf(m), and even a minimal generating set by [20, Satz 5]. In particular
p(syzf(m)) = p(I) + 1, where u(-) denotes minimal number of generators.
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Theorem 4.3. Suppose that I C n2. Write syzf(m) = N @ N’ where N’ = k% and N has no
k-summands. If m is indecomposable then:

(a) a = dimg ("(i}")) and p(N) =pu(l)+1—a> 1.

(b) N is indecomposable.

Proof. We may assume that I # 0. We fix generators z, y of n and the corresponding embedding
7 = syzf(m) C R?, and we use the notation introduced before Lemma 4.2.

(a): Since pu(Z) = p(I) + 1, we have u(N) = p(I) + 1 — a.

Notice that
a = dim 7806 4
o *\mzZnSocz )

Thus it suffices to prove that

SocZ _ w(l:n)
mZNSocZ  wnl
To this end we define an R-linear map 1 as the composition of the maps

~ 1
SocZ — — = Hy(z,y; R) — e

Notice that ¥((f, g)) = (xF+yG)+nl, where F, G are preimages of f, g in S. As Soc Z = Soc R?,

it follows that Im = "(I{}n). Clearly Ker = RLg N Soc Z.

Thus it remains to prove

RLyNSocZ =mZ NSocZ.
The right hand side is in the left hand side, because RLLO = Hi(z,y; R) and therefore mZ C RLy.

As to the converse, the indecomposability of m implies that I # n?, hence mLg # 0. Therefore
RLyNSocZ C mLy C mZ.

(b): If R is Gorenstein, then Z is indecomposable. If I = 0 this is obvious and otherwise it
follows from the fact that syzygies of indecomposable maximal Cohen-Macaulay modules over
local Gorenstein rings are indecomposable. Thus the assertion of (b) holds and we may assume
that R is not Gorenstein.

Since Z = N @® N’ and mN’ = 0, we have mN = mZ. As shown above mZ C RLy. But Lg is a
minimal generator of Z, hence mZ C mLg, and therefore mZ = mLg. Finally, RLy = R/(0 : m),
so mLo 2 m/(0: m). Putting these facts together, we have

(4.3.1) mN =m/(0:m).

Since N does not have k as a direct summand, the indecomposability of N follows from the
indecomposability of mN = m/(0 : m), so it suffices to treat the cases where the maximal ideal
m/(0 : m) of S/(I : n) is decomposable. By Theorem 3.2(3) this is the case if and only if for a
suitable choice of  and y one has I : n = (zy, uz®, vy®), where each of u,v is a unit or 0 and
both of a, 8 are > 2.

We first show that in this case the module N can be generated by 2 elements. Set I’ = n (I : n).
It suffices to prove that dimy(I/I") < 1 because part (a) gives u(N) = 14 p(I) — dimg (I’ /nl) =
1+ dimg(I/1).

Suppose first that dim R = 1. In this case we may assume that I : n = (zy,uz®), hence
I C (zy,uz®). By Theorem 3.2(2) the ideal I contains no product of two elements that generate
the maximal ideal of S, so no element of the form xy + Ax® with A € S can be in I. Thus I C
n(zy)+ (uz®) = (2%y, zy?, ux®) = I". As I' = (22y, xy?, uz®*l), it follows that dimy,(1"/I") < 1.
Now the containments I’ C I C I” show that dimy(I/I") < 1.

Now assume that dim R = 0, thus I : n = (zy,2%,y"), where o, are > 2. If a = 3 = 2
then I : n = n? and hence I’ = n3. Therefore dim(I/I') < 1 by Lemma 4.2(b). Finally,
without loss of generality, we can assume that a > 3. We have I C I : n = (xy,2%,y”). Since
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« > 3, Lemma 4.2(a) shows that I cannot contain an element of the form zy + Az + uy®. Thus
I C n(zy) + (2%, 9%) = (2%y, 2%, 2%, y%) = I". As 21 ¢ I : n but 2" € I” : n because
o > 3, the ideal T cannot be equal to I”. On the other hand I’ = (22y, 292, 2t y#t1) and so
dimy (I"/I') < 2. Since I' C I € I”, we see that, again, dim(I/I") < 1. This concludes the proof
of the inequality u(N) < 2 and the present choice of the elements z, y.

Now choose z,y and L as in Lemma 4.2(c). Since m is indecomposable, I # n? and thus
0 : m € m. Every minimal set of generators of Z contains a unit times an element of the form
Lo+ ;-0 AiLi, whose annihilator is exactly 0 : m by Lemma 4.2(c). This generator cannot be
among the minimal generators of N’, so every minimal set of generators of N contains such an
element.

If N = A® B with A, B not zero, then A and B must be cyclic because u(N) < 2. We
may assume that A is minimally generated by an element of the form Lo + ;. AiL; and thus
A = R/(0 : m). In particular mA @ mB = mN = mA, where the last isomorphism holds by
(4.3.1). This implies that mB = 0 because the number of generators of mB is 0. Since N does
not have k as a direct summand, B = 0, and we are done. |

If in Theorem 4.3 the ring R is Gorenstein, that is, a complete intersection, then a = 0. Indeed,
as explained in the proof above, syzf¥(m) is indecomposable. Thus syzf(m) = N because N # 0.
Alternatively, one can argue that n(/ : n) = n/. We may assume that [ is n-primary, hence
generated by a regular sequence hi, hy contained in n?. As before we write (h1 hg) = (x y) L,
where L is a 2 X 2 matrix with entries in n. Multiplying this equation with the adjoint of L, whose
entries are again in n, one sees that nA C nf with A = det(L). On the other hand I : n = I+ (A),
showing that n(I : n) C nl. For more general results along these lines see |3, Proposition 2.1 and
the proof of Theorem 2.2].

Proof of Corollary 1.4. By construction the module N’ of Corollary 1.4 is minimally generated
by a elements in the socle of syz(m) that form part of a minimal generating set of syz!*(m). So
N is a direct summand of syz(m) and N’ 2 k%, with a as in Theorem 4.3. Since the number of
k-summands only depends on syzf‘(m), the quotient syz{%(m) /N’ cannot have any k-summands
and hence is indecomposable by Theorem 4.3. |

5. PROOF OF THEOREM 1.1 AND APPLICATIONS

Proof of Theorem 1.1. For j > 1 let A; be R tensored with the 7™ module in a minimal S-free
resolution of R, and for j > 2 set B; = A;_;. Consider the graded free R-module B = @giéBj.
Write T' = Tr(B) for the tensor algebra of B over R and K = K (m; R) for the Koszul complex
of m. As a graded R-module, the minimal R-free resolution of k is isomorphic to F:= K Qg T
because R is Golod. There are isomorphisms of R-modules T' = R@® T ®p B, and hence F' =
K @& F ®p B. The description of the differential of F' in terms of Massey operations shows that
dr is of the form

|
12

K & F®B

ldF ldK/ |ares

F = K & F®B.

(see, for instance, [0, Theorem 5.2.2] and its proof). Since K is concentrated in degrees < e, we
obtain, for 7 > e, an isomorphism of complexes

i 2P 0 1@Bey1® ... ©F>i2® Bsy.

The assertion now follows because B; is a free R-module of rank h;_;. |
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Corollary 5.1. Let (R, m, k) be a Noetherian local ring of embedding dimension 2. If R is neither
reqular nor a zero-dimensional complete intersection, then

syz?(k) o i) =1 gy () |

Proof. Since R is Golod, we may apply Theorem 1.1. The result follows because the dimensions
of the Koszul homology are the Betti numbers of R as an S-module: h; = pu(l) and hy =
w(l) — 1. [

Theorem 5.2. Let (R, m, k) be a Noetherian local ring. If R has embedding dimension < 2 and is
not a zero-dimensional complete intersection, then every minimal R-syzygy of k is a direct sum of
copies of k, m, and m* := Hompg(m, R) = syz{z(m). Moreover, copies of at most 8 indecomposable
modules are required to build all the syzygies of k as direct sums.

Proof. The first assertion follows from Theorem 1.1 and Theorem 2.1, and the second assertion
is a consequence of Theorem 3.2, Proposition 4.1, and Theorem 4.3. |

Theorem 5.3. Let (S,n, k) be a reqular local ring of dimension 2, and let I be an ideal contained
in n2. Write R = S/I and m = nR.

(a) syzf(k) = m is indecomposable if and only if xy & I for any z,y with n = (z,y) or R is
a zero-dimensional complete intersection.

(b) syz¥(k) is indecomposable if and only if m is indecomposable and (I : n)n = In.

(c) syzE(k) is indecomposable if and only if I is a principal ideal such that zy ¢ I for any
x,y withn = (x,y) or R is a zero-dimensional complete intersection.

(d) syzl'(k) is indecomposable for every i > 0 if and only if syzE(k) is indecomposable.

Proof. Part (a) follows from Theorem 3.2. For part (b), notice that if m is decomposable then
syzf(m) is decomposable. Now the assertion follows from Theorem 4.3.

For parts (¢) and (d), we may assume that R is neither regular nor a zero-dimensional complete
intersection, since otherwise all syzygy modules of k£ are indecomposable. By Corollary 5.1
syzgR(k) is indecomposable if and only if I is principal and m is indecomposable. Since then R is
Gorenstein and m is a maximal Cohen-Macaulay R-module, m is indecomposable if and only if
one or all of its syzygies are indecomposable. Now part (d) follows and part (c) is a consequence
of (a). [
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