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1. Introduction

This paper is concerned with the structure of the module of derivations and its interplay with

vector fields and singularities of varieties. Modules of derivations are not well understood – despite

great advances on the Zariski-Lipman conjecture (see [20, 27, 45] for instance), there is still no

complete characterization for when they are free. The paper focuses on Poincaré’s problem on the

degrees of vector fields.

In 1891, Poincaré asked the following question that became known as Poincaré’s problem [37]:

How can one decide whether a homogeneous differential equation given by a polynomial vector field

F on P2
C has a rational solution? This question has been rephrased as the problem to find upper

bounds for the degree of any curve C to which F is tangent, possibly in terms of the degree of F .
According to [18, p.57], ‘This question is fundamental but difficult, and it has stimulated a lot of

research for well over a century’ (see [4–7,10,12,15–18,21,33,36,41,42]). It has often been addressed

in greater generality, for curves and even varieties in PnC, and invariants other than the degrees of

the variety and the vector field have been considered, because even for plane curves bounds only

involving degrees are not always possible [5, 6, 33].

In this article, we study the generalized Poincaré problem from the opposite perspective, by

establishing lower bounds on the degree of the vector field in terms of invariants of the variety, say

X. This approach has the advantage that all the vector fields on Pnk tangent to X, when restricted

to X, can be encoded in a single module,

Derk(R)/m
−1ε ,

see Proposition 2.4. Here R is the homogeneous coordinate ring of a subscheme X ⊂ Pnk , which,

for the purpose of this introduction, is assumed to be reduced and irreducible over an algebraically

closed field of characteristic zero; by m we denote the homogeneous maximal ideal of R, by Derk(R)

the module of derivations, and by ε ∈ Derk(R) the Euler derivation. If depth R ≥ 2, thenm−1ε = Rε

and the module above essentially carries the same information as Derk(R). The least degree of a

vector field that leaves X invariant and does not vanish along X is 1 plus the initial degree of the
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module Derk(R)/m
−1ε, and our reformulation of Poincaré’s problem becomes: Find lower bounds

for the initial degree indeg(Derk(R)/m
−1ε).

In the current paper we address this problem mainly for curves. We generalize bounds that were

known for plane curves and we obtain new estimates as well. Our proofs are algebraic. In order to

understand how tight the lower bounds for the initial degree of Derk(R)/m
−1ε are, we also provide

upper bounds, which sometimes lead to equalities. Our estimates use global invariants, such as the

genus of the curve C, the Castenuovo-Mumford regularity, or the a-invariant of the homogeneous

coordinate ring R; invariants that can be considered global as well as local, like the singularity

degree of C, the total Tjurina number, or the multiplicity of R modulo the Jacobian ideal; and local

information, such as the type of the singularities or a new invariant that we call Loewy multiplicity.

For smooth curves we prove that the initial degree satisfies the inequality indeg(Derk(R)/m
−1ε) ≥

a(R) + 1, which is an equality if C is arithmetically Gorenstein. In one of our main results, Theo-

rem 4.10, we generalize this inequality to the case of curves with at most planar singularities. We

show that

(1) indeg(Derk(R)/m
−1ε) ≥ a(R) + 1 + |Sing(C)| − Lmult(R/JR) .

Here a(R) = − indeg(ωR) denotes the a-invariant of R, which is equal to reg C−3 if C is arithmeti-

cally Cohen-Macaulay; and Lmult(R/JR) denotes the Loewy multiplicity of R modulo the Jacobian

ideal, which is bounded above by the sum of the local Tjurina numbers of C in this case. If C
has only ordinary nodes as singularities, then |Sing(C)| − Lmult(R/Jac(R)) = 0 and we obtain the

inequality indeg(Derk(R)/m
−1ε) ≥ a(R)+1, which is again an equality whenever C is arithmetically

Gorenstein. The case of ordinary nodes had been treated before with the additional assumption

that, first, C is a plane curve [7], then, C is a complete intersection [4], and, finally, C is arithmetically

Cohen-Macaulay [16,17].

The proof of inequality (1) has two main ingredients. Inspired by the use of general projections

in [16], we prove more generally in Theorem 4.8 that if A ⊂ R is a finite and birational extension of

standard graded domains over a perfect field and A is Gorenstein of dimension at least two, then

indeg(Derk(A)/AεA)+a(A)−a(R) ≥ indeg(Derk(R)/m
−1εR) ≥ indeg(Derk(A)/AεA)−a(A)+a(R) .

In addition, for hypersurfaces of arbitrary dimension with only isolated singularities, we are able to

bound indeg(Derk(R)/m
−1ε) from below in terms of the a-invariant of R/JR. Applying these two

results to a curve C with only planar singularities, we prove inequality (1) by general projection

to a plane curve. The general projection does not change the singularities of C and introduces

only ordinary nodes as additional singularities, which guarantees that the difference |Sing(C)| −
Lmult(R/JR) is unaltered.

Our other main results generalize, from plane curves to arbitrary curves, earlier work of du Plessis

and Wall [12] and of Esteves and Kleiman [15] that uses the sum of local Tjurina numbers. For a
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curve C ⊂ Pnk of degree d with homogeneous coordinate ring R, we map a sufficiently general two-

dimensional complete intersection S onto R, and write δ for the Castelnuovo-Mumford regularity of

S and J ⊂ R for the image of the Jacobian ideal of S. If F is a vector field that leaves C invariant

and 0 ̸= IF ⊂ R is an ideal defining the singular locus of F , then F and J coincide up to a degree

shift and this shift is closely related to the degree degF , which we wish to control. The degree shift

is reflected in the difference of multiplicities e(R/IF )− e(R/J). Thus to estimate the degree shift,

and hence degF , from below it suffices to establish a lower bound for e(R/IF ). To do so, we prove a

non-vanishing result for maps between local cohomology modules of Koszul cycles that yields lower

bounds for the regularity of the saturation IsatF and hence for e(R/IF ). The line of argument just

described is inspired by the work of Esteves and Kleiman in [15]. Thus we obtain in Theorem 5.6

that

indeg(Derk(R)/m
−1) ≥ δ − 2− e(R/J)− δ

d− 1
,

unless C is a smooth complete intersection, in which case the initial degree is a(R) + 1.

This result is the starting point for various estimates in terms of the arithmetic genus pa, the

geometric genus pg, and the sum τ of the local Tjurina numbers of the curve. Theorem 5.10 says

that

indeg(Derk(R)/m
−1ε) ≥ d

d− 1
a(R)− τ − 2

d− 1
if C is locally a complete intersection, and

indeg(Derk(R)/Rε) ≥
2pa − τ
d− 1

if in addition C is arithmetically Cohen-Macaulay. For plane curves we prove in Corollary 5.7 that

indeg(Derk(R)/Rε) ≥ d−
3

2
−
√
2τ + 2pg − d2 + 3d− 7

4
.

These bounds are sharp for plane curves of low genus and for other classes of curves, as illustrated

in Proposition 5.12.

In Section 6 we turn to upper bounds for indeg(Derk(R)/m
−1ε) in order to understand how

sharp the lower bounds in Section 5 and Section 4 are. As a special case of Theorem 6.1, for

instance, we prove that a(R) + 1 is an upper bound whenever C is arithmetically Gorenstein. In

Theorem 6.5 we determine the minimal graded free resolution of Derk(R)/Rε as a module over

a polynomial ring if C ⊂ P3
k is smooth and arithmetically Cohen-Macaulay. From this we obtain

the initial degree, the minimal number of generators, and the entire Hilbert series of Derk(R)/Rε.

In particular, we see that the upper bound a(R) + 1 fails dramatically without the assumption

of arithmetic Gorensteinness. Curiously, the work in Section 5 on local cohomology of Koszul

cycles implies another result about the structure of the module of derivations – namely we prove in

Proposition 7.1 that the Euler derivation cannot generate a free direct summand of Derk(R) when

C is arithmetically Gorenstein.
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2. Preliminary results and a translation from geometry to algebra

Let R be a standard graded algebra over a field with homogeneous maximal ideal m. Let Ω be the

module of differentials of R and let ε denote the Euler derivation. In this section we prove that the

vector fields studied in [4–6, 15–18, 41, 42] correspond to elements in the R-module Derk(R)/m
−1ε,

see Proposition 2.4.

We begin by reviewing basic definitions related to vector fields; we basically follow the definitions

from the excellent reference [16, p. 4-5].

We adopt the following setting:

Setting 2.1. Let n ≥ 2, and S = k[x1, . . . , xn] the homogeneous coordinate ring of Pn−1
k , with

maximal homogeneous ideal mS . Let I ⊂ S be a saturated homogeneous ideal and R = S/I be

the homogeneous coordinate ring of the corresponding projective scheme X ⊂ Pn−1
k . Let m be the

maximal homogeneous ideal of R and ε the Euler derivation.

The Euler sequence

0 Z Ωk(S) = ⊕ni=1Sdxi
∼= Sn(−1) mS 0

[x1 ... xn]

defines the cotangent sheaf ΩPn−1
k

as Z̃. Notice that Z is the first syzygy module in the Koszul

complex of x1, . . . , xn.

A vector field on Pn−1
k of degree m is a homogeneous map of degree m− 1

η : Z −→ S .

As Ext1S(mS , S) = 0, any such map is the restriction of a map

ξ : Ωk(S) ∼= Sn(−1) S ,
[a1 ... an]

where the ai are forms of degree m.

There is a commutative diagram with exact rows

(2)

0 Z Ωk(S) ∼= Sn(−1) mS 0

0 L Ωk(R) m 0

φ ψ ϱ .

We write H = imφ and notice that this is the image of the second differential in the Koszul

complex built on the R-linear map Ωk(R) −→ R corresponding to the Euler derivation (by the

universal property). In particular, L/H is the first homology of this Koszul complex and hence it

is annihilated by m. Moreover, H = L if I is generated by forms whose degrees are not multiples of

the characteristic. Indeed, in this case the Euler relations shows that ker ψ maps onto ker ϱ, hence

φ is surjective by the Snake Lemma.
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One says that the vector field η leaves X invariant or that X is an integral subscheme of η (if

X is a curve we say that X is a leaf of η) if η induces a map µ : H −→ R, necessarily linear and

homogeneous of degree m− 1,

Z Sn(−1)

H

S

R .

η

ξ

µ

Notice that a map H −→ R corresponds to a unique map L −→ R if I is generated by forms

whose degrees are not multiples of the characteristic or if depthR ≥ 2.

Summarizing, every vector fields η of degree m − 1 that leaves X invariant induces a unique

homogeneous R-linear map µ : H −→ R of degree m− 1.

Proposition 2.2. Adopt Setting 2.1. A homogeneous R-linear map µ : H −→ R is induced by a

vector field that leaves X invariant if and only if µ can be extended to a homogeneous R-linear map

ν : Ωk(R) −→ R.

Proof. Given a vector field η : Z −→ S, the map µ : H −→ R is induced by η if and only if µ is

induced by η ⊗S R. Consider the commutative diagram with exact rows and columns

V U I/mSI

Z ⊗S R Rn(−1) ms ⊗S R 0

H

0 L Ωk(R) m 0 .

R

τ

η⊗R ξ⊗R

µ

⊃

ν

If the map µ is induced by η, hence by η⊗R, then (η⊗R)(V ) = 0 which implies (ξ⊗R)(im τ) = 0.

By the above diagram, coker τ ↪→ I/mSI and therefore m · U ⊂ im τ . Thus m · (ξ ⊗ R)(U) = 0,

which implies that (ξ⊗R)(U) = 0 since depth R > 0. It follows that ξ⊗R induces a homogeneous

R-linear map Ωk(R) −→ R, which gives µ when restricted to H.

Conversely, let ν : Ωk(R) −→ R be a homogeneous R-linear map. It can be lifted to a homoge-

neous S-linear map ξ : Sn(−1) −→ S because Sn(−1) is free. Set η = ξ|Z . Since (ξ ⊗ R)(U) = 0,
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we have (η ⊗R)(V ) = 0 and so η induces a homogeneous R-linear map µ : H −→ R, which is also

the restriction of ν to H. □

We write −∗ = HomR(−, R). In light of Proposition 2.2 we are interested in the image of

Ωk(R)
∗ = Derk(R) in the module H∗. In the next proposition, we identify this image. We use

the fact that there is a natural embedding Derk(R) ↪→ Q ⊗R Derk(R) where Q is the total ring of

fractions of R. For an ideal a of R, we denote its inverse ideal by a−1 := R :Q a. Notice that if

depthR ≥ 2 then m−1 = R.

Example 2.3. Let C be the rational quartic curve given by the parametrization P1
k P3

k .
(s4:s3t:st3:t4)

In this case m−1 is R, the integral closure of R = k[s4, s3t, st3, t4], and R = R[s2t2] ⊂ Q.

Proposition 2.4. Adopt Setting 2.1. There are homogeneous exact sequences

0 −→ Derk(R)/m
−1ε −→ L∗ −→ Ext2R(k,R) ,

0 −→ L∗ −→ H∗ −→ Ext1R(C,R) ,

where C is an R-module annihilated by m.

Therefore, there are natural homogeneous embeddings

Derk(R)/m
−1ε ↪→ L∗ ↪→ H∗,

where the first embedding is an isomorphism if depthR ≥ 3 and the second is an isomorphism if

depthR ≥ 2 or the defining ideal of R is generated by forms whose degrees are not multiples of the

characteristic.

In particular, the vector fields that leave X invariant, when restricted to X, correspond to the

homogeneous elements in the torsionfree R-module Derk(R)/m
−1.

Proof. Consider the Euler sequence

R

0 L Ωk(R) m 0 .

Dualizing into R shows that the first row of

0 m−1 Derk(R) L∗ Ext1R(m, R)

R

is exact and that 1 ∈ R maps to ε ∈ Derk(R). Since Ext1R(m, R)
∼= Ext2R(k,R), we obtain the first

asserted exact sequence.
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The second exact sequence follows because C := L/H = cokerφ is annihilated by m and

depth R > 0, see page 4. We also recall that H = L if the defining ideal of R is generated by

forms whose degrees are not multiples of the characteristic. □

The singular locus of the vector field η is the subscheme Σ = V (I2(N)) ⊂ Pn−1
k , where N is the

2 by n matrix

N =

[
x1 . . . xn

a1 . . . an

]
;

in fact a point P ∈ Pn−1
k does not belong to Σ if and only if Q := [a1(P ) : . . . : an(P )] ∈ Pn−1

k and

there is a unique line passing through P and Q, giving the direction defined by η at P . We observe

that I2(N)R, the ideal defining the subscheme Σ ∩X ⊂ X, is the image of the map µ : H −→ R

induced by η. One usually requires that Σ∩X does not contain an irreducible component of X, in

other words, that the ideal imµ = I2(N)R has positive height in R.

We introduce a new invariant that is going to play an important role throughout the paper.

Definition 2.5. Let R be a non-negatively graded ring and M be a finitely generated R-module.

We define the faithful initial degree of M over R as

findegRM = inf{degm | m ∈M homogenous with annm = 0} .

Notice that findegM ≥ indegM , and equality holds if M is torsionfree and R is a domain.

Corollary 2.6. In addition to Setting 2.1, assume that R has no embedded associated primes. If

m is the smallest degree of a vector field on Pn−1
k that leaves X invariant and whose singular locus

does not contain an irreducible component of X, then

m = 1 + findeg(Derk(R)/m
−1ε) .

Proof. Proposition 2.2 and Proposition 2.4 show that m− 1 is the smallest degree of a homogenous

element in Derk(R)/m
−1ε that, when regarded as a homogenous R-linear map H −→ R, has the

property that ht(imµ) > 0, equivalently grade imµ > 0, or yet equivalently annR µ = 0. □

In the next proposition (and the remark following it) we identify H∗ with a well-known fractional

ideal: the inverse of the image in R of the Jacobian ideal of a general complete intersection mapping

onto R. The resulting embedding Derk(R)/m
−1ε ↪→ J−1(2 − δ) will be useful to compute initial

degrees.

Setting 2.7. In addition to Setting 2.1 assume that X = C ⊂ Pn−1
k is a reduced equidimensional

curve over a perfect field k. Let f1, . . . , fn−2 be forms in I of degrees δ1, . . . , δn−2 that generate

I generically, and let J be the ideal generated by the images in R of the maximal minors of the

Jacobian matrix of f1, . . . , fn−2. Set δ =
∑n−2

j=1 (δj − 1).
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Remark 2.8. We will see, as a consequence of Theorem 3.3(a), that the forms f1, . . . , fn−2 in

Setting 2.7 generate I generically if and only if htJ > 0.

If I is a complete intersection, then f1, . . . , fn−2 can be chosen to be a minimal homogeneous

generating sequence of I, in which case J is the full Jacobian ideal of R.

If k is infinite and I is generated by forms of degrees δ1 ≥ . . . ≥ δm, then f1, . . . , fn−2 can be

taken to be n− 2 general forms of degrees δ1 ≥ . . . ≥ δn−2 in I. In this case f1, . . . , fn−2 also form

a regular sequence.

Proposition 2.9. Adopt Setting 2.7.

(a) There exist natural homogeneous R-linear map∧2Ωk(R) H∧2Ωk(R) J(δ − 2)∧2Ωk(R) ωR ,

where the first two maps are epimorphisms and all maps are isomorphisms generically.

(b) After factoring out the R-torsion of
∧2Ωk(R) and H, or after dualizing into R, the first two

maps become isomorphisms and the last map becomes an embedding,

H/tor(H) ∼= J(δ − 2) ∼= ∧2Ωk(R)/tor(∧2Ωk(R)) ↪→ ωR

and

H∗ ∼= J−1(2− δ) ∼= (∧2Ωk(R))∗ ←↩ ω∗
R .

In particular,

Derk(R)/m
−1ε ↪→ J−1(2− δ) .

If C is smooth and arithmetically Cohen-Macaulay, then the embedding ω∗
R ↪→ (∧2Ωk(R))∗ is an

isomorphism.

Proof. The first map is the second differential onto its image in the Koszul complex of the ho-

momorphism Ωk(R) −→ R corresponding to the Euler derivation. This map is homogeneous and

surjective, and the module H has rank one because the Koszul complex is exact locally on the

punctured spectrum of R.

The second map is a direct consequence of the fact that Ωk(R) is a module of rank 2 generated

by n elements and J is generated by the maximal minors of the matrix consisting of n− 2 columns

of a matrix presenting Ωk(R). Indeed, let x1, . . . , xn be the images in R of the variables of S, extend

f1, . . . , fn−2 to a homogeneous generating sequence f1, . . . , fm for I, let Θ be the image in R of the

transpose of the Jacobian matrix of f1, . . . , fm, let Θ
′
be the submatrix of Θ consisting of the first

n − 2 columns of Θ, and for 1 ≤ i < j ≤ n, let ∆ij be the maximal minor of Θ
′
with rows i and

j deleted. Notice that Θ is a homogeneous presentation matrix of Ωk(R), that In−2(Θ
′
) = J , and

that deg∆ij = δ. Since Ωk(R) is an R-module of rank 2, it follows that Θ has rank n− 2. Now the
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second natural map ∧2Ωk(R) J(δ − 2)

is the homomorphism sending dxi ∧ dxj to (−1)i+j∆ij . This map is well defined because Θ is a

presentation matrix of Ωk(R) and has rank n−2. The map is obviously homogeneous and surjective.

Also notice that J has positive grade in R because the module generated by the columns of Θ′ has

rank n− 2 as it is generically equal to the syzygy module of Ωk(R).

The third map is the canonical class of R over k (see for instance [1, 14, 16, 31, 34]). This map is

homogeneous and it is an isomorphism locally at the regular prime ideals of R.

Since the first two maps are epimorphisms between modules of the same rank, namely one, we

see that these maps are also isomorphisms generically. This completes the proof of part (a). Part

(b) follows from (a); for the last assertion, we also use Proposition 2.4. □

As a first immediate consequence of Proposition 2.4 and Proposition 2.9 we obtain:

Corollary 2.10. Adopt Setting 2.7 and assume that C is smooth and arithmetically Cohen-Macaulay.

If indegω∗
R > a(R), then

Derk(R)/Rε ∼= ω∗
R .

Proof. From Proposition 2.4 and Proposition 2.9(b) we obtain isomorphisms L∗ ∼= H∗ ∼= ω∗
R. Now

again by Proposition 2.4 there is an exact sequence

0 −→ Derk(R)/Rε −→ ω∗
R −→ Ext2R(k,R) .

Thus the assertion follows once we have shown that Ext2R(k,R) is concentrated in degrees ≤ a(R).
For this we may assume that k is infinite. Since R is Cohen-Macaulay, there exists a regular

sequence x1, x2 consisting of linear forms in R. We have

Ext2R(k,R)
∼= HomR(k,R/(x1, x2))(2) ∼= socle(R/(x1, x2))(2) ,

and the last module is concentrated in degrees at most a(R/(x1, x2))− 2 = a(R). □

Corollary 2.11. Adopt Setting 2.7. Let µ be a vector field on Pn−1
k of degree m that leaves C

invariant and whose singular locus does not contain an irreducible component of C, which means

that ht imµ > 0. Then

(imµ)(m− 1) ∼= J(δ − 2) .

Proof. The map µ induces a homogeneous epimorphism of degree m− 1

H imµ .
µ

Recall that the R-module H has rank one. Since grade imµ > 0, the vector field µ induces a

homogeneous isomorphism after factoring out the torsion of H,

H/tor(H) ∼= (imµ)(m− 1) .
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The assertion now follows from Proposition 2.9(b). □

3. The invariants

In this section we discuss the invariants that play a role in our estimates.

a-invariant. In many of our bounds on curves, the a-invariant replaces Castelnuovo-Mumford

regularity if the curve is not arithmetically Cohen-Macaulay. The a-invariant of a Noetherian

standard graded algebra R over a field is defined as a(R) = −indeg(ωR). Local duality implies that

(3) a(R) ≤ regR− dimR

and equality holds if R is Cohen-Macaulay.

Jacobian ideals. In this paper, Jacobian ideals will play an important role. To recall the general

definition, let S = k[x1, . . . , xn] be a polynomial ring over a field k, W ⊂ S a multiplicative subset,

I ⊂W−1S an ideal, and R = (W−1S)/I. Assume that every minimal prime ideal of I has the same

height g and set D = n− g. The Jacobian ideal of the k-algebra R is defined as

JR = JR/k = FittD(Ωk(R)) .

It turns out that D = dimRp + trdegk κ(p) for every p ∈ SpecR, where κ(p) denotes the residue

field of p, see (4). In particular, D only depends on k ⊂ R, does not change when passing to a

nonzero ring of fractions, and coincides with the integers s of Theorem 3.1 and D of Theorem 3.3.

Moreover, for V ⊂ R a multiplicative closed subset, one has JV −1R = V −1JR .

We will use the following version of the Jacobi criterion.

Theorem 3.1 (Jacobi Criterion). Let (A,m, L) be a local algebra essentially of finite type over a

field k, with separable residue field extension k ⊂ L .
Then A is regular if and only if Fitts

(
Ωk(A)

)
= A for some s ≤ dimA+ trdegk L. In this case,

the extension k ⊂ Quot(A) is separable and s = dimA+ trdegk L.

In our estimates we will also need to use partial Jacobian ideals as in Setting 2.7. The next

results give Jacobi-like criteria for such ideals.

For a Noetherian ring R and i ≥ 0 an integer, Spec(R) is said to be connected in dimension i

if i < dimR and Spec(R) cannot be disconnected by removing a closed subset of dimension < i.

Assume d = dimR > 0, then Spec(R) is connected in dimension d− 1 if R is a domain with d <∞
or R is an equidimensional catenary local ring satisfying Serre’s condition S2 (for the latter case

one uses Hartshorne’s Connectedness Lemma [24]).

Recall that the arithmetic rank of an ideal a, ara(a), is the minimal number of elements that

generate a up to radical.

Lemma 3.2. Let T be a Noetherian local ring of dimension d > 0 and assume that T is analytically

irreducible or Cohen-Macaulay or, more generally, Spec(T̂ ) is connected in dimension d − 1. Let
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a ⊂ I be ideals and K = a : I. If Ip = ap for some p ∈ V (I) and
√
I ̸=
√
a, then

ht(I +K) ≤ ara(a) + 1 ≤ µ(a) + 1.

Proof. We may pass to the completion of T to assume that T is a complete local ring and Spec(T )

is connected in dimension d − 1. Set A = T/a and s = ara(a). By Grothendieck’s Connectedness

Theorem [19, 3.1.7], Spec(A) is connected in dimension d− 1− ara(a) = d− 1− s.
On the other hand, our assumptions on a and I mean that V (I) \ V (I + K) ̸= ∅ and V (K) \

V (I + K) ̸= ∅, or equivalently, V (IA) \ V (IA + KA) ̸= ∅ and V (KA) \ V (IA + KA) ̸= ∅. As

Spec(A) = V (IA) ∪ V (KA), we see that Spec(A) \ V (IA + KA) is disconnected. This can only

happen if dimT/(I +K) = dimA/(IA+KA) ≥ d− 1− s. It follows that ht(I +K) ≤ s+ 1. □

Theorem 3.3. Let (T, n, L) be a Cohen-Macaulay local ring essentially of finite type over a perfect

field k. Let I be an ideal of height g and a = (f1, . . . , fg) ⊂ I. Write A = T/a and R = T/I

and assume R is equidimensional of dimension ≥ 2. Set D = dimR + trdegkL and consider the

Jacobian-like ideal J = FittD(R⊗A Ωk(A)) ⊂ R .

(a) ht J ≥ 1 if and only if Ip = ap for every minimal prime p of I and R satisfies Serre’s condition

R0.

(b) If ht J ≥ 2 then I = a is a complete intersection.

(c) ht J ≥ i for some i ≥ 2 if and only if I = a is a complete intersection and R satisfies Serre’s

condition Ri−1.

Proof. We first prove that if p is a prime ideal in V (I) with residue field κ, then

(4) dimRp + trdegkκ = D .

Let m denote the maximal ideal of R. Since R is the localization of a finitely generated k-algebra,

we can write R = R′
m′ , where R′ is a finitely generated k-subalgebra of R and m′ = m ∩R′. Notice

that R′ is equidimensional and set p′ = p ∩R′. Now

dimRp + trdegkκ = ht p′R′ + dimR′/p′R′ = dimR′ = htm′R′ + dimR′/m′R′ = dimR+ trdegkL ,

as claimed.

It remains to prove that if ht J ≥ 1, then Ip = ap for every minimal prime p of I and if ht J ≥ 2,

then I = a. The rest follows from Theorem 3.1 and (4).

We first show that if p ∈ V (I) and Jp = Rp, then Ip = ap. We wish to apply Theorem 3.1 to the

ring Ap with s := D. Notice that

s = D = dimRp + trdegkκ ≤ dimAp + trdegkκ

according to (4) and that Fitts(Ω(Ap)) = Ap because I ⊂ p. Now Theorem 3.1 implies that Ap is

regular and dimAp = dimRp. As Ap is a domain mapping onto Rp, we conclude that ap = Ip as

asserted.
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Thus we have proven that if ht J ≥ 1, then ap = Ip for every minimal prime p of I. On the

other hand, if ht J ≥ 2 we conclude that ap = Ip for every p ∈ V (I) with dimTp ≤ g + 1. So for

K := a : I, we have ht(I +K) ≥ g+2 > µ(a) + 1. Also ap = Ip for some p ∈ V (I), in fact for every

minimal prime p of I. Therefore Lemma 3.2 shows that
√
a =
√
I. In particular, a is a complete

intersection. Thus every associated primes p of a is a minimal prime of a, hence a minimal prime of

I because
√
a =
√
I. Therefore, ap = Ip. Since this holds for every associated prime of a, we obtain

a = I. □

Tjurina number. The estimates for plane curves in [12, 15] use the sum of the Tjurina numbers at

the singular points. To allow for curves in projective spaces of arbitrary dimension, we replace the

sum of the Tjurina numbers by the degree of the singular locus endowed with the scheme structure

given by the Jacobian ideal, which is the multiplicity of the homogenous coordinate ring of the

curve modulo its Jacobian ideal. If the curve is locally a complete intersection, as is the case for

any plane curve, then the sum of the Tjurina numbers and the degree of the singular locus coincide,

see Corollary 3.6.

Let A be a local ring essentially of finite type over a field k. By T1(A/k) we denote the first

cotangent cohomology of the k-algebra A. If k is perfect and A is reduced, then T1(A/k) ∼=
Ext1A(Ωk(A), A) . The module T1(A/k) has finite length whenever k is perfect and A has an isolated

singularity; this length is called the Tjurina number of A and denoted by τ(A). If the residue

field extension is trivial, then τ(A) is the embedding dimension of the formal moduli space of A,

the parameter space of the versal deformation of the k-algebra Â. The total Tjurina number of a

reduced curve C ⊂ Pn−1
k over a perfect field is defined as τ(C) =

∑
p∈Sing(C)

τ(OC,p).

Lemma 3.4. Let k be a perfect field, X ⊂ Pn−1
k be a reduced and equidimensional subscheme, and

Y ⊂ X be a subvariety. Let R be the homogenous coordinate ring of X, let p ⊂ R be the prime ideal

defining Y , and write T = Rp and A = OX,Y .

(a) T ∼= A(x) for every x ∈ R1 \ p ; any such x is transcendental over A and A(x) denotes the

localization of the polynomial ring A[x] at the extension of the maximal ideal of A.

(b) Ωk(T ) ∼= (Ωk(A)⊗A T )⊕ Tdx , where T dx ∼= T .

(c) JT/k = JA/kT and T1(T/k) ∼= T1(A/k)⊗A T .

Proof. Part (a) is well known, part (b) is an immediate consequence of (a), and part (c) follows

from (b). □

Proposition 3.5. Let k be a perfect field and A be a local k-algebra essentially of finite type with

algebraic residue field extension. If A is a reduced complete intersection of dimension one, then

τ(A) = λ(A/JA).
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Proof. Notice that projdimAΩk(A) ≤ 1 and rankAΩk(A) = dimA = 1. Thus [43, Satz] im-

plies λ(A/JA) = λ(tor(Ωk(A))). Since A is Gorenstein, local duality gives λ(tor(Ωk(A))) =

λ(Ext1A(Ωk(A), A)). As Ext
1
A(Ωk(A), A)

∼= T1(A/k), the assertion now follows. □

The next corollary expresses the total Tjurina number of a local complete intersection curve,

which is defined in terms of local invariants of the singular points, as a global invariant, the degree

of the singular scheme of the curve, which can be computed without knowing the singularities. It

is this global invariant that replaces the global Tjurina number in our estimates when the curves

need not be a local complete intersection.

Corollary 3.6. Let k be a perfect field and C ⊂ Pn−1
k be a singular reduced curve that is locally a

complete intersection. Write R for the homogeneous coordinate ring of C. Then

τ(C) = e(R/JR) .

Proof. Write m for the homogenous maximal ideal of R. In this case we have

τ(C) =
∑

p∈Sing(C)

λOC,p(OC,p/JOC,p) by Proposition 3.5

=
∑

p∈V (JR)\{m}

λRp(Rp/JRp) by Lemma 3.4(c)

= e(R/JR) by the associativity formula for multiplicity.

□

Loewy multiplicity. Besides the multiplicity of the homogeneous coordinate ring of a curve modulo

its Jacobian ideal, we will also consider what we call the Loewy multiplicity, which is defined by

replacing length by Loewy length in the associativity formula for multiplicity.

The Loewy length of a module M of finite length over a local ring (A,m) is the smallest integer

s ≥ 0 so that msM = 0. The Loewy length satisfies the inequality ℓℓ(M) ≤ λ(M), which is an

equality if and only if M and mM are cyclic if and only if every submodule of M is cyclic. We will

use a strengthening of this inequality:

Proposition 3.7. Let A be the local ring of a point on a reduced plane curve over a perfect field

and write e = e(A). Then

ℓℓ(A/JA) ≤ λ(A/JA)−
(
e− 1

2

)
.

Proof. We may assume that A = S/(f) , where S = k[x, y](x,y) . Let n be the maximal ideal of S

and m be the maximal ideal of B := A/JA . We have f ∈ ne and so (∂f∂x ,
∂f
∂y ) ⊂ ne−1 . It follows that

mi/mi+1 ∼= ni/ni+1 ∼= ki+1 for i ≤ e− 2 . Therefore

λ(A/JA)− ℓℓ(A/JA) ≥
e−2∑
i=0

(λ(mi/mi+1)− 1) ≥
(
e− 1

2

)
.
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□

Let M be a finitely generated module over a Noetherian ring R, where either R is local or else

M is graded and R is positively graded over an Artinian local ring. Recall that

e(M) =
∑

λ(Mp) · e(R/p) ,

where p ranges over all prime ideals of maximal dimension in Supp(M). Analogously, we define the

Loewy multiplicity of M as

Lmult(M) :=
∑

ℓℓ(Mp) · e(R/p) .

Clearly, Lmult(M) ≤ e(M) and equality holds if and only if for every p as above, everyRp-submodule

of Mp is cyclic.

Singularity degree and genus. If A is an analytically unramified Noetherian local ring, with integral

closure A, then the A-module A/A has finite length if and only if A is normal locally on the

punctured spectrum. In this case, σ(A) := λ(A/A) is called the singularity degree of A. The

singularity degree of a reduced curve C ⊂ Pn−1
k is defined as

σ(C) =
∑

p∈Sing(C)

σ(OC,p) .

An argument as in the proof of Corollary 3.6 shows that σ(C) = e(R/R) if C is singular, where R

is the homogeneous coordinate ring of C.
The singularity degree of a curve is closely related to its arithmetic and geometric genus. Let

X ⊂ Pn−1
k be a reduced subscheme over a field k, with homogeneous coordinate ring R. Let m be

the homogeneous maximal ideal and p1, . . . , ps the minimal primes of R, and write Ri = R/pi. Each

Ri are positively graded algebra over a finite field extension ki of k, and R is a positively graded

algebra over the Artinian ring K := ×ki. A suitable Veronese subring of R is a standard graded

algebra over K and is the homogeneous coordinate ring of the normalization of X embedded into a

projective space over K.

We describe, in passing, an embedding of the normalization into a projective space over the field

k, when k is algebraically closed. In this case, ki = k and we may define the natural projections

πi : Ri ↠ k. We consider the fiber product R̃ := {(ai) ∈ ×Ri | πi(ai) = πj(aj) ∀ i ̸= j}. One

has R ⊂ R̃ ⊂ R and mR ⊂ R̃. The ring R̃ is a positively graded algebra over the field k, and

one sees that a Veronese subring of R̃ is the homogeneous coordinate ring of the normalization

of X embedded into a projective space over k. If X is equidimensional, then ω
R̃
∼= ωR := ×ωRi

.

Also notice that the degree zero component of the canonical module is unchanged by passing to a

Veronese subring.

Now let C ⊂ Pn−1
k be a reduced curve over a field, with homogeneous coordinate ring R. The

arithmetic genus pa of C is 1 minus the constant term of the Hilbert polynomial of R. If k is

algebraically closed, the geometric genus pg of C can be defined as dimk[ωR]0 = dimk[ωR̃]0.
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The following lemma and proposition are well known, we give a proof for the convenience of the

reader.

Lemma 3.8. Let C ⊂ Pnk be a reduced arithmetically Cohen-Macaulay curve over a field k, with

arithmetic genus pa and homogeneous coordinate ring R. Then

pa = dimk[ωR]0 .

Proof. Let m be the homogeneous maximal ideal of R, and let h and p denote the Hilbert function

and the Hilbert polynomial of R, respectively. One has

pa = h(0)− p(0) = dimk[H
2
m(R)]0 = dimk[ωR]0 ,

where the second equality follows from the Grothendieck-Serre formula and the third equality is a

consequence of local duality. □

Proposition 3.9. Let k be an algebraically closed field and C ⊂ Pn−1
k be a reduced curve with s

irreducible components, arithmetic genus pa, geometric genus pg, and singularity degree σ. One has

pa − pg = σ − s+ 1 .

Proof. Let R be the homogeneous coordinate ring of C and R its integral closure. We may assume

that R and R are standard graded after passing to Veronese subrings; this does not change the local

rings of C, the constant term of the Hilbert polynomial of R, which is 1 − pa, and the degree zero

component of ωR . So pg = dimk[ωR]0 .

We compare the constant terms of the Hilbert polynomials of the graded R-modules in the exact

sequence

0 −→ R −→ R −→ R/R −→ 0 .

The constant term of the Hilbert polynomial of R is 1 − pa. One has R = ×si=1Ri, where Ri are

standard graded Cohen-Macaulay algebras over k. Applying Lemma 3.8 we see that the constant

term of the Hilbert polynomial of R is

s∑
i=1

(1− dimk[ωRi
]0) = s− dimk[ωR]0 = s− pg .

Finally, the constant term of the Hilbert polynomial of R/R is σ. Now the additivity of the Hilbert

polynomial in short exact sequences implies that

s− pg = 1− pa + σ,

as claimed. □
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4. Lower bounds for hypersurfaces and curves with at most planar singularities

One of the main results of this section is an estimate for the degree of a vector field in terms of the

a-invariant of R, the number of singular points, and the Loewy multiplicity modulo the Jacobian

ideal, see Theorem 4.10. It says that if C has only plane singularities, then

findeg(Derk(R)/m
−1ε) ≥ a(R) + 1 + |Sing(C)| − Lmult(R/Jac(R)) .

If C has only ordinary nodes as singularities, then |Sing(C)| − Lmult(R/Jac(R)) = 0 and we obtain

the inequality indeg(Derk(R)/m
−1ε) ≥ a(R) + 1, which we prove to be an equality when C is

arithmetically Gorenstein, see Corollary 6.2. The case of ordinary nodes had been treated before

with the additional assumption that, first, C is a plane curve [7], then, C is a complete intersection

[4], and, finally, C is arithmetically Cohen-Macaulay [16,17].

Proposition 4.1. Let S = k[x1, . . . , xn] be a polynomial ring in n variables over a field and let mS

denote its maximal homogeneous ideal. Let f be a homogeneous polynomial of degree d and assume

that d is not a multiple of the characteristic. Denote the partial derivatives of f by f1, . . . , fn and

let B, Z, and H be the modules of first boundaries, cycles, and homology of the Koszul complex of

f1, . . . , fn. Write R = S/(f).

(a) There are natural epimorphisms of homogeneous S-modules

Z(d) Derk(R)/Rε (Z/mSB)(d) ;

in particular,

k ⊗S Z(d) ∼= k ⊗R Derk(R)/Rε

(b)

µ(Derk(R)/Rε) = β2S

(
S

(f1, . . . , fn)

)
≤ (d− 1)n

(c)

indeg(Derk(R)/Rε) = indeg(Z)− d = min{d− 2, indeg(H)− d}.

Proof. Dualizing the exact sequence

R(−d) Rn(−1) Ωk(R) 0
[f1,...,fn]t

into R, we obtain

(5) 0 Derk(R) ⊕ni=1R∂/∂xi R(d)
[f1,...,fn]

.

There is a homogeneous map

φ : Z(d) −→ Derk(R)
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induced by the diagram

(6)

0 Derk(R) ⊕ni=1R∂/∂xi R(d)

0 Z(d) ⊕ni=1Sei S(d)

[f1,...,fn]

φ

[f1,...,fn]

where the homogeneous basis elements ei have degree −1.
We claim that the composition ψ

Z(d) Derk(R) Derk(R)/Rε

is surjective. Let g =
∑
bi ∂/∂xi ∈ Derk(R). According to (5),

∑
bifi = cf for some c ∈ S.

Using the Euler relation f = 1
d(x1f1 + . . . + xnfn), we obtain

∑
(bi − c

dxi)fi = 0. Therefore∑
(bi − c

dxi)ei ∈ Z(d) and φ(
∑

(bi − c
dxi)ei) = g − c

dε.

To show part (a) it suffices to show that ker ψ ⊂ mSB. The diagram (6) shows that

(7) kerψ = (fSn + S
n∑
i=1

xiei) ∩ Z(d) .

Let z =
∑n

i=1 αiei ∈ ker ψ. According to (7) there exists a1, . . . , an, b in S so that

(8) z =
n∑
i=1

aifei + b
n∑
i=1

xiei .

Since z is a syzygy of f1, . . . , fn we obtain

0 =

n∑
i=1

αifi =

n∑
i=1

aiffi + b

n∑
i=1

xifi =

n∑
i=1

aiffi + dbf .

Dividing by f it follows that

b = −1

d

n∑
i=1

aifi .

Substituting the above expression of b into (8) and using the Euler relation we see that

αi =
n∑
j=1

1

d
(aixj − ajxi)fj .

Since the n×n matrix (aixj −ajxi) is alternating and has entries in mS it follows that z ∈ mSB(d).
The equality in (b) and the first equality in (c) are direct consequences of the isomorphism in

(a). The inequality in (b) follows from [11, 3.10]. For the second equality in (c), notice that

indeg(Z)−d ≤ indeg(B)−d = d−2 and indeg(Z) ≤ indeg(H) and that either indeg(Z) = indeg(B)
or else indeg(Z) = indeg(H). □

The next theorem is a generalization of [18, Theorem 2.5] from plane curves to hypersurfaces.
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Theorem 4.2 (The hypersurface case). Let k be a perfect field and X ⊂ Pn−1
k be a reduced hypersur-

face of degree d. Let R be the homogenous coordinate ring of X and JR the Jacobian ideal. Assume

n ≥ 3 and that d is not a multiple of the characteristic. If X has at most isolated singularities, then

indeg(Derk(R)/Rε) =

min{d− 2, (n− 1)(d− 2)− a(R/JR)− 2}

d− 2 if X is smooth .

Proof. We may assume that k is infinite. Let S = k[x1, . . . , xn] be a polynomial ring in n variables,

and write R = S/(f) with f a form of degree d. Denote the partial derivatives of f by f1, . . . , fn

and set J = (f1, . . . , fn). Notice that JR is the image of J in R. Since d is a unit in k, the Euler

relation shows that f ∈ J . Therefore htJ ≥ n − 1, and after a linear change of variables we can

assume that f1, . . . , fn−1 form a regular sequence.

Let H be the first homology module of the Koszul complex of f1, . . . , fn. If X is smooth, then

H = 0 and the claim follows from Proposition 4.1(c). Otherwise htJ = n− 1 and

H(d− 1) =
(f1, . . . , fn−1) :S J

(f1, . . . , fn−1)
,

as f1, . . . , fn−1 form a regular sequence. Now

(f1, . . . , fn−1) :S J
(f1, . . . , fn−1)

∼= ωS/J (n− (n− 1)(d− 1))

= ωR/JR(1− (n− 1)(d− 2))

and the theorem follows again by Proposition 4.1(c) because indegωR/JR = −a(R/JR). □

The connection between the degree of vector fields and the degree of syzygies of Jacobian ideals,

which is used in the previous proof, was already observed in [16, Remark 9]. The use of the conductor

and the integral closure in the proof of Proposition 4.4 below was inspired by [13, proof of Corollary

5.1].

Lemma 4.3. Let R be a standard graded Noetherian algebra over a field and b1, . . . , bt homogeneous

ideals of R so that the rings R/bi have dimension 1. Then

a(R/b1 · . . . · bt) ≤
t∑
i=1

a(R/bi) + 2t− 2.

Proof. Let S be a standard graded polynomial ring over the ground field of R, mapping homoge-

neously onto R, and let b̃i denote the preimage of bi in S. Since S/b̃1 · . . . · b̃t −→ R/b1 · . . . · bt is a

surjection of rings having the same dimension, a(R/b1 · . . . · bt) ≤ a(S/b̃1 · . . . · b̃t). Hence it suffices

to prove our assertion for the case that R is a polynomial ring, which we now assume.

If bunm denotes the unmixed part of a homogeneous ideal b of the polynomial ring R such that

R/b has dimension 1, then R/bunm is Cohen-Macaulay and

a(R/b) = a(R/bunm) = reg(R/bunm)− 1 = reg(bunm)− 2 ≤ reg(b)− 2.
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Thus

a(R/b1 · . . . · bt) ≤ reg(b1 · . . . · bt)− 2.

On the other hand according to [40, Theorem 1.8],

reg(b1 · . . . · bt) ≤
t∑
i=1

reg(bi) = 2t+

t∑
i=1

a(R/bi),

which completes the proof. □

Proposition 4.4 (The plane curve case). Let k be an algebraically closed field and C ⊂ P2
k be a

reduced curve of degree d. Let R be the homogenous coordinate ring of C and JR be the Jacobian

ideal. Assume that d is not a multiple of the characteristic. One has

indeg(Derk(R)/Rε) =

min{d− 2, 2d− 6− a(R/JR)}

d− 2 if C is smooth

≥


d− 3 + | Sing(C)| − Lmult(R/JR)

d− 2 + | Sing(C)| − Lmult(R/JR) if C is irreducible

d− 2 if C is smooth

≥


d− 3 + | Sing(C)|+

∑
p∈Sing(C)

(e(OC,p)−1
2

)
− τ(C)

d− 2 + | Sing(C)|+
∑

p∈Sing(C)

(e(OC,p)−1
2

)
− τ(C) if C is irreducible

d− 2 if C is smooth .

Proof. The equality is a special case of Theorem 4.2, and the second inequality is a consequence

of the bound Lmult(R/JR) ≤ τ(C) −
∑

p∈Sing(C)

(e(OC,p)−1
2

)
, which follows from Corollary 3.6 and

Proposition 3.7.

To prove the first inequality, we estimate a(R/JR) when C is singular. Set J = JR. Let p1, . . . , pt

be the minimal primes of J , which are necessarily of height one; they correspond to the singular

points of C and therefore t = | Sing(C)|. Write si = ℓℓ(Rpi/Jpi) for the Loewy length of Rpi/Jpi .

Let f = R :R R denote the conductor of R and notice that f ⊂
√
J . One has

Junm ⊃ ∩ psii ⊃
√
J · ps1−1

1 · · · pst−1
t ⊃ f · ps1−1

1 · · · pst−1
t .

It follows that

a(R/J) = a(R/Junm) ≤ a(R/f · ps1−1
1 · · · pst−1

t )

≤ a(R/f) +

t∑
i=1

(si − 1) by Lemma 4.3

= a(R/f) + Lmult(R/J)− | Sing(C)| .
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To estimate a(R/f) we dualize the short exact sequence

0→ f→ R→ R/f→ 0

into ωR ∼= R(d − 3). As HomR(f, R) = R, we obtain ωR/f = (R/R)(d − 3). It follows that

a(R/f) = − indeg(R/R) + d− 3. Therefore

a(R/J) ≤ − indeg(R/R) + d− 3 + Lmult(R/J)− | Sing(C)| .

Finally, we have indeg(R/R) ≥ 0 because R is reduced, and indeg(R/R) ≥ 1 if R is a domain

since k is algebraically closed. □

The bounds of Proposition 4.4 can be generalized to curves which are not necessarily planar, see

Theorem 4.10. For plane curves on the other hand, they can be improved as follows.

Remark 4.5. We use the assumptions and the notation of Proposition 4.4 and its proof. We write

s = max{si} and consider the sets of reduced points Uj =
⋃
si≥j V (pi) ⊂ P2

k. One has

indeg(Derk(R)/Rε) ≥


min{d− 2, 2d− 4−

s∑
j=1

reg(Uj)}

d− 2 if C is smooth.

Proof. Write Ij = I(Uj) for the reduced defining ideal of Uj and notice that Junm ⊃
s∏
j=1

Ij . Now

apply Lemma 4.3 as in the previous proof to see that

a(R/J) ≤
s∑
j=1

a(R/Ij) + 2s− 2 =

s∑
j=1

reg(Uj)− 2.

□

In order to deal with subschemes that are not necessarily arithmetically Gorenstein, we introduce

the following notion:

Definition 4.6. Let R be a standard graded algebra over a field. We say that R has the generalized

Cayley-Bacharach property if findegωR = indegωR.

Examples of rings with the generalized Cayley-Bacharach property are domains, Gorenstein rings,

and more generally level rings. If the ground field is algebraically closed and R is reduced and one-

dimensional, then R has the generalized Cayley-Bacharach property if and only if the corresponding

set of points in projective space has the Cayley-Bacharach property in the usual sense (see [23]).

The next theorem is inspired by work of Esteves [16, Theorem 17]. We do not require arithmetic

Cohen-Macaulayness as in [16] and our proof is short and elementary. We will say that a ring

extension A ⊂ R is birational if R is a torsionfree A-module and the induced map Quot(A) −→
Quot(R) is an isomorphism. The following fact, which is a special case of [44, Proposition 5.2], will

be used frequently.
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Lemma 4.7. Let k be an infinite perfect field and let R be a reduced and equidimensional k-algebra

of dimension D generated by y1, . . . , yn. If A is the k-subalgebra generated by D+1 general k-linear

combinations of y1, . . . , yn, then A ⊂ R is a finite and birational extension and the induced map

Quot(A) −→ Quot(A)⊗A R is an isomorphism.

Theorem 4.8. Let k be perfect field and let A ⊂ R be a finite and birational homogeneous extension

of standard graded k-algebras. Assume that R is reduced and equidimensional of dimension at least

two, with maximal homogenous ideal m, and that A is Gorenstein.

One has

findeg(Derk(R)/m
−1εR) ≥ indeg(Derk(A)/AεA)− a(A) + a(R)

and

findeg(Derk(A)/AεA) ≥ indeg(Derk(R)/m
−1εR)− a(A) + a(R) .

If in addition R has the generalized Cayley-Bacharach property, then

findeg(Derk(R)/m
−1εR) ≥ findeg(Derk(A)/AεA)− a(A) + a(R)

indeg(Derk(R)/m
−1εR) ≥ indeg(Derk(A)/AεA)− a(A) + a(R)

and

findeg(Derk(A)/AεA) ≥ findeg(Derk(R)/m
−1εR)− a(A) + a(R)

indeg(Derk(A)/AεA) ≥ indeg(Derk(R)/m
−1εR)− a(A) + a(R) .

Notice that the inverse of the maximal homogeneous ideal of A is equal to A since depthA ≥ 2.

Proof. We consider the conductor

f = A :A R ∼= HomA(R,A) ∼= HomA(R,ωA)(−a(A)) ∼= ωR(−a(A)) .

Notice that indeg f = a(A) − a(R). In addition, f annihilates the R-module ΩA(R); indeed, if

d : R −→ ΩA(R) denotes the universal A-derivation of R, then for any a ∈ f and r ∈ R,

a d(r) = d(ar)− r d(a) = 0

since both ar and a are in A.

In the exact sequence

R⊗A Ωk(A)
α−→ Ωk(R) −→ ΩA(R) −→ 0 ,

kerα and ΩA(R) are R-torsion modules because the extension A ⊂ R is birational. Thus this

sequence induces an exact sequence

0 HomR(ΩA(R), R) HomR(Ωk(R), R) HomA(Ωk(A), R) Ext1R(ΩA(R), R)

0 Derk(R) Derk(A,R)

∼ = ∼ =

β
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Observe that β(εR) = εA and that Ext1R(ΩA(R), R) is annihilated by f. Thus we obtain an embed-

ding

Derk(R)/m
−1εR Derk(A,R)/m

−1εA
φ

whose cokernel is annihilated by f.

On the other hand, the obvious inclusion of Derk(A) ⊂ Derk(A,R) induces an A-linear map

ψ : Derk(A)/AεA −→ Derk(A,R)/m
−1εA .

Since the extension A ⊂ R is birational, this map is generically injective and hence it is injective

because Derk(A)/AεA is torsionfree as an A-module according to Proposition 2.4.

Now we have embeddings

(9)

Derk(R)/m
−1εR Derk(A,R)/m

−1εA

Derk(A)/AεA ,

φ

ψ

where the cokernels of both φ and ψ are annihilated by f. Thus we obtain containments

(10) f · imφ ⊂ imψ

(11) f · imψ ⊂ imφ .

The inclusion (10) shows that

indeg f+ findeg(Derk(R)/m
−1εR) ≥ indeg(Derk(A)/AεA)

findeg f+ indeg(Derk(R)/m
−1εR) ≥ indeg(Derk(A)/AεA)

findeg f+ findeg(Derk(R)/m
−1εR) ≥ findeg(Derk(A)/AεA) ;

in the second inequality we use the fact that Derk(R)/m
−1εR is torsionfree as an R-module (see

Proposition 2.4). The inclusion (11) implies the same inequalities with the roles of Derk(R)/m
−1εR

and Derk(A)/AεA reversed.

Finally recall that indeg f = a(A)−a(R) and that findeg f = a(A)−a(R) if R has the generalized

Cayley-Bacharach property. □

Proposition 4.9. In addition to Setting 2.1 assume that R is reduced. Let p be a minimal prime

ideal of R so that Rp is a field and write R′ = R/p and m′ = m/p. Then findeg(Derk(R)/m
−1εR) ≥

findeg(Derk(R
′)/m′−1εR′) .

Proof. Since R is reduced, every derivation in Derk(R) induces a derivation in Derk(R
′), see for

instance [9, page 614]. This gives a natural map Derk(R) −→ Derk(R
′). The projection R ↠ R′

induces a map φ : Quot(R) −→ Quot(R′), which is surjective since R is reduced. It follows that

φ(m−1) ⊂ m′−1. Combining these facts we obtain a natural map

ψ : Derk(R)/m
−1εR −→ Derk(R

′)/m′−1εR′ .
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Notice that ψp is an isomorphism since R is reduced. It follows that if ν ∈ Derk(R)/m
−1εR with

annR ν = 0, then ann′R ψ(ν) = 0, which proves the lemma. □

In some items of the next theorem we will assume that the curve C is locally irreducible. By this

we mean that the local ring at every point of C is a domain, or equivalently, that C is the disjoint

union of its irreducible components.

Theorem 4.10 (The case of curves with plane singularities). Let k be an algebraically closed field

and C ⊂ Pn−1
k be a reduced curve of degree d. Let R be the homogeneous coordinate ring of C, with

maximal homogeneous ideal m, and let JR be the Jacobian ideal. Assume d is not a multiple of the

characteristic. If C has at most plane singularities, then

findeg(Derk(R)/m
−1ε) ≥

a(R) + | Sing(C)| − Lmult(R/JR)

a(R) + 1 + |Sing(C)| − Lmult(R/JR) if C is locally irreducible

≥


a(R) + | Sing(C)|+

∑
p∈Sing(C)

(e(OC,p)−1
2

)
− τ(C)

a(R) + 1 + |Sing(C)|+
∑

p∈Sing(C)

(e(OC,p)−1
2

)
− τ(C) if C is locally irreducible.

Proof. It suffices to prove the first inequality. We may assume that n ≥ 3. Let x, y, z be general

linear forms in R and write A = k[x, y, z] ⊂ R. Notice A ⊂ R is a finite and birational homogeneous

extension of standard graded k-algebras by Lemma 4.7, and A is the homogeneous coordinate ring

of a plane curve D. Write JA for the Jacobian ideal of A. By Theorem 4.8 and Proposition 4.4 one

has

findeg(Derk(R)/m
−1εR) ≥ indeg(Derk(A)/AεA)− a(A) + a(R)

and

indeg(Derk(A)/AεA) ≥

e(A)− 3 + | Sing(D)| − Lmult(A/JA)

e(A)− 2 + | Sing(D)| − Lmult(A/JA) if D is irreducible .

Since D is a plane curve we have a(A) = e(A)− 3. Thus we obtain

findeg(Derk(R)/m
−1εR) ≥

a(R) + |Sing(D)| − Lmult(A/JA)

a(R) + 1 + |Sing(D)| − Lmult(A/JA) if D is irreducible .

Next we show that |Sing(D)| − Lmult(A/JA) = |Sing(C)| − Lmult(R/JR). Let p1, . . . , pt be the

distinct minimal prime ideals of JR having height one. As edimRpi = 2, it follows that Rpi = Api∩A,

see [44, Proposition 5.2] for instance. In particular, ℓℓ((R/JR)pi) = ℓℓ((A/JA)pi∩A). The ring A

may acquire additional prime ideals q1, . . . , qs of height one where it is not regular, but they all

correspond to ordinary nodes of D, see [25, Chapter IV, Proposition 3.5 and Theorem 3.10], in other
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words ℓℓ((A/JA)qi) = 1. It follows that

Lmult(A/JA)− Lmult(R/JR) = s = | Sing(D)| − | Sing(C)| ,

as required. This completes the proof of the first inequality if the assumption of C being local

irreducible is replaced by C being irreducible.

It remains to reduce the locally irreducible case to the irreducible case. Thus assume that C is

locally irreducible and let ℘1, . . . , ℘r be the minimal prime ideals of R. Consider the exact sequence

of R-modules

0 −→ R
ι−→ ×ri=1(R/℘i) −→ N −→ 0 .

Since C is locally irreducible, the map ι is an isomorphism locally on the punctured spectrum of R,

so N is a module of finite length. It follows that ωR ∼= ×ri=1ωR/℘i
and therefore

a(R) = max{a(R/℘i) | 1 ≤ i ≤ r} .

Now let ℘ be a minimal prime of R such that a(R) = a(R/℘), write R′ = R/℘, and let C′ be the

corresponding irreducible curve. We obtain

findeg(Derk(R)/m
−1εR) ≥ findeg(Derk(R

′)/m′−1εR′) by Proposition 4.9

≥ a(R′) + 1 + | Sing(C′)| − Lmult(R′/JR′) since C′ is irreducible

= a(R) + 1 + |Sing(C′)| − Lmult(R′/JR′)

≥ a(R) + 1 + |Sing(C)| − Lmult(R/JR) ,

where the last inequality holds because C is the disjoint union of its irreducible components. □

Remark 4.11. If in addition to the assumption of Theorem 4.10, the ring R satisfies the generalized

Cayley-Bacharach property, then according to Theorem 4.8

indeg(Derk(R)/m
−1ε) ≥ a(R) + |Sing(C)| − Lmult(R/JR)

≥ a(R) + |Sing(C)|+
∑

p∈Sing(C)

(
e(OC,p)− 1

2

)
− τ(C) .

The next result was first proved for plane curves in [7], then for complete intersection curves in

[4], and finally for arithmetically Cohen-Macaulay curves in [16, Theorem 1].

Corollary 4.12 (The case of curves with ordinary nodes). Let k be an algebraically closed field

and C ⊂ Pn−1
k be a reduced curve of degree d. Let R be the homogenous coordinate ring of C with

maximal homogeneous ideal m. Assume d is not a multiple of the characteristic. If C has at most

ordinary nodes as singularities, then

findeg(Derk(R)/m
−1ε) ≥

a(R)a(R) + 1 if C is locally irreducible .
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Proof. The assertion follows from Theorem 4.10, because Lmult(R/JR) = |Sing(C)| if (and only if)

C has only ordinary nodes as singularities. □

Corollary 4.13. Let k be a perfect field and C ⊂ Pn−1
k be a curve of degree d. Let R be the

homogenous coordinate ring of C with maximal homogeneous ideal m. Assume d is not a multiple

of the characteristic. If C is smooth, then

findeg(Derk(R)/m
−1ε) ≥ a(R) + 1 .

Corollary 4.14. Let k be a perfect field and C ⊂ Pn−1
k be a curve of degree d. Let R be the

homogenous coordinate ring of C with maximal homogeneous ideal m. Assume d is not a multiple

of the characteristic. If C is smooth and arithemetically Gorenstein, then

Derk(R)/Rε ∼= m(−a(R)) .

In particular, indeg(Derk(R)/Rε) = findeg(Derk(R)/Rε) = a(R) + 1 .

Proof. First notice that R is a domain, hence indeg(Derk(R)/Rε) = findeg(Derk(R)/Rε). As in the

proof of Corollary 2.10 we have an exact sequence

0 −→ Derk(R)/Rε −→ ω∗
R −→ Ext2R(k,R) ,

where Ext2R(k,R) is concentrated in degrees ≤ a(R). Since indeg(Derk(R)/Rε) ≥ a(R) + 1 by

Corollary 4.13, we conclude that

Derk(R)/Rε ∼= (ω∗
R)≥a(R)+1 .

Now the assertion follows because, ω∗
R
∼= R(−a(R)). □

5. Lower bounds in terms of algebraic and geometric genus

The main results of this section are the estimates on the degrees of vector fields of Theorem 5.6

and Theorem 5.10. Our estimates will require Corollary 5.3 below, a remarkable lower bound for

the Castelnuovo-Mumford regularity of R/(imµ)sat that was proved in [17, 4.5]. As in [17], we

deduce this bound from the nonvanishing of a map between cohomology modules. Our proof of the

nonvanishing, Theorem 5.2, uses general properties of the Koszul complex and of regular differential

forms, and is different from the proofs of the corresponding results [17, 2.1 and 2.2]. In Section

7 we will apply Theorem 5.2 to obtain structural information about the module Derk(R) and the

natural map Derk(R)/m
−1ε −→ L∗, see Proposition 7.1 and Proposition 7.4.

Lemma 5.1. Let k be a field, let d and n be integers with 1 < d < n, let x1, . . . , xn be variables over

k, and consider the standard graded polynomial rings A = k[x1, . . . , xd] ⊂ D = k[x1, . . . , xn] with

homogeneous maximal ideals n and N, respectively. By B•(A) and B•(D) we denote the boundaries

in the Koszul complexes K•(A) = K•(x1, . . . , xd;A) and K•(D) = K•(x1, . . . , xn;D).
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(a) There exists a homogeneous A-linear map δ fitting in the commutative diagram

Hd
N(Bd−1(D)) Hd

n (Bd−1(D))

Hd−1
n (Bd−2(A)) Hd

n (Bd−1(A)) .

α

δ

γ

β

Here α is the natural map arising from the fact that n ⊂ N, β is induced by the morphism of

complexes K•(A) −→ K•(D), and γ is the connecting homomorphism in the long exact sequence

associated to the exact sequence 0→ Bd−1(A)→ Kd−1(A)→ Bd−2(A)→ 0.

(b) The map γ as in item (a) is an isomorphism in degree zero.

Proof. To prove part (a) we first show that the map α is injective. Write B = Bd−1(D) and

Ni = (x1, . . . , xi)D, and notice that Hd
n (B) = Hd

Nd
(B). By [2, 8.1.2], for n ≥ i > d there are natural

exact sequences

Hd−1
Ni−1

(Bxi) −→ Hd
Ni
(B) −→ Hd

Ni−1
(B) .

As Bxi
∼= ⊕Dxi and grade(Ni−1Dxi) ≥ i− 1 ≥ d it follows that Hd−1

Ni−1
(Bxi) = 0, hence Hd

Ni
(B) ↪→

Hd
Ni−1

(B) for n ≥ i > d. This shows that α is injective.

The morphism of complexes K•(A) −→ K•(D) and the naturality of the long exact sequence of

local cohomology gives a commutative diagram

Hd−1
n (Bd−2(D)) Hd

n (Bd−1(D))

Hd−1
n (Bd−2(A)) Hd

n (Bd−1(A)) .

ε

γ

Since α is an isomorphism onto its image, the existence of δ will follow once we have shown that

im ε ⊂ imα. In fact, we are now going to prove that

im ε = socD(H
d
n (Bd−1(D))) = imα .

The acyclicity of K•(A) and K•(D) imply that for 0 ≤ i ≤ d− 2,

H i+1
n (Bi(A)) ∼= H0(k) = k as graded A-modules, and

H i+1
n (Bi(D)) ∼= H0(k) = k as graded D-modules .

In particular, we have homogeneous D-isomorphisms

H i+1
N (Bi(D)) ∼= k for 0 ≤ i ≤ n− 2 .

The long exact sequence of local cohomology gives an exact sequence of graded D-modules

Hd−1
n (Kd−1(D)) Hd−1

n (Bd−2(D)) Hd
n (Bd−1(D)) Hd

n (Kd−1(D))

0 k Hd
n (Kd−1(A))⊗A D .

=

ε

∼ = ∼ =
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As xd+1 is a non zerodivisor on the D-module Hd
n (Kd−1(A))⊗AD, this module has trivial socle. It

follows that

socD(H
d
n (Bd−1(D))) = im ε ∼= k .

On the other hand,

k ∼= Hd
N(Bd−1(D))

α
↪→ Hd

n (Bd−1(D)) .

This shows that

0 ̸= imα ⊂ socD(H
d
n (Bd−1(D))) .

This inclusion is an equality since the socle is one-dimensional. It follows that im ε = im α.

We prove part (b). As before, the long exact sequence of local cohomology gives an exact sequence

of graded A-modules

Hd−1
n (Kd−1(A)) Hd−1

n (Bd−2(A)) Hd
n (Bd−1(A))

0 k Hd
n (Kd(A)) .

=

γ

∼ = ∼ =

Since Hd
n (Kd(A)) ∼= Hd

n (A(−d)) ∼= k[x−1
1 , . . . , x−1

d ], we see that γ is an isomorphism in degree

zero. □

Let k be a field and R be a standard graded Noetherian k-algebra with homogeneous maximal

ideal m. Set Ω := Ωk(R). Let K• = K•(R) be the Koszul complex of the functional Ω −→ R

corresponding to the Euler derivation of R over k. Write Z• = Z•(R) for the cycles of K•. If R is

regular, then this notation is consistent with the one introduced in Lemma 5.1. As Z• is a graded

commutative R-algebra, there is a natural homomorphism∧• Z1 −→ Z• .

Moreover, the complex K• is acyclic if R is regular. It is also acyclic if k has characteristic zero,

since the differential of the de Rham complex produces a k-linear contracting homotopy in positive

internal degree. If T is a flat R-algebra with mT = T , then K• ⊗R T is split-exact and the map

(∧•Z1)⊗R T −→ Z•⊗R T is an isomorphism. In particular, the kernel and cokernel of ∧•Z1 −→ Z•

have dimension zero.

Any morphism of positively graded Noetherian k-algebras S −→ R induces homomorphisms of

differential graded algebras K•(S) −→ K•(R) and then Z•(S) −→ Z•(R).

Theorem 5.2. Let k be a field, let R and S be standard graded k-algebras with homogeneous

maximal ideals m and mS, respectively, and assume that the multiplicity of R is not a multiple

of the characteristic of k. If S → R is a homogeneous homomorphism that is module finite and

d := dimR ≥ 2, then the induced maps

Hd
mS

(Zd−1(S))0 −→ Hd
m(Zd−1(R))0 and Hd

mS
(∧d−1Z1(S))0 −→ Hd

m(∧d−1Z1(R))0

are nonzero.
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Proof. Since d ≥ 2 and the natural maps ∧d−1Z1(S) −→ Zd−1(S) and ∧d−1Z1(R) −→ Zd−1(R)

have zero-dimensional kernels and cokernels, it follows that these maps become isomorphisms after

applying Hd
mS

and Hd
m, respectively. Thus it suffices to prove that the first map in the statement of

the theorem is not zero.

To show that this map is not zero, we may pass to the algebraic closure of k to assume that k

is infinite and perfect. Our assumption on the multiplicity of R and the associativity formula for

multiplicities imply that, for some prime ideal p of R with dimR/p = d, the multiplicity e of R/p

is not a multiple of the characteristic of k. Write n = dimS and let x1, . . . , xn be general linear

forms in S. We consider the polynomial subrings A = k[x1, . . . , xd] ⊂ D = k[x1, . . . , xn] of S, and

we denote their maximal ideals by n and N, respectively. Notice that D is a Noether normalization

of S and A is a Noether normalization of R and of R/p. Moreover, rankAR/p = e is a unit in k.

Since D ⊂ S and A ⊂ R are integral extensions, it follows that H i
mS
≃ H i

NS ≃ H i
N and

H i
m ≃ H i

nR ≃ H i
n. Thus it remains to show that the map Hd

N(Zd−1(S)) −→ Hd
n (Zd−1(R)) is

nonzero in degree zero. Composing this map with the natural homomorphisms Hd
N(Zd−1(D)) −→

Hd
N(Zd−1(S)) from the right and Hd

n (Zd−1(R)) −→ Hd
n (Zd−1(R/p)) from the left yields a homomor-

phism Hd
N(Zd−1(D)) −→ Hd

n (Zd−1(R/p)), and it suffices to prove that this last map is nonzero in

degree zero. Replacing R by R/p we may now assume that R is a domain, with Noether normal-

ization A. We need to prove that

Hd
N(Zd−1(D)) −→ Hd

n (Zd−1(R))

is nonzero in degree zero.

Recall that the complexes K•(D) and K•(A) are acyclic and that d ≥ 2. We use Lemma 5.1 and

the natural maps D → R and A→ R to obtain a commutative diagram

Hd
N(Zd−1(D)) Hd

n (Zd−1(D)) Hd
n (Zd−1(R))

Hd−1
n (Bd−2(A)) Hd

n (Zd−1(A)) ,

α g

γ

f

where γ is an isomorphism in degree zero. We need to prove that the composition g ◦ α is not zero

in degree zero. As γ is an isomorphism in degree zero, this will follow once we have shown that f

is nonzero in degree zero.

The morphism of complexes K•(A) −→ K•(R) induces a commutative diagram with exact rows

0 Zd+1(R) Kd(R) Zd−1(R) Hd−1(K•(R)) 0

Kd(A) Zd−1(A) .
∼=

The bottom map is an isomorphism because K•(A) is acyclic and has length d. Recall that the

complex K•(R) is exact locally on the punctured spectrum. The module Ωk(R) has rank d because
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K ⊂ L is a separable algebraic field extension. Thus Zd(R) has rank zero and therefore its dimension

is < d. In addition, the module Hd−1(K•(R)) has finite length, hence dimension < d− 1. Thus we

obtain an induced commutative diagram

Hd
n (Kd(R)) Hd

n (Zd−1(R))

Hd
n (Kd(A)) Hd

n (Zd−1(A)) .

∼=

h

∼=

f

It remains to show that h is nonzero in degree zero.

Let K ⊂ L be the extension of quotient fields of A and R. This field extension has degree e and is

separable since e is a unit in k. Since A ⊂ R is a separable Noether normalization, we can consider

the complementary module

CA(R) = {z ∈ L | TrL/K(zR) ⊂ A} ,

which is a finitely generated graded R-module. The image of the natural map

∧dΩk(R) −→ ∧dΩk(L) = L dx1 ∧ . . . ∧ dxd ∼= L

is contained in CA(R), see for instance [30, Theorem 9.7]. Hence we obtain a homogeneous R-linear

map

cR : ∧dΩk(R) −→ CA(R) dx1 ∧ . . . ∧ dxd .

Likewise we have

cA : ∧dΩk(A) = A dx1 ∧ . . . ∧ dxd −→ CA(A) dx1 ∧ . . . ∧ dxd = A dx1 ∧ . . . ∧ dxd ,

which is the identity map. Notice that TrL/K(CA(R)) ⊂ A by definition of the complementary

module.

Now we have a diagram of homogenous A-linear maps

Kd(R) = ∧dΩk(R) CA(R) dx1 ∧ . . . ∧ dxd

Kd(A) = ∧dΩk(A) A dx1 ∧ . . . ∧ dxd .

cR

1
e
·TrL/K dx1∧...∧dxd

cA

This diagram commutes, as can be seen by following the element dx1 ∧ . . . ∧ dxd ∈ ∧dΩk(A) and

using the fact that 1
e ·TrL/K(1) = 1. Applying the functor Hd

n to this diagram, the left vertical map

becomes h, and it suffices to prove that Hd
n (cA) is nonzero in degree zero. However, this map is the

identity map and Hd
n (A(−d)) = k[x−1

1 , . . . , x−1
d ], which is the field k in degree zero. □

In the remainder of this section we use Theorem 5.2 to estimate the degree of the singular locus

of vector fields. These estimates in turn will lead to bounds on the degree of the vector fields

themselves.
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Corollary 5.3. Adopt Setting 2.7 and assume that the degree of C is not a multiple of the charac-

teristic of k. Let η be a vector field on Pn−1
k of degree m leaving C invariant whose singular locus

does not contain an irreducible component of C. This vector field induces a homogeneous R-linear

map µ : H → R of degree m− 1 such that ht imµ > 0. Let L = Z1(R) be as in (2).

(a) The natural maps

H1
mS

(S/ im η) −→ H1
m(R/ imµ) and H1

m(R/ imµ) −→ H2
m(imµ)

are both nonzero in degree m− 1.

(b) dim(R/ imµ) = 1, regR/(imµ)sat ≥ m, and e(R/ imµ) ≥ m+ 1.

(c) If [H2
m(L)]0

∼= k, then m ≥ a(R) + 2.

Proof. Let Z = Z1(S) be as in (2). According to Theorem 5.2 the natural map H2
mS

(Z) → H2
m(L)

is not zero in degree zero.

There is a commutative diagram

Z im η

H imµ

L

η

µ

where the horizontal maps are homogeneous of degree m− 1. We also have a commutative diagram

with exact rows
0 im η S S/ im η 0

0 imµ R R/ imµ 0

Together, these diagrams induce a commutative diagram

H2
mS

(Z)

H1
mS

(S/ im η) H2
mS

(im η) H2
m(H)

H1
m(R/ imµ) H2

m(imµ) H2
m(L)

g

α

β
h

γ

In this diagram, the two diagonal maps are homogenous of degree m− 1, the map α is bijective

because depthS ≥ 3, the map β is bijective since dim(kerµ) ≤ 1 due to the assumption that

grade imµ > 0, and h is bijective as L/H is a module of finite length (see page 4). As h ◦ g is not

zero in degree zero, the same holds for g. Now the diagram readily implies part (a).
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From (a) we obtain, in particular, that [H1
m(R/ imµ)]m−1 ̸= 0 . Now the assertions about di-

mension and regularity in part (b) follow immediately. As to the claim about the multiplicity,

e(R/ imµ) = e(R/(imµ)sat) and the ring R/(imµ)sat is Cohen-Macaulay, hence its multiplicity is

bounded below by its regularity plus 1.

In the setting of (c), the diagram shows that [H2
m(imµ)]m−1

∼= k. Thus, since [γ ]m−1 ̸= 0, this

map is surjective, and then the long exact sequence of local cohomology implies that [H2
m(R) ]m−1 =

0. Therefore [H2
m(R) ]j = 0 for all j ≥ m− 1, showing that m− 1 > a(R) as asserted. □

The multiplicity estimate in Corollary 5.3(b) can be improved substantially if the curve C is

arithmetically Gorenstein:

Proposition 5.4. We use the hypotheses and notation of Corollary 5.3, and write a for the a-

invariant of R and pg for the geometric genus of C. If R is Gorenstein, then

e(R/ imµ) ≥ dimk(Rm−δ+a+1) + δ − a− 1− pg.

Proof. We first observe that the natural map S/(f1, . . . , fn−2) −→ R is a surjection of rings having

the same dimension. Thus

a = a(R) ≤ a(S/(f1, . . . , fn−2)) = −n+

n−2∑
j=1

δj = δ − 2.

This inequality and the regularity estimate in Corollary 5.3(b) give

m− δ + a+ 1 ≤ m ≤ regR/(imµ)sat.

Again by Corollary 5.3(b), the standard graded algebra R/(imµ)sat is one-dimensional and there-

fore Cohen-Macaulay. Thus its Hilbert function increases strictly up to degree regR/(imµ)sat and

is equal to the multiplicity afterward. As e((R/(imµ)sat) = e(R/ imµ), it follows that

e(R/ imµ) ≥ dimk((R/(imµ)sat)m−δ+a+1) + δ − a− 1.

Write t = m− δ + 1. It remains to prove that

dimk((imµ)sat)t+a ≤ pg.

Indeed, Corollary 2.11 shows that imµ ∼= J(−t), and since R is Cohen-Macaulay of dimension

≥ 2, this isomorphism induces an isomorphism

(imµ)sat ∼= J sat(−t).

On the other hand, J is contained in JR, the Jacobian ideal of R. Let R denote the integral

closure of R, and f := R :R R the conductor. As is classically known, see e.g. [35], one has JR ⊂ f.

Thus, as f is unmixed,

J sat ⊂ f.
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In turn, since R is Gorenstein,

f ∼= HomR(R,R) ∼= HomR(R,ωR(−a)) ∼= ωR(−a).

Combining these facts we conclude that

dimk((imµ)sat)t+a = dimk(J
sat)a ≤ dimk fa = dimk(ωR)0 = pg,

as required □

The main application in this section, Theorem 5.6, generalizes results of du Plessis and Wall and

of Esteves and Kleiman [12,15] for the case of plane curves. In this paper, it is an easy consequence of

Corollary 2.11 and Corollary 5.3. Our proof was inspired by an argument in [15, proof of Proposition

5.2].

Lemma 5.5. Let R be an equidimensional Noetherian standard graded algebra over a field, with

depth R > 0, let a and b be homogeneous ideals of height one, and assume that a ∼= b(−n) for some

n ∈ Z. Then

e(R/a) = e(R/b) + n · e(R) .

Proof. By symmetry we may assume that n ≥ 0, and by induction one reduces to the case n = 1.

We may further suppose that the ground field is infinite, and hence there exists a linear form x ∈ R
that is non zerodivisor. Thus a ∼= b(−1) and xb have the same Hilbert function, and so do R/a and

R/xb, which gives e(R/a) = e(R/xb). So it suffices to show that e(R/xb) = e(R/b) + e(R).

Consider the exact sequence

0 −→ b/xb −→ R/xb −→ R/b −→ 0 .

The three R-modules in this sequence have the same dimension, because b is in no minimal prime

ideal of R and therefore annR b ⊂
√
0. Thus,

e(R/xb) = e(R/b) + e(b/xb) .

On the other hand, e(b/xb) = e(b) since the linear form x is a non zerodivisor on b, and e(b) = e(R)

by the associativity formula because b is in no minimal prime ideal of R. □

The estimates in the next theorem use the multiplicity of R/J , where J is a partial Jacobian

ideal as defined in Setting 2.7.

Theorem 5.6. In addition to Setting 2.7, assume that the degree d of C is not a multiple of the

characteristic. One has

findeg(Derk(R)/m
−1ε) ≥

a(R) + 1 if C is a smooth complete intersection

δ − 2− e(R/J)−δ
d−1 otherwise .

Proof. If C is a smooth complete intersection the assertion follows from Corollary 4.13. Otherwise

ht J = 1 by Theorem 3.3 (c).
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Let µ and m be as in Corollary 2.11 and assume that m is minimal. Recall that

imµ ∼= J(δ −m− 1)

by that corollary. We use Corollary 5.3(b), which says that ht imµ = 1 and

e(R/ imµ) ≥ m+ 1 .

Now combining Lemma 5.5 with the two displayed formulas, we obtain

(12) m+ 1 ≤ e(R/ imµ) = e(R/J) + (m+ 1− δ)e(R) ,

as required. □

Part (a) of the next corollary is essentially [12, Theorem 3.2] and [15, Corollary 6.4]. The estimate

of part (b) is often sharper for plane curves of small genus.

Corollary 5.7. Let k be a perfect field and C ⊂ P2
k be a reduced curve of degree d that is not smooth.

Assume that d is not a multiple of the characteristic. Let τ and pg denote the total Tjurina number

and the geometric genus of C and let R be the homogeneous coordinate ring of C. One has

(a) findeg(Derk(R)/Rε) ≥ d− 2− τ
d−1 ;

(b) findeg(Derk(R)/Rε) ≥ d− 3
2 −

√
2τ(C) + 2pg − d2 + 3d− 7

4 .

Proof. Part (a) follows from Theorem 5.6. We prove part (b). Let m be the minimal degree of a

vector field leaving C invariant and recall that findeg(Derk(R)/Rε) = m− 1. We start from the in-

equalities (12), but replace the multiplicity estimate of Corollary 5.3(b) by the one of Proposition 5.4

to obtain

dimk(Rm−δ+a+1) + δ − a− 1− pg ≤ e(R/ imµ) = e(R/JR) + (m+ 1− δ) · e(R) .

Notice that δ = d− 1, a = d− 3, and m− δ + a+ 1 = m− 1 ≤ d− 2, where the last inequality will

be proved in Theorem 6.1(d). Thus dimk(Rm−δ+a+1) = dimk(Sm−1) =
(
m+1
2

)
, and we obtain

m2 − (2d− 1)m− 2e(R/JR)− 2pg + 2d2 − 4d+ 2 ≤ 0 .

Since there exists a vector field of degree m whose singular locus does not contain an irreducible

component of C, the polynomial in m on the left-hand side has a real root and the smallest real

root is

d− 1

2
−
√
2e(R/JR) + 2pg − d2 + 3d− 7

4
.

□

In addition to the assumptions of Corollary 5.7 suppose that C is a rational curve, that is pg = 0.

If moreover C has only ordinary nodes as singularities, then the lower bound in part (a) of the

corollary gives a(R)+1
2 , whereas the bound in (b) gives a(R) + 1, which is the exact value for

indeg(Derk(R)/Rε) proved in Corollary 4.12. For rational curves in general, the bound in (b) is
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better than the bound in (a) if and only if τ <
(
d−1
2

)
+ α− 1

2

√
3α2 + α , where α = (d− 1)2. For a

rational curve with only ordinary nodes and ordinary cusps as singularities, this inequality holds if

and only if the number of cusps is less than α− 1
2

√
3α2 + α.

It will follow from Theorem 6.1(e) below that if C is a smooth complete intersection, then the

equality findeg(Derk(R)/Rε) = a(R) + 1 holds in Theorem 5.6. Therefore we are not going to

consider this case in the remainder of this section.

Theorem 5.8. Let k be an algebraically closed field of characteristic zero and X ⊂ Pn−1
k be an

equidimensional subscheme of dimension s, where 1 ≤ s ≤ 3. Assume that X is locally a complete

intersection and has only isolated singularities. If X is defined scheme theoretically by an ideal I

generated by forms of degrees ≤ t, let Z be a complete intersection of dimension s defined by general

forms of degree t in I, and let Y be the link of X with respect to Z.

(a) Y and X ∩ Y are nonsingular;

(b) Sing(Z) is the disjoint union of Sing(X) and X ∩ Y ; if p ∈ Sing(X), then OZ,p ∼= OX,p , and if

p ∈ X ∩ Y , then ÔZ,p ∼= kJx1, . . . , xs+1K/(x1x2).

Proof. Let S = k[x1, . . . , xn] be the homogenous coordinate ring of Pn−1
k , let a be the saturated

ideal of Z, and K = a : I be the saturated ideal of Y. Replacing I by I≥t, we may assume that I

is generated by forms f1, . . . , fm of degree t. We write g = ht I = n − s − 1. We may assume that

the ideals I and a are equal locally at every minimal prime of I. Therefore a = I ∩K, the ideal K

is unmixed of height g, and all associated primes ̸= ms of I +K have height g + 1, as can be seen

from the exact sequence

0 −→ S/a −→ S/I ⊕ S/K −→ S/(I +K) −→ 0 .

We now prove (a). The ideal a is generated by g k-linear combinations
∑
λijfj with λ = (λij) a

general point in Agmk .

We consider the polynomial rings U = k[{uij | 1 ≤ i ≤ g, 1 ≤ j ≤ m}] and S̃ = S ⊗k U, and the

S̃-ideals ã = (
∑
uijfj | 1 ≤ i ≤ g) and K̃ = ã :

S̃
I. There are natural maps

ψ1 : U −→ T̃ := S̃/K̃ and ψ2 : U −→ P̃ := S̃/(IS̃ + K̃) .

According to [29, 2.4(b)], the generic fiber of ψ1 satisfies Serre’s condition Rs and the generic fiber

of ψ2 satisfies Rs−1.

Let Q be the quotient field of U, and write TQ = T̃ ⊗U Q and PL = P̃ ⊗U Q. The rings TQ and

PQ are standard graded Q-algebras of dimension at most s+1 and s, respectively. Since these rings

satisfy Rs and Rs−1, respectively, they are regular locally on the punctured spectrum. Thus by

Theorem 3.1 there exits an integer ℓ such that

(x1, . . . , xn)
ℓ TQ ⊂ Fitts+1(ΩQ(TQ)) and (x1, . . . , xn)

ℓ PQ ⊂ Fitts(ΩQ(PQ)) .
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Hence for some nonzero polynomial h ∈ U,

(13) h (x1, . . . , xn)
ℓ T̃ ⊂ Fitts+1(ΩU (T̃ )) and h (x1, . . . , xn)

ℓ P̃ ⊂ Fitts(ΩU (P̃ )) .

For a point λ = (λij) ∈ Agmk , we write k(λ) = U/(uij − λij), Sλ = S̃ ⊗U kλ, Tλ = T̃ ⊗U k(λ), and
Pλ = P̃ ⊗U k(λ) . It follows from (13) that whenever h(λ) ̸= 0, then

(x1, . . . , xn)
ℓ Tλ ⊂ Fitts+1(ΩU (T̃ ))⊗U k(λ) = Fitts+1(Ωk(Tλ))

(x1, . . . , xn)
ℓ Pλ ⊂ Fitts(ΩU (P̃ ))⊗U k(λ) = Fitts+1(Ωk(Pλ)) .

We conclude that locally on the punctured spectrum, Ωk(Tλ) is generated by s + 1 elements and

Ωk(Pλ) is generated by s elements.

On the other hand, we may assume that a = ãSλ. Hence there is a natural epimorphism of

S-algebras

Tλ = Sλ/K̃Sλ Sλ/(ãSλ : I) = S/K ,

and likewise Pλ ↠ S/(I +K). Thus locally on the punctured spectrum, the modules Ωk(S/K) and

Ωk(S/(I + K)) too are generated by s + 1 and s elements, respectively. As S/K and S/(I + K)

are equidimensional k-algebra of dimension s+ 1 and s, respectively, it follows that both rings are

regular on the punctured spectrum, see Theorem 3.1.

For the proof of part (b), recall that Z = X ∪ Y . Let p ∈ Z. If p /∈ Y , then OZ,p ∼= OX,p. If
p /∈ X, then OZ,p ∼= OY,p, which is regular by part (a). If p ∈ X ∩ Y, then OZ,p has at least two

distinct minimal primes, hence cannot be regular. This shows that Sing(Z) = Sing(X) ∪ (X ∩ Y ).

By the general choice of a, we have Ip = ap for the finitely many prime ideals p corresponding to

the singular points of X (here we also use the fact that a is also general in Ip, see [38, 2.5(a)]). So

p ̸⊃ a : I = K. Thus for every p ∈ Sing(X), p /∈ Y and so OZ,p ∼= OX,p. Moreover, Sing(X) and

X ∩ Y are disjoint.

It remains to prove the claim about OZ,p for p ∈ X ∩ Y. By part (a) and since p /∈ Sing(X), the

rings OX,p,OY,p,OX∩Y,p are regular. Write S′ = OPn−1,p, and let I ′, K ′, a′ be the defining ideals in

S′ of OX,p,OY,p,OZ,p. It suffices to find a regular system of parameters x1, . . . , xn−1 of S′ such that

a′ = (x1, . . . , xg−1, xgxg+1).

Recall that the ideals I ′ and K ′ have height g and are geometrically linked by a′. Since S′/K ′ is

Gorenstein, we have I ′/a′ ∼= ωS′/K′ ∼= S′/K ′ is cyclic, so g−1 generators of a′ are part of a minimal

generating set of I ′. Call these elements x1, . . . , xg−1. Since S
′/I ′ is regular, these elements are part

of a regular system of parameters of S′ and I ′ = (x1, . . . , xg) with x1, . . . , xg part of a regular system

of parameters. Notice a′ = (x1, . . . , xg−1, yxg) for some y ∈ S′. Now K ′ = a′ : I ′ = (x1, . . . , xg−1, y),

so I ′ +K ′ = (x1, . . . , xg, y). Since this ideal has height g+ 1 and S′/K ′ + I ′ is regular, x1, . . . , xg, y

form a part of a regular system of parameters of S′, as claimed. □

Remark 5.9. Following the approach of [8, 4.4] one sees that Theorem 5.8 still holds when Z is

not necessarily defined by general forms of the same degree.
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In the next theorem we assume that the curve C is not a smooth complete intersection because

otherwise we know from Corollary 4.14 that findeg(Derk(R)/m
−1ε) = a(R) + 1 .

Theorem 5.10. Let k be an algebraically closed field of characteristic zero and C ⊂ Pn−1
k be a

reduced curve of degree d that is locally a complete intersection. Assume that C is not a smooth

complete intersection. Let τ and pa denote the total Tjurina number and the arithmetic genus of C
and let R be the homogeneous coordinate ring of C with maximal homogeneous ideal m.

(a) If R is a domain or, more generally, R has the generalized Cayley-Bacharach property, then

findeg(Derk(R)/m
−1ε) ≥ d

d− 1
a(R)− τ − 2

d− 1
.

(b) If R is Cohen-Macaulay, then

findeg(Derk(R)/Rε) ≥
2pa − τ
d− 1

.

Proof. We deduce the theorem from Theorem 5.6. In Setting 2.7 we choose elements f1, . . . , fn−2

that satisfy the conclusion of Theorem 5.8 with X = C and Z = V (f1, . . . , fn−2). For the proof

of parts (a) and (b) we are going to estimate and compute, respectively, e(R/J). We write a =

(f1, . . . , fn−2) and A = S/a. By Theorem 5.8, Sing(Z) = Sing(C)∪(C∩Y ) and for every p ∈ Sing(Z)

either OZ,p ∼= OC,p or else p ∈ C ∩ Y and ÔZ,p ∼= kJx1, x2K/(x1x2). In the latter case the Jacobian

ideal JOZ,p
of OZ,p is the maximal ideal and therefore OC,p/JOZ,p

OC,p ∼= k. It follows that

(14) e(R/J) = τ + deg(C ∩ Y ).

We are now going to estimate and compute, respectively, the degree of C ∩ Y. We write K = a : I

for the saturated ideal defining the link Y. The subscheme C ∩ Y is defined by the ideal I +K, and

S/(I +K) ∼= R/KR, so deg(C ∩ Y ) = e(R/KR). On the other hand, ωR ∼= (KR)(δ − 2).

We now prove part (a). Since R has the generalized Cayley-Bacharach property, we have

findegωR = indegωR = −a(R). Therefore KR contains a homogeneous R-regular element of degree

δ − 2− a(R). Since moreover htKR = 1, it follows that

(15) deg(C ∩ Y ) = e(R/KR) ≤ d(δ − 2− a(R)) .

Now the assertion follows by combining (15), (14), and Theorem 5.6.

To prove part (b) we write the Hilbert series of R as HR(t) =
q(t)

(1−t)2 . Since R is Cohen-Macaulay,

the Hilbert series of ωR is HωR(t) =
t2q(t−1)
(1−t)2 . Therefore

HR/KR = HR − tδ−2HωR =
Q(t)

(1− t)2
,

where Q(t) = q(t)− tδq(t−1). Since dimR/KR = 1, we have

(16) e(R/KR) = −Q′(1) = δq(1)− 2q′(1) = δe0 − 2e1 ,
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where e0 = d and e1 is the first Hilbert coefficient of R. On the other hand pa = e1 − e0 + 1. Now

the conclusion follows from (16), (14), the equality deg(C ∩ Y ) = e(R/KR), and Theorem 5.6. □

To illustrate the above bounds we are going to present a family of curves C ⊂ Pn−1
k for which the

inequality in Theorem 5.8(b) is an equality, see Proposition 5.12 and in particular part (c). We will

use the following lemma:

Lemma 5.11. Let k be a perfect field and A be a Noetherian positively graded k-algebra generated

by n homogeneous elements of degrees δ1, . . . , δn none of which is a multiple of the characteristic.

Assume A is a reduced complete intersection of dimension 1. Write m for the maximal homogeneous

ideal, a for the a-invariant, JA for the Jacobian ideal, and f for the conductor of A.

One has JA ∼= m(−a). If in addition k is algebraically closed and A is a domain, then

τ(A) =
a+ 1

gcd(δ1, . . . , δn)
= 2λ(A/f) = 2σ(A) .

Proof. Write A ∼= S/(f1, . . . , fn−1), where S = k[x1, . . . , xn] is a positively graded polynomial ring

with deg xi = δi and fi are homogeneous polynomials of degree di. Write yi for the image of xi in A,

Θ for the Jacobian matrix of f1, . . . , fn−1 with entries in A, and ∆1, . . . ,∆n for the signed maximal

minors of Θ. Since the image of the matrix Θ has rank n− 1 over A and since both vectors
y1
...

yn

 and


∆1

...

∆n


are in the kernel of Θ and their images have rank 1, it follows that these vectors are proportional,

by multiplication with a quotient of two homogeneous non-zerodivisors in A. On the other hand,

m is generated in degrees δi and JA is generated in degrees (
∑
dj −

∑
δj) + δi = a+ δi. It follows

that JA ∼= m(−a).
If k is algebraically closed and A is a domain, then the integral closure A is a graded polynomial

ring k[t], where t has degree gcd(δ1, . . . , δn). After regrading we may assume that this degree is 1.

We may also assume that A ̸= A. The ring A is a monomial subalgebra of A = k[t], and computing

local cohomology with support in m one sees that ta is the highest degree monomial in A \A. Thus
A ta+1 = f, and it follows that

a+ 1 = λ(A/f) = 2λ(A/f) = 2σ(A),

where the last two equalities hold because A is Gorenstein.

On the other hand, the isomorphism JA ∼= m(−a) reads as JA = m ta. We also recall Proposi-

tion 3.5, which applies since A is a complete intersection. Thus we obtain

τ(A) = λ(A/JA) = λ(A/m ta) = λ(A/m) + λ(m/m ta) = a+ 1,

as required. □
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Proposition 5.12. Let k be an algebraically closed field of characteristic zero and let r be a positive

integer. Let C ⊂ Pn−1
k be the curve defined by the ideal I of S = k[x1, . . . , xn] generated by the

maximal minors of the matrix

(17)

[
x1 x2 . . . . . . xn−2 xn−1

xr2 . . . . . . xrn−2 xrn−1 xr1 + xrn

]
.

(a) The curve C has degree

d = rn−2 + rn−3 + . . .+ 1 ,

arithmetic genus

pa =
r

2
((n− 2)rn−2 − rn−3 − . . .− 1) =

1

2
((n− 2) rn−1 − d+ 1) ,

geometric genus

pg =
r

2
(rn−2 − 1) ,

total Turina number

τ = r2((n− 3)rn−3 − rn−4 − . . .− 1) = (n− 3) rn−1 − d+ r + 1 ,

and singularity degree

σ =
τ

2
=

1

2
((n− 3) rn−1 − d+ r + 1) ;

(b) If r > 1, the set {(1 : 0 : . . . : 0 : ρi) | ρri = −1} is the singular locus of C and for every singular

point p of C,
ÔC,p ∼= kJ tr

n−3
, tr

n−3+rn−4
, . . . , tr

n−3+ ...+1 K ;

(c) Let R = S/I be the homogeneous coordinate ring of C and let yi denote the images of xi in R.

The element

n−1∑
i=2

(rn−2 + . . .+ rn−i) yiy
r−1
n

∂

∂xi
+ d (yr1 + yrn)

∂

∂xn
∈

n⊕
i=1

R
∂

∂xi

gives a minimal generator of Derk(R)/Rε. In particular

indeg(Derk(R)/Rε) = findeg(Derk(R)/Rε) = r − 1 =
2pa − τ
d− 1

.

Proof. The formula for the degree of C follows by applying [26] to a regular sequence of n forms of

degree r.

We begin by proving part (b). Observe that y1, yn is a regular sequence on R. To show the claim

about the singular locus, let p ∈ V (JR) with dimR/p = 1. We claim that

(18) (y2, . . . , yn−1, y
r
1 + yrn) ⊂ p.

To this end we first prove that y1 ̸∈ p. Suppose y1 ∈ p. Modulo y1R, the (n−2)×(n−2) subblock

of the Jacobian matrix over R that uses the partial derivatives with respect to x1, . . . , xn−2 and the

minors of (17) involving the last column is an upper triangular matrix with yrn along the diagonal.
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Hence yn ∈ p. Now we see from (17) that (y2, . . . , yn−1) is also in p. Thus (y1, . . . , yn) ∈ p, which is

impossible because dimR/p = 1.

Next we show that yn ̸∈ p. One easily sees that

Ry1/(yn)
∼= k[x1, x

−1
1 , xn−1]/(x

d
n−1 − xd1),

which is reduced because the characteristic is zero. Now suppose that yn ∈ p. Since both ideals

(yn) ⊂ p have height one and ynRp is radical, it follows that pRp = (yn)Rp. So Rp is a DVR, which

is impossible since p ∈ V (JR).

Now, the (n−2)×(n−2) subblock of the Jacobian matrix over R that uses the partial derivatives

with respect to x3, . . . , xn and the minors of (17) involving the first column turns out to be a lower

triangular matrix with diagonal entries ry1y
r−1
i , where 3 ≤ i ≤ n. It follows that y1y3 · · · yn ∈ p.

Hence, as both y1 and yn are not in p, we obtain that yi ∈ p for some i with 3 ≤ i ≤ n−1. Reducing

modulo the ideal (yi), one sees that the maximal minors of the matrix(
y1 y2 . . . . . . yi

yr2 . . . . . . yri 0

∣∣∣∣∣ 0 yi+1 . . . . . . yn−1

yri+1 . . . . . . yrn−1 yr1 + yrn

)

are in p. Therefore (y2, . . . , yn−1) ∈ p and y1(y
r
1 + yrn) ∈ p. As y1 ̸∈ p, it follows that

(y2, . . . , yn−1, y
r
1 + yrn) ⊂ p ,

as asserted.

Recall that y1 ̸∈ p. Claim (18) gives the containment Sing(C) ⊂ {(1 : 0 : . . . : 0 : ρi) | ρri = −1}.
To prove equality and the remaining assertion of part (b) it suffices to show that for every point

p = (1 : 0 : . . . : 0 : ρ) with ρr = −1 one has ÔC,p ∼= kJ trn−3
, tr

n−3+rn−4
, . . . , tr

n−3+ ...+1 K . Writing

zi =
xi
x1

for 2 ≤ i ≤ n we obtain OC,p = k[z2, . . . , zn](z2,...,zn−1,zn−ρ)/H, where H is generated by the

maximal minors of the matrix (
1 z2 . . . . . . zn−1

zr2 . . . . . . zrn−1 zrn + 1

)
.

The ideal H contains the element zrn + 1 − zr2zn−1 = (zn − ρ)v − zr2zn−1, where v is a unit, which

shows that the maximal ideal of OC,p is generated by the images of z2, . . . , zn−1. Now the Cohen

structure theorem gives the natural surjection

φ : B := kJz2, . . . , zn−1 K/K ÔC,p ,

where K is the ideal generated by the maximal minors of the matrix(
1 z2 . . . . . . zn−2

zr2 . . . . . . zrn−3 zrn−1

)
.
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On the other hand, there is a natural surjection

ψ : B C := kJ trn−3
, tr

n−3+rn−4
, . . . , tr

n−3+ ...+1 K .

The ideal K is generated by the n− 3 elements zri − zr2zi−1 for 3 ≤ i ≤ n− 1. It follows that z2 is

a non zerodivisor on B and that B/z2B has multiplicity rn−3. Therefore e(B) ≤ rn−3 = e(C). As

B and C are Cohen-Macaulay rings of the same dimension, ψ is an isomorphism. In particular, B

is a domain, which then shows that φ is an isomorphism. This completes the proof of part (b).

We now prove part (a). According to part (b) the total Tjurina number and the singularity

degree of C are

τ = r · τ(B) and σ(C) = r · σ(B) ,

where B is the ring defined in the proof of part (b). Write A = k[z2, . . . , zn−1]/K where K is the

ideal generated by the maximal minors of the matrix(
1 z2 . . . . . . zn−2

zr2 . . . . . . zrn−3 zrn−1

)
.

Giving the variables zi degree deg zi := rn−3 + . . . + rn−i−1 , the ideal K is generated by the

homogenous regular sequence zri − zr2zi−1, where 3 ≤ i ≤ n− 1. In particular

a(A) =
n−1∑
i=3

r · deg zi −
n−2∑
i=2

deg zi = (n− 3)rn−2 − rn−3 − . . .− 1 .

To compute τ(A) and σ(A) we apply Lemma 5.11. Since gcd(deg z2, . . . ,deg zn−1) = 1, it follows

that

τ(A) = 2 · σ(A) = a(A) + 1 = r((n− 3)rn−3 − rn−4 − . . .− 1) .

Since B = Â , the asserted equality for the total Tjurina number and the singularity degree of C
now follow.

To compute the arithmetic genus of C, we pass to a rational curve C′ ⊂ Pn−1
k with homogenous

coordinate ring R′, so that R and R′ have the same Hilbert function. We take C′ to be the curve

defined by the maximal minors of the matrix

(19)

(
x1 x2 . . . . . . xn−1

xr2 . . . . . . xrn−1 xrn

)
.

Clearly R and R′ have the same Hilbert function.

We claim that C′ is parametrized by the map F : P1 −→ Pn−1
k , where

F = (sr
n−2+...+r+1 : tr

n−2
sr

n−3+...+r+1 : . . . . . . : tr
n−2+...+rs : tr

n−2+...+r+1) .

Let C := k[sr
n−2+...+r+1 , . . . , tr

n−2+...+rs, tr
n−2+...+r+1] be the homogenous coordinate ring of the

image of F . Since imF is a monomial curve, it is covered by two affine charts obtained by setting

t = 1 or s = 1, respectively. If we set t = 1, then the affine coordinate ring is the polynomial ring
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k[s], which shows that this chart is smooth and F is birational onto its image (for the latter see

also [32, 4.6(3)]). The other affine chart has at most one singular point, namely (1, 0, . . . , 0). Since

the map F is birational onto its image, it follows that deg imF = rn−2 + . . . + r + 1 = d . As the

multiplicity of R′ is also d, the natural surjection

ϕ : R′ C

shows that ϕ is an isomorphism. Thus C′ is a rational curve with at most one singular point, namely,

p = (1, 0, . . . , 0) .

Now

(20) pa(C) = pa(C′) = pa(C′)− pg(C′) = σ(C′) = σ(OC′,p) ,

where the first equality obtains because R and R′ have the same Hilbert function, the second

equality holds because C′ is rational, and the third equality follows from Proposition 3.9 since C′ is
irreducible.

To compute σ(OC′,p), we let A be the coordinate ring of the affine chart obtained by setting s = 1

and we write zi =
xi
x1

for 2 ≤ i ≤ n. Notice that A := k[z2, . . . , zn]/H, where H is generated by the

maximal minors of the matrix (
1 z2 . . . . . . zn−1

zr2 . . . . . . zrn−1 zrn

)
.

Giving the variables zi degree deg zi = tr
n−2+...+rn−i

, the ideal H is generated by the homogenous

regular sequence zri − zr2zi−1, where 3 ≤ i ≤ n. In particular

a(A) =
n∑
i=3

r · deg zi −
n∑
i=2

deg zi = (n− 2)rn−1 − d .

Thus by Lemma 5.11, σ(A) = a(A)+1
2 = 1

2((n − 2) rn−1 − d + 1) . On the other hand OC′,p =

A(z2,...,zn)A . Now (20) gives the asserted equality for pa(C).
The assertion about pg follows from Proposition 3.9 and the formulas for pa and σ .

We now prove part (c). To see that the vector

ζ =
n−1∑
i=2

(rn−2 + . . .+ rn−i) yiy
r−1
n

∂

∂xi
+ d (yr1 + yrn)

∂

∂xn
∈

n⊕
i=1

R
∂

∂xi

belongs to Derk(R) one has to check that ζ is in the null space of the Jacobian matrix over the

ring R. To show that ζ annihilates the row corresponding to the ij minor of (17) one uses that

the same minor is zero in R. Also notice that ζ is not a multiple of the Euler derivation, hence

its image in Derk(R)/Rε is non zero. This element is homogenous of degree r − 1 , and therefore

indeg(Derk(R)/Rε) ≤ r − 1 .
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On the other hand, R is a domain because R is Cohen-Macaulay and locally a domain by part

(b). Therefore indeg(Derk(R)/Rε) = findeg(Derk(R)/Rε). According to Theorem 5.10(b)

findeg(Derk(R)/Rε) ≥
2pa − τ
d− 1

= r − 1 ,

where the last equality holds by part (a). Thus indeg(Derk(R)/Rε) = findeg(Derk(R)/Rε) = r− 1

and the image of ζ is a minimal generator of Derk(R)/Rε. □

6. Upper bounds

Recall that a Cohen-Macaulay positively graded algebra R over a field is called nearly Gorenstein

if the homogenous maximal ideal m of R is contained in the trace of ωR, the image of the natural

map ω∗
R ⊗ ωR −→ R. Clearly every Gorenstein ring is nearly Gorenstein.

Theorem 6.1. Let k be a perfect field and C ⊂ Pn−1
k be a reduced curve of degree d that is arithmeti-

cally Cohen-Macaulay. Let R be the homogenous coordinate ring of C with maximal homogeneous

ideal m. One has

(a) indeg(Derk(R)/Rε) ≤ max{indeg ω∗
R, a(R) + 1};

(b) findeg(Derk(R)/Rε) ≤ max{findeg ω∗
R, a(R) + 1};

(c) if C is smooth and d is not a multiple of the characteristic, then

indeg(Derk(R)/Rε) = findeg(Derk(R)/Rε) = max{indeg ω∗
R, a(R) + 1} ;

(d) if R is nearly Gorenstein or, more generally, the trace of ωR is not contained in m2, then

indeg(Derk(R)/Rε) ≤ a(R) + 1 ;

(e) if R is Gorenstein, then

findeg(Derk(R)/Rε) ≤ a(R) + 1 .

Proof. We prove parts (a), (b), and (c). Since depthR ≥ 2, Proposition 2.4 gives an exact sequence

0 −→ Derk(R)/Rε −→ H∗ −→ Ext2(k,R) .

This sequence shows, in particular, that indeg(Derk(R)/Rε) ≥ indegH∗. Recall from the proof of

Corollary 2.10 that Ext2R(k,R) is concentrated in degrees at most a(R). Since depthH∗ > 0, we

conclude that

indeg(Derk(R)/Rε) ≤ max{indegH∗, a(R) + 1} ,

and likewise for the faithful initial degree.

Now parts (a) and (b) follow because

H∗ ←↩ ω∗
R

by Proposition 2.9(b).
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For part (c) we first notice that indeg(Derk(R)/Rε) = findeg(Derk(R)/Rε) because R is a domain

and Derk R/Rε is torsionfree by Proposition 2.4. Furthermore indeg(Derk(R)/Rε) ≥ a(R) + 1 by

Corollary 4.13. Thus we are done if max{findeg ω∗
R, a(R)+1} = a(R)+1. Otherwise, Derk(R)/Rε ∼=

ω∗
R by Corollary 2.10, and the assertion follows again.

(d) Assume that the trace of ωR is not contained in m2, and let x ̸= 0 be a linear form in the trace

of ωR. There exist homogenous non-zero elements φi ∈ ω∗
R and wi ∈ ωR such that x =

∑
φi(wi)

and φi(wi) are linear forms. As degwi ≥ indegωR = −a(R), it follows that degφi ≤ a(R) + 1.

Thus indegω∗
R ≤ a(R) + 1. Now the assertion follows from (a).

(e) Since R is Gorenstein, we have ω∗
R
∼= R(−a(R)). Thus findegω∗

R = a(R) and the assertion

follows part (b). □

Corollary 6.2. Let k be an algebraically closed field and C ⊂ Pn−1
k be an irreducible curve of degree

d. Let R be the homogenous coordinate ring of C. Assume d is not a multiple of the characteristic.

If C is arithmetically nearly Gorenstein and has at most ordinary nodes as singularities, then

findeg(Derk(R)/Rε) = a(R) + 1 .

Proof. This follows from Corollary 4.12 and Theorem 6.1. □

Theorem 6.3. Let k be a perfect field and C ⊂ Pn−1
k be a reduced curve of degree d. Let R be the

homogenous coordinate ring of C with maximal homogeneous ideal m. Then

(a) indeg(Derk(R)/m
−1ε) ≤ 2d− 5− a(R) ;

(b) findeg(Derk(R)/Rε) ≤ d− 2 if char k = 0 and C is smooth and arithmetically Cohen-Macaulay.

Proof. We may assume that k is infinite and n ≥ 3. Let x1, x2, x3 be general linear forms in R

and consider the subalgebra A = k[x1, x2, x3] of R. Notice that A ⊂ R is a finite and birational

extension by Lemma 4.7 and that A is a hypersurface ring. Thus Theorem 6.1(d) gives

findeg(Derk(A)/AεA) ≤ a(A) + 1 .

Also observe that e(A) = e(R) by Lemma 4.7, hence a(A) = e(A)− 3 = e(R)− 3 = d− 3.

Now part (a) follows because

indeg(Derk(R)/m
−1εR) ≤ findeg(Derk(A)/AεA) + a(A)− a(R)

by Theorem 4.8. If the assumptions of part (b) are satisfied, then R is the integral closure of A

and R is a domain. Hence every derivation of A can be extended to a derivation of R, according to

[39, Theorem, page 168]. From (9) in the proof of Theorem 4.8 we see that there are embeddings

Derk(A)/AεA Derk(A,R)/m
−1εA Derk(R)/m

−1εR .
φ

Since every derivation of A can be extended to a derivation of R, the map φ is an isomorphism.

Thus we obtain an embedding Derk(A)/AεA ↪→ Derk(R)/m
−1εR . As depthR > 0, this embedding

shows that

findeg(Derk(R)/m
−1εR) ≤ findeg(Derk(A)/AεA) ,
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which proves part (b). □

Proposition 6.4. Let k be a perfect field and C ⊂ Pn−1
k be a reduced curve that is arithmetically

Cohen-Macaulay. Let R be the homogenous coordinate ring of C. One has

findeg(Derk(R)/Rε) ≤ max{r(R) · (a(R) + 2)− 2 , a(R) + 1} .

Proof. In view of Theorem 6.1(b) it suffices to prove that findegω∗
R ≤ r(R) · (a(R) + 2) − 2. We

may assume that n ≥ 3 and that C ⊂ Pn−1
k is non-degenerate. We write S for the coordinate ring of

Pn−1
k and consider a minimal homogeneous free S-resolution F• of R. Since R is Cohen-Macaulay,

the resolution F• has length n − 2 and Fn−2 is generated in degrees at most a(R) + n. Moreover,

indegFn−3 ≥ n − 2 because the curve is non-degenerate. It follows that the entries of φ, the last

matrix in the resolution F•, have degrees at most a(R) + 2.

Let α be a general homogeneous minimal generator of ωR of maximal degree. Observe that

annR α = 0. Moreover, the graded module ωR/Rα is minimally generated by r(R)−1 homogeneous

elements and is presented by the transpose of φ, with one row removed. This is a matrix with r(R)−1
rows and homogeneous entries of degrees at most a(R) + 2. The ideal a of (r(R)− 1)× (r(R)− 1)

minors of this matrix satisfies a ⊂ annR(ωR/Rα) ⊂
√
a, has positive grade, and is generated by

forms of degrees at most (r(R) − 1)(a(R) + 2). Thus, there exists a homogeneous non-zerodivisor

b ∈ a ⊂ annR(ωR/Rα) with deg b ≤ (r(R)− 1)(a(R) + 2).

Now the exact sequence

0 −→ ω∗
R −→ (Rα)∗ −→ Ext1R(ωR/Rα,R)

shows that

b(Rα)∗ ⊂ ω∗
R .

Since (Rα)∗ ∼= R(degα) and degα ≥ indegωR = −a(R), it follows that findeg(Rα)∗ ≤ a(R). As

moreover b is a non-zerodivisor, we conclude that

findegω∗
R ≤ findeg b(Rα)∗ = deg b+ findeg(Rα)∗ ≤ (r(R)− 1)(a(R) + 2) + a(R) ,

as required. □

We finish this section by providing the minimal graded free resolution of the module Derk(R)/Rε

for the case of a smooth arithmetically Cohen-Macaulay curve in P3
k. From this we obtain, for

instance, the initial degree, the minimal number of generators, and the entire Hilbert series of

Derk(R)/Rε. In particular, we see that the upper bound of Theorem 6.1(d) fails dramatically

without the nearly Gorenstein assumption.

Theorem 6.5. Let k be a perfect field and C ⊂ P3
k be a curve of degree d that is smooth and

arithmetically Cohen-Macaulay. Let R be the homogenous coordinate ring of C and S = k[x1, . . . , x4]
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be the homogenous coordinate ring of P3
k. Let

F• : 0 −→ F2 = ⊕n−1
j=1S(−bj)

φ−→ F1 = ⊕ni=1S(−ai) −→ S

be the minimal homogenous S-free resolution of R. We may assume that a1 ≤ . . . ≤ an.

(a)

Derk(R)/Rε ∼=

m(−a(R)) if n = 2 and d is not a multiple of the characteristic

ω∗
R n ≥ 3 .

(b)

indeg(Derk(R)/Rε) =

a1 + a2 − 3 if n = 2 and d is not a multiple of the characteristic

a1 + a2 − 4 n ≥ 3 .

(c) If n ≥ 3, then the minimal homogenous S-free resolution of Derk(R)/Rε is of the form⊕
2≤j1≤j2≤n−1

S(−bj1 − bj2 + 4)
⊕

2≤j≤n−1
1≤i≤n

S(−bj − ai + 4)

0
⊕ ⊕ ⊕

1≤i1<i2≤n
S(−ai1 − ai2 + 4)⊕

1≤j≤n−1
S(−b1 − bj + 4)

⊕
1≤i≤n

S(−b1 − ai + 4)

(d) Assume n ≥ 3 and let ψ be the n − 2 by n matrix obtained by deleting the first column of φ.

One has ht In−2(ψ) = 3 and

Derk(R)/Rε ∼= ω∗
R
∼=
In−2(ψ)

In−1(φ)
(4− b1) .

(e) Assume n ≥ 3. Write F2 = F21⊕F22 where F21 is generated by the first basis element of F2 and

F22 is generated by the remaining basis elements, so that ψ : F22 −→ F1, and let π : F2 ↠ F22

be the natural projection. Write −∨ = HomS(−, S) . Set b =
n−1∑
j=1

bj and b′ =
n−1∑
j=2

bj . Consider

the diagram

0 D2(F22)⊗
n∧
F∨
1 (−b′) F22 ⊗

n−1∧
F∨
1 (−b′)

n−2∧
F∨
1 (−b′)

0 F2 ⊗
n∧
F∨
1 (−b)

n−1∧
F∨
1 (−b) ,

−π⊗δ δ

where the first and the second row are the truncated Eagon-Northcott complexes associated to the

matrices ψ and φ, respectively, and δ is the differential in the Koszul complex of the sequence

consisting of the entries of the first column of φ. These vertical maps give a morphism of
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complexes u•, and the mapping cone C(u•) is a minimal homogeneous S-free resolution of

Derk(R)/Rε.

Proof. We first prove the claim about the height and the second isomorphism in part (d). Notice

that

F∨
• : 0 −→ S(−4) −→ F∨

1 (−4)
φ∨
−→ F∨

2 (−4) = ⊕n−1
j=1S(bj − 4)

is a minimal homogeneous free S-resolution of ωR. Since ωR is a torsionfree R-module and R is a

domain, the image α ∈ ωR of the first basis element of F∨
2 (−4) generates a submodule Rα ∼= R(b1−

4). Notice that dim(ωR/Rα) ≤ 1. As an S-module, ωR/Rα is presented by the n by n − 2 matrix

ψ∨. It follows that ht In−2(ψ) = ht In−2(ψ
∨) ≥ 3. Therefore annS(ωR/Rα) = In−2(ψ

∨) = In−2(ψ)

according to [3, Theorem page 232].

On the other hand, a shift of ωR is isomorphic to a homogenous ideal K of R. Let β ∈ K be the

element corresponding to α. One has

ω∗
R(b1 − 4) ∼= Hom(ωR,Rα) ∼= Hom(K,Rβ) ∼= Rβ :R K

= annR(K/Rβ) = annR(ωR/Rα) =
annS(ωR/Rα)

I

=
In−2(ψ)

In−1(φ)
.

Next we prove parts (a) and (b), which will also completes the proof of (d). If n = 2, the assertions

follow from Corollary 4.14. Hence we may assume that n ≥ 3. The second isomorphism in (d)

shows that indegω∗
R = indeg In−2(ψ) + b1− 4. On the other hand, indeg In−2(ψ) =

n−1∑
j=2

bj −
n∑
i=2

ai =

a1 + a2 − b1. The last equality holds because
n−1∑
j=1

bj =
n∑
i=1

ai, by the Hilbert-Burch theorem. We

conclude that indegω∗
R = a1 + a2 − 4. Now parts (a) and (b) follow from Corollary 2.10 once we

have shown that a1 + a2 − 4 > a(R).

To this end we may assume that b1 ≤ . . . ≤ bn−1. Hence a(R) = bn−1 − 4 and we need to prove

that a1+ a2 > bn−1. We consider the degree matrix associated to φ, which is the n− 1 by n matrix

with entries uij = bj − ai. Notice that φij = 0 if uij ≤ 0. It easily follows that uj+2,j > 0 for all j

since I is a prime ideal (see also [22, page 3142]). As a2 = u1,n−1 +
n−2∑
j=1

uj+2,j and n ≥ 3, we see

that a2 > bn−1 − a1.
We now prove (e). Since ht In−2(ψ) ≥ 3 by part (d), the two truncated Eagon-Northcott com-

plexes are minimal homogeneous S-free resolutions of In−2(ψ) and In−1(φ), respectively. One easily

checks that u• is a morphism of complexes. Thus C(u•) is a homogeneous S-free resolution of
In−2(ψ)
In−1(φ)

. It is minimal because the matrices of the vertical maps have entries in mS . We deduce part

(c) from (e), repeatedly using the equality
n−1∑
j=1

bj =
n∑
i=1

ai. □



BOUNDS ON DEGREES OF VECTOR FIELDS 47

7. The Euler derivation in the module of derivation

In proving the graded case of the Zariski-Lipman conjecture, Hochster showed that, for any

Noetherian positively graded algebra R over a field of characteristic zero, the Euler derivation is a

minimal generator of Derk(R), unless R is a polynomial ring over a subalgebra [28, pg 412]. One

may wonder whether the Euler derivation can generate a free direct summand. In this section we

use the results from Section 5 to address this issue and the related question of whether the natural

map Derk(R)→ L∗ of Proposition 2.4 can be surjective.

Proposition 7.1. Let R be a two-dimensional Noetherian standard graded algebra over a field k,

with homogeneous maximal ideal m, and assume that the multiplicity of R is not a multiple of the

characteristic of k. If R is Gorenstein, then the natural map Derk(R) → L∗ is not surjective and

the Euler derivation does not generate a free direct summand of Derk(R).

Proof. Let S be a polynomial ring over k of dimension ≥ 3 with homogeneous maximal ideal mS

that maps homogeneously onto R. The commutative diagram with exact rows

0 Z Ωk(S) mS 0

0 L Ωk(R) m 0

induces a commutative diagram

H1
mS

(mS) H2
mS

(Z)

H1
m(m) H2

m(L) .

α

β

γ

Here α is an isomorphism since depthmS
Ωk(S) ≥ 3, and β is nonzero by Theorem 5.2. We conclude

that γ is nonzero.

We use the exact sequence of Proposition 2.4

0 Derk(R)/R ε L∗ Ext2R(k,R)
∼= Ext1R(m, R)

δ ν

that was also induced by the exact sequence 0→ L→ Ωk(R)→ m→ 0 . Since R is Gorenstein and

γ ̸= 0, local duality shows that ν ̸= 0. Thus δ is not surjective. Moreover, depthDerk(R)/R ε = 1

by the depth lemma because im ν has depth zero. Thus Rε cannot be a direct summand of Derk(R),

a module of depth two. □

Surprisingly, if R is Cohen–Macaulay, but not Gorenstein then the natural map Derk(R) → L∗

can be surjective in dimension two. This is always the case for the coordinate rings of rational

normal curves of degree n ≥ 3 in Pnk , as we will see in Proposition 7.4 below.
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Lemma 7.2. Let T be a standard graded Noetherian domain with gradeT+ ≥ 2. Let s ∈ N be

invertible in T and denote the sth Veronese functor by −(s). Then

DerT0(T
(s)) = (DerT0(T ))

(s) .

Proof. We may assume that T+ ̸= 0 and s ≥ 2. We write R = T (s) and consider the exact sequence

(21) T ⊗R ΩT0(R) ΩT0(T ) ΩR(T ) 0
φ

We first prove that Supp(ΩR(T )) ⊂ V (T+). Let d : T → ΩT0(T ) denote the universal derivation.

Let p ∈ Spec(T ) \ V (T+) and ℓ an arbitrary linear form in T . We need to show that d(ℓ) ∈ (imφ)p.

We choose x ∈ T1 \ p. Since s xs−1d(x) = d(xs) ∈ imφ it follows that d(x) ∈ (imφ)p. Now the

containment (s− 1)xs−2ℓ d(x) + xs−1d(ℓ) = d(ℓxs−1) ∈ imφ implies that d(ℓ) ∈ (imφ)p.

Let K and L be the quotient fields of R and T , respectively. Since ΩK(L) = 0 by the above, the

field extension K ⊂ L is separable algebraic. Therefore φ⊗T L is an isomorphism, which shows that

kerφ is a torsion module. Again, since Supp(ΩR(T )) ⊂ V (T+), it follows that gradeΩR(T ) ≥ 2,

hence Ext1T (ΩR(T ), T ) = 0. Now, dualizing the sequence (21) into T gives the identification

DerT0(T ) = DerT0(R, T ) .

Thus DerT0(R) ⊂ DerT0(T ), and a degree argument immediately yields the desired equality. □

Corollary 7.3. Let T = T0[z1, . . . , zt] be a standard graded polynomial ring with t ≥ 2, and let s ≥ 2

be invertible in T . Then DerT0(T
(s)) is the T (s)-submodule of DerT0(T ) = ⊕ti=1 T

∂
∂zi

minimally

generated by the homogeneous elements zi
∂
∂zj

for 1 ≤ i, j ≤ t.

Proof. Applying Lemma 7.2 we obtain

DerT0(T
(s)) = (DerT0(T ))

(s) = T (s)[DerT0(T )]0 ,

where the last equality holds because DerT0(T ) is generated in degree −1 and −s < −1 ≤ 0. □

The coordinate ring of the rational normal curve of degree n in Pnk is of the form R = S/I, where

S = k[x0, . . . , xn] and I is the ideal generated by the maximal minors of the matrix

(22)

[
x0 x1 x2 . . . . . . xn−1

x1 x2 . . . . . . xn−1 xn

]
.

We write yi for the images of xi in R.

Proposition 7.4. Let R be the coordinate ring of the rational normal curve of degree n ≥ 3 in Pnk ,

and assume that the characteristic of the field k is not a divisor of n.
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(a) The module Derk(R) is the R-submodule of Derk(S,R) = ⊕ni=0 R
∂
∂xi

minimally generated by

the following 4 homogeneous elements of degree 0,

n−1∑
i=0

(n− i) yi
∂

∂xi
,

n−1∑
i=0

(n− i) yi+1
∂

∂xi
,

n∑
i=1

i yi−1
∂

∂xi
,

n∑
i=1

i yi
∂

∂xi
;

in particular, Derk(R)/Rε is minimally generated by three homogeneous element of degree zero.

(b) L∗ ∼= (y0, y1, y2)(1) .

(c) The natural map Derk(R)→ L∗ is surjective.

Proof. We consider the polynomial ring T = k[u, v], where the variables u and v are given degree
1
n . By mapping yi to u

n−ivi, one identifies R with the Veronese subring k[{un−ivi}] = ⊕j∈Z≥0
Tj of

T . By Corollary 7.3 the R-submodule Derk(R) of Derk(T ) is minimally generated by the elements

of degree zero u ∂
∂u , v

∂
∂u , u

∂
∂v , v

∂
∂v .

Consider the natural map S → T of k-algebras with xi 7→ un−ivi. It induces a T -linear map

Ωk(S) ⊗ T → Ωk(T ) with dxi 7→ (n − i)un−i−1vidu + iun−ivi−1dv. Dualizing into T , we obtain a

map Derk(T )→ Derk(S, T ) with ∂
∂u 7→

∑n−1
i=0 (n− i)un−i−1vi ∂

∂xi
and ∂

∂v 7→
∑n

i=1 i u
n−ivi−1 ∂

∂xi
.

Using the identification of Derk(R) as an R-submodule of Derk(T ) and Derk(S, T ),

Derk(T ) Derk(S, T )

Derk(R)

⊃ ⊂

the generators

u
∂

∂u
, v

∂

∂u
, u

∂

∂v
, v

∂

∂v
of Derk(R) become

n−1∑
i=0

(n− i) yi
∂

∂xi
,

n−1∑
i=0

(n− i) yi+1
∂

∂xi
,

n∑
i=1

i yi−1
∂

∂xi
,

n∑
i=1

i yi
∂

∂xi
.

We now prove (b). We may assume that k is perfect. As the rational normal curve is smooth,

Proposition 2.4 and Proposition 2.9(b) imply that L∗ ∼= ω∗
R.

Since R is a determinantal ring, one has ωR ∼= (y0, y1)
n−2(n− 3). It follows that

ω∗
R(−1) ∼= yn−2

0 R :R (y0, y1)
n−2R

= (un(n−2)T ∩R) :R (un, un−1v)n−2R

= (un(n−2)T :T (un, un−1v)n−2R) ∩R

= (un(n−2)T :T (un, un−1v)n−2T ) ∩R

= (un−2T ) ∩R

= (y0, y1, y2).
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To prove part (c) recall that according to Proposition 2.4, the natural map Derk(R) −→ L∗

induces an embedding Derk(R)/Rε ↪→ L∗. Now use that Derk(R)/Rε is minimally generated by

3 homogenous elements of degree zero according to (a) and L∗ is generated by 3 homogeneous

elements of degree zero by (b). □
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[36] J. V. Pereira, On the Poincaré problem for foliations of general type, Math. Ann. 323 (2002), no. 2, 217–226. ↑1
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