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1. INTRODUCTION

This paper is concerned with the structure of the module of derivations and its interplay with
vector fields and singularities of varieties. Modules of derivations are not well understood — despite
great advances on the Zariski-Lipman conjecture (see [20,27,45] for instance), there is still no
complete characterization for when they are free. The paper focuses on Poincaré’s problem on the
degrees of vector fields.

In 1891, Poincaré asked the following question that became known as Poincaré’s problem [37]:
How can one decide whether a homogeneous differential equation given by a polynomial vector field
F on P% has a rational solution? This question has been rephrased as the problem to find upper
bounds for the degree of any curve C to which F is tangent, possibly in terms of the degree of F.

According to [18, p.57], ‘This question is fundamental but difficult, and it has stimulated a lot of
research for well over a century’ (see [1-7,10,12,15-18,21,33,36,411,42]). It has often been addressed
in greater generality, for curves and even varieties in P%, and invariants other than the degrees of
the variety and the vector field have been considered, because even for plane curves bounds only
involving degrees are not always possible [5,0,33].

In this article, we study the generalized Poincaré problem from the opposite perspective, by
establishing lower bounds on the degree of the vector field in terms of invariants of the variety, say
X. This approach has the advantage that all the vector fields on P} tangent to X, when restricted
to X, can be encoded in a single module,

Dery(R)/m™ e,

see Proposition 2.4. Here R is the homogeneous coordinate ring of a subscheme X C P}, which,
for the purpose of this introduction, is assumed to be reduced and irreducible over an algebraically
closed field of characteristic zero; by m we denote the homogeneous maximal ideal of R, by Dery(R)
the module of derivations, and by ¢ € Dery(R) the Euler derivation. If depth R > 2, then m~'e = Re
and the module above essentially carries the same information as Dery(R). The least degree of a

vector field that leaves X invariant and does not vanish along X is 1 plus the initial degree of the
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module Dery(R)/m™te, and our reformulation of Poincaré’s problem becomes: Find lower bounds
for the initial degree indeg(Dery(R)/m™t¢).

In the current paper we address this problem mainly for curves. We generalize bounds that were
known for plane curves and we obtain new estimates as well. Our proofs are algebraic. In order to
understand how tight the lower bounds for the initial degree of Dery(R)/m~!c are, we also provide
upper bounds, which sometimes lead to equalities. Our estimates use global invariants, such as the
genus of the curve C, the Castenuovo-Mumford regularity, or the a-invariant of the homogeneous
coordinate ring R; invariants that can be considered global as well as local, like the singularity
degree of C, the total Tjurina number, or the multiplicity of R modulo the Jacobian ideal; and local

information, such as the type of the singularities or a new invariant that we call Loewy multiplicity.

For smooth curves we prove that the initial degree satisfies the inequality indeg(Dery(R)/m~te) >
a(R) + 1, which is an equality if C is arithmetically Gorenstein. In one of our main results, Theo-
rem 4.10, we generalize this inequality to the case of curves with at most planar singularities. We
show that

(1) indeg(Dery(R)/m~'¢) > a(R) + 1 + [Sing(C)| — Lmult(R/Jz).

Here a(R) = — indeg(wp) denotes the a-invariant of R, which is equal to reg C —3 if C is arithmeti-
cally Cohen-Macaulay; and Lmult(R/Jr) denotes the Loewy multiplicity of R modulo the Jacobian
ideal, which is bounded above by the sum of the local Tjurina numbers of C in this case. If C
has only ordinary nodes as singularities, then |Sing(C)| — Lmult(R/Jac(R)) = 0 and we obtain the
inequality indeg(Derg(R)/m™1e) > a(R)+1, which is again an equality whenever C is arithmetically
Gorenstein. The case of ordinary nodes had been treated before with the additional assumption
that, first, C is a plane curve [7], then, C is a complete intersection [1], and, finally, C is arithmetically
Cohen-Macaulay [16,17].

The proof of inequality (1) has two main ingredients. Inspired by the use of general projections
in [16], we prove more generally in Theorem 4.8 that if A C R is a finite and birational extension of

standard graded domains over a perfect field and A is Gorenstein of dimension at least two, then
indeg(Dery,(A)/Ac ) +a(A)—a(R) > indeg(Derg(R)/m 'er) > indeg(Dery(A)/Ac4) —a(A)+a(R) .

In addition, for hypersurfaces of arbitrary dimension with only isolated singularities, we are able to
bound indeg(Der,(R)/m™e) from below in terms of the a-invariant of R/Jg. Applying these two
results to a curve C with only planar singularities, we prove inequality (1) by general projection
to a plane curve. The general projection does not change the singularities of C and introduces
only ordinary nodes as additional singularities, which guarantees that the difference |Sing(C)| —
Lmult(R/Jg) is unaltered.

Our other main results generalize, from plane curves to arbitrary curves, earlier work of du Plessis

and Wall [12] and of Esteves and Kleiman [15] that uses the sum of local Tjurina numbers. For a
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curve C C P} of degree d with homogeneous coordinate ring R, we map a sufficiently general two-
dimensional complete intersection S onto R, and write J for the Castelnuovo-Mumford regularity of
S and J C R for the image of the Jacobian ideal of S. If F is a vector field that leaves C invariant
and 0 # Ir C R is an ideal defining the singular locus of F, then F and J coincide up to a degree
shift and this shift is closely related to the degree deg F, which we wish to control. The degree shift
is reflected in the difference of multiplicities e(R/Ir) — e(R/J). Thus to estimate the degree shift,
and hence deg F, from below it suffices to establish a lower bound for e(R/Ix). To do so, we prove a
non-vanishing result for maps between local cohomology modules of Koszul cycles that yields lower
bounds for the regularity of the saturation I5?* and hence for e(R/Ir). The line of argument just
described is inspired by the work of Esteves and Kleiman in [15]. Thus we obtain in Theorem 5.6
that

indeg(Dery(R)/m™1) > -2 — e(}Z/J)l—é ;

unless C is a smooth complete intersection, in which case the initial degree is a(R) + 1.

This result is the starting point for various estimates in terms of the arithmetic genus p,, the
geometric genus py, and the sum 7 of the local Tjurina numbers of the curve. Theorem 5.10 says
that

d T—2
indeg(D ey > —
indeg(Derg(R)/m™¢) > 71 a(R) 71
if C is locally a complete intersection, and
I, —
indeg(Der;(R)/Re) > %
if in addition C is arithmetically Cohen-Macaulay. For plane curves we prove in Corollary 5.7 that

indeg(Derg(R)/Re) > d — ; - \/2’7' + 2pg — d? +3d — Z )
These bounds are sharp for plane curves of low genus and for other classes of curves, as illustrated
in Proposition 5.12.

In Section 6 we turn to upper bounds for indeg(Derj(R)/m~1¢) in order to understand how
sharp the lower bounds in Section 5 and Section 4 are. As a special case of Theorem 6.1, for
instance, we prove that a(R) + 1 is an upper bound whenever C is arithmetically Gorenstein. In
Theorem 6.5 we determine the minimal graded free resolution of Dery(R)/Re as a module over
a polynomial ring if C C Pi is smooth and arithmetically Cohen-Macaulay. From this we obtain
the initial degree, the minimal number of generators, and the entire Hilbert series of Derg(R)/Re.
In particular, we see that the upper bound a(R) + 1 fails dramatically without the assumption
of arithmetic Gorensteinness. Curiously, the work in Section 5 on local cohomology of Koszul
cycles implies another result about the structure of the module of derivations — namely we prove in
Proposition 7.1 that the Euler derivation cannot generate a free direct summand of Derg(R) when

C is arithmetically Gorenstein.
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2. PRELIMINARY RESULTS AND A TRANSLATION FROM GEOMETRY TO ALGEBRA

Let R be a standard graded algebra over a field with homogeneous maximal ideal m. Let €2 be the
module of differentials of R and let € denote the Fuler derivation. In this section we prove that the
vector fields studied in [1—6, 15—18,41,42] correspond to elements in the R-module Dery(R)/m™ e,
see Proposition 2.4.

We begin by reviewing basic definitions related to vector fields; we basically follow the definitions
from the excellent reference [16, p. 4-5].

We adopt the following setting:

Setting 2.1. Let n > 2, and S = k[z1,...,2,] the homogeneous coordinate ring of szl, with
maximal homogeneous ideal mg. Let I C S be a saturated homogeneous ideal and R = S/I be
the homogeneous coordinate ring of the corresponding projective scheme X C szl. Let m be the

maximal homogeneous ideal of R and € the Euler derivation.

The Euler sequence

1 .. @]

0 —— Z —— Q(S) = @} Sdx; = S™(—1) mg » 0

defines the cotangent sheaf sz—l as Z. Notice that Z is the first syzygy module in the Koszul
complex of z1,...,Ty,.

A wvector field on PZ_I of degree m is a homogeneous map of degree m — 1
n:Z—2_9.

As Extg(mg, S) = 0, any such map is the restriction of a map

l[a1 ... an]

€:0(9) 2 Sn(—1) L g

where the a; are forms of degree m.

There is a commutative diagram with exact rows

0 —— Z —— Q(S) =2 5"(-1) > mg 0
) l# v :
0 > L Qr(R) > m 0

We write H = im e and notice that this is the image of the second differential in the Koszul
complex built on the R-linear map Qx(R) — R corresponding to the Euler derivation (by the
universal property). In particular, L/H is the first homology of this Koszul complex and hence it
is annihilated by m. Moreover, H = L if I is generated by forms whose degrees are not multiples of
the characteristic. Indeed, in this case the Euler relations shows that ker 1) maps onto ker o, hence

@ is surjective by the Snake Lemma.
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One says that the vector field 7 leaves X invariant or that X is an integral subscheme of n (if
X is a curve we say that X is a leaf of i) if n induces a map p : H — R, necessarily linear and

homogeneous of degree m — 1,

7 S7(~1)
AV
fs
|
R.

Notice that a map H — R corresponds to a unique map L — R if I is generated by forms
whose degrees are not multiples of the characteristic or if depth R > 2.
Summarizing, every vector fields n of degree m — 1 that leaves X invariant induces a unique

homogeneous R-linear map p: H — R of degree m — 1.

Proposition 2.2. Adopt Setting 2.1. A homogeneous R-linear map i : H — R is induced by a

vector field that leaves X invariant if and only if p can be extended to a homogeneous R-linear map

Proof. Given a vector field n : Z — S, the map p : H — R is induced by 7 if and only if u is

induced by 7 ®g R. Consider the commutative diagram with exact rows and columns

1% T y U y I/mgl

i | l

Z@gR ————— 3 R'(~-1) — my®s R —— 0

Nn®R ERR

L

\ / > Q]J(R) m 0.
I
R /

If the map p is induced by 7, hence by n® R, then (n® R)(V) = 0 which implies (£ ® R)(im7) = 0.
By the above diagram, coker 7 < I/mgl and therefore m - U C im7. Thus m- ({ ® R)(U) = 0,
which implies that (£ ® R)(U) = 0 since depth R > 0. It follows that £ ® R induces a homogeneous
R-linear map Q(R) — R, which gives p when restricted to H.

Conversely, let v : Qi(R) — R be a homogeneous R-linear map. It can be lifted to a homoge-
neous S-linear map & : S"(—1) — S because S"(—1) is free. Set n = ¢ z. Since ({ ® R)(U) = 0,
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we have (n ® R)(V) = 0 and so n induces a homogeneous R-linear map p : H — R, which is also
the restriction of v to H. g

We write —* = Hompg(—, R). In light of Proposition 2.2 we are interested in the image of
Qr(R)* = Derg(R) in the module H*. In the next proposition, we identify this image. We use
the fact that there is a natural embedding Derg(R) < @ ®pg Derg(R) where @ is the total ring of
fractions of R. For an ideal a of R, we denote its inverse ideal by a~! := R : a. Notice that if
depth R > 2 then m™! = R.

4:63¢:st3:14
Example 2.3. Let C be the rational quartic curve given by the parametrization P}~C (22 ——f———>) Pi .

In this case m~! is R, the integral closure of R = k[s*, s3t, st3, %], and R = R[s*t?] C Q.

Proposition 2.4. Adopt Setting 2.1. There are homogeneous exact sequences
0 — Derg(R)/m e — L* — Ext%(k, R),

0 — L* — H* — Exth(C,R),
where C' is an R-module annihilated by m.

Therefore, there are natural homogeneous embeddings
Derg(R)/m ™ 'e «— L* — H*,

where the first embedding is an isomorphism if depth R > 3 and the second is an isomorphism if
depth R > 2 or the defining ideal of R is generated by forms whose degrees are not multiples of the
characteristic.

In particular, the vector fields that leave X invariant, when restricted to X, correspond to the

homogeneous elements in the torsionfree R-module Dery(R)/m~!.

Proof. Consider the Euler sequence

R

el

0 —— L — Q(R) —— m —— 0.

Dualizing into R shows that the first row of

0 y m1 Dery(R) y L* » Exth(m, R)
R

is exact and that 1 € R maps to ¢ € Derg(R). Since Exth(m, R) = Ext%(k, R), we obtain the first
asserted exact sequence.
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The second exact sequence follows because C' := L/H = coker ¢ is annihilated by m and
depth R > 0, see page 4. We also recall that H = L if the defining ideal of R is generated by
forms whose degrees are not multiples of the characteristic. O

The singular locus of the vector field 7 is the subscheme ¥ = V(I3(N)) C PZ_l, where N is the
2 by n matrix
N = [:L’l .Cl:n] ;
ay ... Qp

in fact a point P € P}~! does not belong to ¥ if and only if @ := [a1(P) : ... : a,(P)] € P}~! and
there is a unique line passing through P and @), giving the direction defined by 7 at P. We observe
that Io(N)R, the ideal defining the subscheme ¥ N X C X is the image of the map pu: H — R
induced by n. One usually requires that >N X does not contain an irreducible component of X, in
other words, that the ideal im yr = I(IN)R has positive height in R.

We introduce a new invariant that is going to play an important role throughout the paper.

Definition 2.5. Let R be a non-negatively graded ring and M be a finitely generated R-module.
We define the faithful initial degree of M over R as

findegp M = inf{degm | m € M homogenous with annm = 0}.
Notice that findeg M > indeg M, and equality holds if M is torsionfree and R is a domain.

Corollary 2.6. In addition to Setting 2.1, assume that R has no embedded associated primes. If
m is the smallest degree of a vector field on szl that leaves X invariant and whose singular locus

does not contain an irreducible component of X, then

m = 1 + findeg(Dery(R) /m™1¢).

Proof. Proposition 2.2 and Proposition 2.4 show that m — 1 is the smallest degree of a homogenous
element in Dery(R)/m™'e that, when regarded as a homogenous R-linear map H — R, has the
property that ht(im ) > 0, equivalently gradeim u > 0, or yet equivalently anng p = 0. O

In the next proposition (and the remark following it) we identify H* with a well-known fractional
ideal: the inverse of the image in R of the Jacobian ideal of a general complete intersection mapping
onto R. The resulting embedding Dery(R)/m~te — J~1(2 — §) will be useful to compute initial

degrees.

Setting 2.7. In addition to Setting 2.1 assume that X = C C PZ_l is a reduced equidimensional
curve over a perfect field k. Let fi1,..., fn_2 be forms in I of degrees d1,...,d,_9 that generate
I generically, and let J be the ideal generated by the images in R of the maximal minors of the

Jacobian matrix of fi,..., fr—2. Set § = Z?;f(c% —1).



8 MARC CHARDIN, S. HAMID HASSANZADEH, CLAUDIA POLINI, ARON SIMIS, AND BERND ULRICH

Remark 2.8. We will see, as a consequence of Theorem 3.3(a), that the forms fi,..., frn—2 in
Setting 2.7 generate I generically if and only if ht J > 0.

If I is a complete intersection, then fi,..., fn,—2 can be chosen to be a minimal homogeneous
generating sequence of I, in which case J is the full Jacobian ideal of R.

If k£ is infinite and [ is generated by forms of degrees §; > ... > &, then f1,..., f_o can be
taken to be n — 2 general forms of degrees 41 > ... > §,_2 in I. In this case f1,..., fr_2 also form

a regular sequence.

Proposition 2.9. Adopt Setting 2.7.

(a) There exist natural homogeneous R-linear map
N Qu(R) —— H
N Q(R) — J(6—2)
A? Qu(R) ——— wr,

where the first two maps are epimorphisms and all maps are isomorphisms generically.
(b) After factoring out the R-torsion of /\2 Qr(R) and H, or after dualizing into R, the first two

maps become isomorphisms and the last map becomes an embedding,
H/tor(H) =2 J(6 — 2) = A’Qi(R) /tor(A*Q(R)) — wr

and
H* = J712 = 6) =2 (A2Qi(R))* « wh.
In particular,
Derg(R)/m™te — J71(2-9).
If C is smooth and arithmetically Cohen-Macaulay, then the embedding wh — (A?Q(R))* is an

isomorphism.

Proof. The first map is the second differential onto its image in the Koszul complex of the ho-
momorphism Q(R) — R corresponding to the Euler derivation. This map is homogeneous and
surjective, and the module H has rank one because the Koszul complex is exact locally on the
punctured spectrum of R.

The second map is a direct consequence of the fact that Qk(R) is a module of rank 2 generated
by n elements and J is generated by the maximal minors of the matrix consisting of n — 2 columns
of a matrix presenting Qx(R). Indeed, let x4, ..., z, be the images in R of the variables of S, extend
fi,--+, fn—2 to a homogeneous generating sequence f1, ..., fm, for I, let © be the image in R of the
transpose of the Jacobian matrix of fi,..., fm, let ©" be the submatrix of © consisting of the first
n — 2 columns of ©, and for 1 < i < j < n, let A;; be the maximal minor of O’ with rows i and
j deleted. Notice that © is a homogeneous presentation matrix of Q(R), that I,, 5(0") = J, and
that deg A;; = d. Since Q(R) is an R-module of rank 2, it follows that © has rank n — 2. Now the
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second natural map
N Qu(R) — J (6 —2)

is the homomorphism sending dz; A dx; to (—1)HI A;j. This map is well defined because © is a
presentation matrix of 2 (R) and has rank n—2. The map is obviously homogeneous and surjective.
Also notice that J has positive grade in R because the module generated by the columns of © has
rank n — 2 as it is generically equal to the syzygy module of Q(R).

The third map is the canonical class of R over k (see for instance [1,14,16,31,341]). This map is
homogeneous and it is an isomorphism locally at the regular prime ideals of R.

Since the first two maps are epimorphisms between modules of the same rank, namely one, we
see that these maps are also isomorphisms generically. This completes the proof of part (a). Part

(b) follows from (a); for the last assertion, we also use Proposition 2.4. O
As a first immediate consequence of Proposition 2.4 and Proposition 2.9 we obtain:

Corollary 2.10. Adopt Setting 2.7 and assume that C is smooth and arithmetically Cohen-Macaulay.
If indegw}, > a(R), then
Derg(R)/Re = wp, .

Proof. From Proposition 2.4 and Proposition 2.9(b) we obtain isomorphisms L* = H* = w}. Now
again by Proposition 2.4 there is an exact sequence

0 — Derg(R)/Re — wi — Ext%(k, R).

Thus the assertion follows once we have shown that Ext%(k, R) is concentrated in degrees < a(R).
For this we may assume that k is infinite. Since R is Cohen-Macaulay, there exists a regular

sequence x1, x2 consisting of linear forms in R. We have
Ext%(k, R) = Hompg(k, R/(x1,12))(2) = socle(R/(x1, x2))(2),

and the last module is concentrated in degrees at most a(R/(x1,22)) — 2 = a(R). O

Corollary 2.11. Adopt Setting 2.7. Let p be a vector field on szl of degree m that leaves C
mwvariant and whose singular locus does not contain an irreducible component of C, which means
that htim p > 0. Then
(imp)(m—1) =2 J(6 —2).
Proof. The map p induces a homogeneous epimorphism of degree m — 1
H im .
Recall that the R-module H has rank one. Since gradeim y > 0, the vector field p induces a

homogeneous isomorphism after factoring out the torsion of H,

H/tor(H) = (imp)(m —1).
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The assertion now follows from Proposition 2.9(b). O

3. THE INVARIANTS

In this section we discuss the invariants that play a role in our estimates.

a-tnvariant. In many of our bounds on curves, the a-invariant replaces Castelnuovo-Mumford
regularity if the curve is not arithmetically Cohen-Macaulay. The a-invariant of a Noetherian

standard graded algebra R over a field is defined as a(R) = —indeg(wg). Local duality implies that
(3) a(R) <regR—dimR

and equality holds if R is Cohen-Macaulay.

Jacobian ideals. In this paper, Jacobian ideals will play an important role. To recall the general
definition, let S = k[z1,...,x,] be a polynomial ring over a field k, W C S a multiplicative subset,
I c W~1S anideal, and R = (W~1S)/I. Assume that every minimal prime ideal of I has the same
height g and set D = n — g. The Jacobian ideal of the k-algebra R is defined as

Jr = JR/k = Fittp(Q(R)) .

It turns out that D = dim R, + trdeg,, x(p) for every p € Spec R, where £(p) denotes the residue
field of p, see (4). In particular, D only depends on k& C R, does not change when passing to a
nonzero ring of fractions, and coincides with the integers s of Theorem 3.1 and D of Theorem 3.3.
Moreover, for V C R a multiplicative closed subset, one has Jy -1z = V1Jg.

We will use the following version of the Jacobi criterion.

Theorem 3.1 (Jacobi Criterion). Let (A,m, L) be a local algebra essentially of finite type over a
field k, with separable residue field extension k C L.

Then A is regular if and only if Fitts (Q(A)) = A for some s < dim A + trdegy, L. In this case,
the extension k C Quot(A) is separable and s = dim A + trdegy, L.

In our estimates we will also need to use partial Jacobian ideals as in Setting 2.7. The next
results give Jacobi-like criteria for such ideals.

For a Noetherian ring R and i > 0 an integer, Spec(R) is said to be connected in dimension i
if i < dim R and Spec(R) cannot be disconnected by removing a closed subset of dimension < i.
Assume d = dim R > 0, then Spec(R) is connected in dimension d — 1 if R is a domain with d < oo
or R is an equidimensional catenary local ring satisfying Serre’s condition Sy (for the latter case
one uses Hartshorne’s Connectedness Lemma [24]).

Recall that the arithmetic rank of an ideal a, ara(a), is the minimal number of elements that
generate a up to radical.

Lemma 3.2. Let T be a Noetherian local ring of dimension d > 0 and assume that T is analytically

~

irreducible or Cohen-Macaulay or, more generally, Spec(T') is connected in dimension d — 1. Let
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a C I beideals and K = a: 1. If I, = a, for some p € V(I) and VI # \/a, then
ht( + K) < ara(a) +1 < p(a) + 1.

Proof. We may pass to the completion of T' to assume that T is a complete local ring and Spec(7T')
is connected in dimension d — 1. Set A = T'/a and s = ara(a). By Grothendieck’s Connectedness
Theorem [19, 3.1.7], Spec(A) is connected in dimension d — 1 — ara(a) =d — 1 — s.

On the other hand, our assumptions on a and I mean that V(I)\ V(I + K) # (0 and V(K) \
V(I + K) # 0, or equivalently, V(IA) \ V(IA+ KA) # () and V(KA)\V(IA+ KA) # (. As
Spec(A) = V(IA) UV (KA), we see that Spec(A) \ V(IA + KA) is disconnected. This can only
happen if dim7T'/( + K) =dim A/(JA+ KA) > d—1—s. It follows that ht(/ + K) <s+1. O

Theorem 3.3. Let (T,n, L) be a Cohen-Macaulay local ring essentially of finite type over a perfect

field k. Let I be an ideal of height g and a = (fi,...,fy) C I. Write A =T/a and R = T/I

and assume R is equidimensional of dimension > 2. Set D = dim R + trdeg, L and consider the

Jacobian-like ideal J = Fittp(R®4 Q(A)) C R.

(a) bt J > 1 if and only if I, = ay for every minimal prime p of I and R satisfies Serre’s condition
Ry.

(b) Ifht J > 2 then I = a is a complete intersection.

(¢) ht J > i for some i > 2 if and only if I = a is a complete intersection and R satisfies Serre’s
condition R;_1.

Proof. We first prove that if p is a prime ideal in V(I) with residue field &, then
(4) dim R, + trdegyx = D

Let m denote the maximal ideal of R. Since R is the localization of a finitely generated k-algebra,
we can write R = Ry ,, where R’ is a finitely generated k-subalgebra of R and m’ = m N R’. Notice
that R’ is equidimensional and set p’ = p N R’. Now

dim Ry + trdeg,x = htp'R’ + dim R'/p'R’ = dim R’ = ht 'R’ 4+ dim R'/m’'R’ = dim R + trdeg, L,

as claimed.

It remains to prove that if ht J > 1, then I, = a, for every minimal prime p of I and if ht J > 2,
then I = a. The rest follows from Theorem 3.1 and (4).

We first show that if p € V(1) and J, = Ry, then I, = a,. We wish to apply Theorem 3.1 to the
ring A, with s := D. Notice that

s = D = dim R, + trdegyx < dim Ay + trdeggx

according to (4) and that Fitt,(Q(Ay)) = A, because I C p. Now Theorem 3.1 implies that A, is
regular and dim A, = dim R,. As A, is a domain mapping onto Ry, we conclude that a, = I, as
asserted.
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Thus we have proven that if ht J > 1, then a, = I, for every minimal prime p of I. On the
other hand, if ht J > 2 we conclude that a, = I, for every p € V(1) with dim7, < g + 1. So for
K :=a:1I, wehave ht(/+ K) > g+2 > p(a) + 1. Also a, = I, for some p € V([I), in fact for every
minimal prime p of I. Therefore Lemma 3.2 shows that /a = v/I. In particular, a is a complete
intersection. Thus every associated primes p of a is a minimal prime of a, hence a minimal prime of
I because v/a = /1. Therefore, ap = I,. Since this holds for every associated prime of a, we obtain
a=1. ]

Tjurina number. The estimates for plane curves in [12, 15] use the sum of the Tjurina numbers at
the singular points. To allow for curves in projective spaces of arbitrary dimension, we replace the
sum of the Tjurina numbers by the degree of the singular locus endowed with the scheme structure
given by the Jacobian ideal, which is the multiplicity of the homogenous coordinate ring of the
curve modulo its Jacobian ideal. If the curve is locally a complete intersection, as is the case for
any plane curve, then the sum of the Tjurina numbers and the degree of the singular locus coincide,
see Corollary 3.6.

Let A be a local ring essentially of finite type over a field k. By T'(A/k) we denote the first
cotangent cohomology of the k-algebra A. If k is perfect and A is reduced, then T'(A/k) &
Exth (Q(A), A) . The module T'(A/k) has finite length whenever k is perfect and A has an isolated
singularity; this length is called the Tjurina number of A and denoted by 7(A). If the residue
field extension is trivial, then 7(A) is the embedding dimension of the formal moduli space of A,
the parameter space of the versal deformation of the k-algebra A. The total Tjurina number of a

reduced curve C C P} ! over a perfect field is defined as 7(C) = 3. 7(Oc,p).
p€ESing(C)

Lemma 3.4. Let k be a perfect field, X C Pz_l be a reduced and equidimensional subscheme, and
Y C X be a subvariety. Let R be the homogenous coordinate ring of X, let p C R be the prime ideal
defining Y, and write T = Ry, and A = Oxy .

(a) T = A(x) for every x € Ry \ p; any such x is transcendental over A and A(x) denotes the
localization of the polynomial ring Alx] at the extension of the mazimal ideal of A.

(b) U(T) = ((A) @4 T)®Tdx, where Tdx = T.

(¢) Jrx = JapT and TH(T/k) = TH(A/k) @4 T.

Proof. Part (a) is well known, part (b) is an immediate consequence of (a), and part (c) follows
from (b). O

Proposition 3.5. Let k be a perfect field and A be a local k-algebra essentially of finite type with

algebraic residue field extension. If A is a reduced complete intersection of dimension one, then

7(A) = A(A/ Ja).
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Proof. Notice that projdim,Qx(A4) < 1 and rankg Q;(A) = dimA = 1. Thus [13, Satz] im-
plies A(A/Ja) = A(tor(2%(A4))). Since A is Gorenstein, local duality gives A(tor(Q2x(A))) =
AMExtY (Q(A), A)). As Extl(Qx(A), A) = T'(A/k), the assertion now follows. O

The next corollary expresses the total Tjurina number of a local complete intersection curve,
which is defined in terms of local invariants of the singular points, as a global invariant, the degree
of the singular scheme of the curve, which can be computed without knowing the singularities. It
is this global invariant that replaces the global Tjurina number in our estimates when the curves

need not be a local complete intersection.

Corollary 3.6. Let k be a perfect field and C C szl be a singular reduced curve that is locally a

complete intersection. Write R for the homogeneous coordinate ring of C. Then
7(C) =e(R/JR) .

Proof. Write m for the homogenous maximal ideal of R. In this case we have

T(C) = Z Aoe,(Ocyp/Joc,) by Proposition 3.5
p€eSing(C)
= Z AR, (Ry/JR,) by Lemma 3.4(c)
peV (Jr)\{m}
= e(R/JR) by the associativity formula for multiplicity.

g

Loewy multiplicity. Besides the multiplicity of the homogeneous coordinate ring of a curve modulo
its Jacobian ideal, we will also consider what we call the Loewy multiplicity, which is defined by
replacing length by Loewy length in the associativity formula for multiplicity.

The Loewy length of a module M of finite length over a local ring (A, m) is the smallest integer
s > 0 so that m*M = 0. The Loewy length satisfies the inequality ¢¢(M) < A(M), which is an
equality if and only if M and mM are cyclic if and only if every submodule of M is cyclic. We will

use a strengthening of this inequality:

Proposition 3.7. Let A be the local ring of a point on a reduced plane curve over a perfect field
and write e = e(A). Then

eeca ) < xarin - (45 1)
Proof. We may assume that A = S/(f), where S = k[z,y],,) . Let n be the maximal ideal of S

and m be the maximal ideal of B := A/J4 . We have f € n® and so (gi, gi) C n®~!. It follows that
mé /mitl =2 /nitl o i+l for § < e — 2. Therefore

v

e—2 _1
MA/Ja) = C0(A)T4) = Y (A(md fmi+1) — 1) <62 >

=0
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Let M be a finitely generated module over a Noetherian ring R, where either R is local or else

M is graded and R is positively graded over an Artinian local ring. Recall that

e(M) =) MMp) - e(R/p),
where p ranges over all prime ideals of maximal dimension in Supp(M). Analogously, we define the
Loewy multiplicity of M as
Lmult(M) := Y 26(My) - e(R/p).
Clearly, Lmult(M) < e(M) and equality holds if and only if for every p as above, every R,-submodule
of M, is cyclic.

Singularity degree and genus. If A is an analytically unramified Noetherian local ring, with integral
closure A, then the A-module A/A has finite length if and only if A is normal locally on the
punctured spectrum. In this case, o(A4) := A(A/A) is called the singularity degree of A. The

singularity degree of a reduced curve C C PZ‘I is defined as

aC)= > 0(Ocy).
p€eSing(C)
An argument as in the proof of Corollary 3.6 shows that o(C) = e(R/R) if C is singular, where R
is the homogeneous coordinate ring of C.

The singularity degree of a curve is closely related to its arithmetic and geometric genus. Let
X C PZ_I be a reduced subscheme over a field k, with homogeneous coordinate ring R. Let m be
the homogeneous maximal ideal and py, ..., ps the minimal primes of R, and write R; = R/p,. Each
R; are positively graded algebra over a finite field extension k; of k, and R is a positively graded
algebra over the Artinian ring K := xk;. A suitable Veronese subring of R is a standard graded
algebra over K and is the homogeneous coordinate ring of the normalization of X embedded into a
projective space over K.

We describe, in passing, an embedding of the normalization into a projective space over the field
k, when k is algebraically closed. In this case, k; = k& and we may define the natural projections
mi : R; — k. We consider the fiber product R := {(a;) € x R; | mi(a;) = mj(a;) Vi # j}. One
has R C R C R and mR C R. The ring Ris a positively graded algebra over the field k, and
one sees that a Veronese subring of R is the homogeneous coordinate ring of the normalization
of X embedded into a projective space over k. If X is equidimensional, then wp = wg = XWp
Also notice that the degree zero component of the canonical module is unchanged by passing to a
Veronese subring.

Now let C C PZ‘I be a reduced curve over a field, with homogeneous coordinate ring R. The
arithmetic genus p, of C is 1 minus the constant term of the Hilbert polynomial of R. If k is

algebraically closed, the geometric genus p,y of C can be defined as dimy[wx]o = dimg[wgzo-
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The following lemma and proposition are well known, we give a proof for the convenience of the

reader.

Lemma 3.8. Let C C P} be a reduced arithmetically Cohen-Macaulay curve over a field k, with

arithmetic genus p, and homogeneous coordinate ring R. Then

Pa = dimk [wR]o .

Proof. Let m be the homogeneous maximal ideal of R, and let h and p denote the Hilbert function
and the Hilbert polynomial of R, respectively. One has

Pa = h(0) — p(0) = dimy[HA(R)]o = dimy[wr]o ,

where the second equality follows from the Grothendieck-Serre formula and the third equality is a

consequence of local duality. O

Proposition 3.9. Let k be an algebraically closed field and C C PZ_l be a reduced curve with s

irreducible components, arithmetic genus p,, geometric genus py, and singularity degree o. One has

Pa—Pg=0—5+1.

Proof. Let R be the homogeneous coordinate ring of C and R its integral closure. We may assume
that R and R are standard graded after passing to Veronese subrings; this does not change the local
rings of C, the constant term of the Hilbert polynomial of R, which is 1 — p,, and the degree zero
component of wg. So py = dimy[wg]o -
We compare the constant terms of the Hilbert polynomials of the graded R-modules in the exact
sequence
00— R—R—R/R—0.

The constant term of the Hilbert polynomial of R is 1 — p,. One has R = x leﬁi, where R; are
standard graded Cohen-Macaulay algebras over k. Applying Lemma 3.8 we see that the constant
term of the Hilbert polynomial of R is

s

Z(l — dimg[wz]o) = s — dimgfwglo = s — py -
i=1

Finally, the constant term of the Hilbert polynomial of R/R is 0. Now the additivity of the Hilbert

polynomial in short exact sequences implies that
s —pg=1—-pa+o,

as claimed. 0
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4. LOWER BOUNDS FOR HYPERSURFACES AND CURVES WITH AT MOST PLANAR SINGULARITIES

One of the main results of this section is an estimate for the degree of a vector field in terms of the
a-invariant of R, the number of singular points, and the Loewy multiplicity modulo the Jacobian

ideal, see Theorem 4.10. It says that if C has only plane singularities, then
findeg(Derg(R)/m~1e) > a(R) + 1 + |Sing(C)| — Lmult(R/Jac(R)) .

If C has only ordinary nodes as singularities, then |Sing(C)| — Lmult(R/Jac(R)) = 0 and we obtain
the inequality indeg(Dery(R)/m~t¢) > a(R) + 1, which we prove to be an equality when C is
arithmetically Gorenstein, see Corollary 6.2. The case of ordinary nodes had been treated before
with the additional assumption that, first, C is a plane curve [7], then, C is a complete intersection

[1], and, finally, C is arithmetically Cohen-Macaulay [16, 17].

Proposition 4.1. Let S = k[x1,...,z,] be a polynomial ring in n variables over a field and let mg
denote its maximal homogeneous ideal. Let f be a homogeneous polynomial of degree d and assume
that d is not a multiple of the characteristic. Denote the partial derivatives of f by fi,..., fn and
let B, Z, and H be the modules of first boundaries, cycles, and homology of the Koszul complex of
fisoooy fn. Write R=S/(f).

(a) There are natural epimorphisms of homogeneous S-modules
Z(d) — Derg(R)/Re — (Z/mgB)(d) ;
i particular,

k®s Z(d) = k ®r Derg(R)/Re

S

pu(Dery(R)/Re) = B% ((fl,,fn)

) <@
indeg(Deri(R)/Re) = indeg(Z) — d = min{d — 2, indeg(H) — d}.

Proof. Dualizing the exact sequence

t
R(—d) Loy oy 9 (R) —— 0
into R, we obtain
(5) 0 — Derg(R) —— &7 RO/dx; — "L, Ry |

There is a homogeneous map
¢ : Z(d) — Dery(R)
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induced by the diagram

0 —— Dery(R) —— @7 R/dz; — LIl

E ] 1 1

00— Z(d) — @ Se; — Il g

where the homogeneous basis elements e; have degree —1.

We claim that the composition
Z(d) —— Dery(R) — Deri(R)/Re

is surjective. Let g = > b;0/0x; € Derg(R). According to (5), > b;fi = cf for some ¢ € S.
Using the Euler relation f = I(z1fi 4+ ... + znf,), we obtain > (b; — Sz;)f; = 0. Therefore

> (bi — Gxi)e; € Z(d) and (D (b; — Gxi)e;) = g — Ge.
To show part (a) it suffices to show that ker ) C mgB. The diagram (6) shows that

(7) kergp = (fS™ + 8 wie;) N Z(d).

=1

Let z =" | a;e; € ker 1. According to (7) there exists a1, ..., an,bin S so that

(8) z:zn:aifei—i—bzn:wiei.
i=1 i=1

Since z is a syzygy of f1,..., fn we obtain

0= aifi=> aiffi+b> wifi=» aiffi+dbf.
i=1 i=1 i=1 i=1
Dividing by f it follows that
1 n
b= —a ZZ; aifi .

Substituting the above expression of b into (8) and using the Euler relation we see that

8)
"1
oy = Z g(aimj — CLjCCZ')fj .
7j=1

Since the n x n matrix (a;z; —ajz;) is alternating and has entries in mg it follows that z € mgB(d).

The equality in (b) and the first equality in (c¢) are direct consequences of the isomorphism in

(a). The inequality in (b) follows from [I1, 3.10]. For the second equality in (c), notice that
indeg(Z) —d < indeg(B) —d = d—2 and indeg(Z) < indeg(#) and that either indeg(Z) = indeg(B)
or else indeg(Z) = indeg(H). O

The next theorem is a generalization of [18, Theorem 2.5] from plane curves to hypersurfaces.
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Theorem 4.2 (The hypersurface case). Let k be a perfect field and X C PZ_l be a reduced hypersur-
face of degree d. Let R be the homogenous coordinate ring of X and Jg the Jacobian ideal. Assume

n > 3 and that d is not a multiple of the characteristic. If X has at most isolated singularities, then

min{d — 2,(n —1)(d — 2) —a(R/Jr) — 2}

indeg(Deri(R)/Re) = ’ .
d—2 if X is smooth .

Proof. We may assume that k is infinite. Let S = k[x1,...,zy] be a polynomial ring in n variables,
and write R = S/(f) with f a form of degree d. Denote the partial derivatives of f by fi,..., fa
and set J = (f1,..., fn). Notice that Jp is the image of J in R. Since d is a unit in k, the Euler
relation shows that f € J. Therefore ht 7 > n — 1, and after a linear change of variables we can
assume that fq,..., f,—1 form a regular sequence.

Let H be the first homology module of the Koszul complex of fi,..., f,. If X is smooth, then
‘H = 0 and the claim follows from Proposition 4.1(c). Otherwise ht 7 =n — 1 and

(fi, - fno1) s T
H d —1) = ’
( ) (f1ooo fam1)
as f1,..., fn—1 form a regular sequence. Now
(flv"'afnfl) .S j
= w n—(n-1)(d-1
Fe b ST s g - 1) - )
= w1 — (= 1)(d—2))
and the theorem follows again by Proposition 4.1(c) because indegwg, s, = —a(R/JRr). O

The connection between the degree of vector fields and the degree of syzygies of Jacobian ideals,

which is used in the previous proof, was already observed in [16, Remark 9]. The use of the conductor
and the integral closure in the proof of Proposition 4.4 below was inspired by [13, proof of Corollary
5.1].

Lemma 4.3. Let R be a standard graded Noetherian algebra over a field and by, ..., b, homogeneous

ideals of R so that the rings R/b; have dimension 1. Then
t
a(R/by-...-b) <> a(R/b;)+ 2t —2.
i=1

Proof. Let S be a standard graded polynomial ring over the ground field of R, mapping homoge-
neously onto R, and let EZ denote the preimage of b; in S. Since S/El R bNt — R/by-...-b; isa
surjection of rings having the same dimension, a(R/b; - ...-b;) < a(S/by -...-b;). Hence it suffices
to prove our assertion for the case that R is a polynomial ring, which we now assume.

If b"™™ denotes the unmixed part of a homogeneous ideal b of the polynomial ring R such that
R/b has dimension 1, then R/b6"™™ is Cohen-Macaulay and

a(R/b) = a(R/6"™™) = reg(R/6"™™) — 1 = reg(b"™™) — 2 < reg(b) — 2.
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Thus
a(R/by ... b)) <reg(by-... -by) —2.
On the other hand according to [10, Theorem 1.8],

t

reg(by ... b)) < Zreg(bi) =2t + Za(R/bi),

=1 =1

which completes the proof. O

Proposition 4.4 (The plane curve case). Let k be an algebraically closed field and C C P% be a
reduced curve of degree d. Let R be the homogenous coordinate ring of C and Jg be the Jacobian

ideal. Assume that d is not a multiple of the characteristic. One has

min{d — 2,2d — 6 — a(R/Jg)}

indeg(Deri(R)/Re) =
d—2 if C is smooth
d — 3 + | Sing(C)| — Lmult(R/JR)
> qd—2+|Sing(C)| — Lmult(R/JR) if C is irreducible
d—2 if C is smooth
d—3+|Sing(C)|+ X (9 -7
p€ESing(C)
> Sd—24|Sing(C)|+ > (e(océp)fl) —7(C) if C is irreducible
p€eSing(C)
d—2 if C is smooth .

\

Proof. The equality is a special case of Theorem 4.2, and the second inequality is a consequence

of the bound Lmult(R/Jg) < 7(C) — 32 (“9¢p)7Y), which follows from Corollary 3.6 and
p€eSing(C)
Proposition 3.7.

To prove the first inequality, we estimate a(R/Jg) when C is singular. Set J = Jg. Let p1,...,p¢
be the minimal primes of J, which are necessarily of height one; they correspond to the singular
points of C and therefore ¢t = | Sing(C)|. Write s; = ¢¢(Ry,/J,,) for the Loewy length of Ry, /Jp,.
Let § = R :g R denote the conductor of R and notice that f C v/.J. One has

Junm —~ pfl ) \/j . pil_l - pftfl ) f p‘il_l - pftfl .
It follows that

a(R/J) =a(R/J™) < a(R/f-p} " pih)

~+

< a(R/f)+ ) (si—1) by Lemma 4.3
=1
= a(R/f) + Lmult(R/J) — | Sing(C)| .

.
Il
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To estimate a(R/f) we dualize the short exact sequence
0—=f—=>R—->R/f—0

into wp = R(d — 3). As Homg(f,R) = R, we obtain wg; = (R/R)(d — 3). It follows that
a(R/f) = —indeg(R/R) + d — 3. Therefore

a(R/J) < —indeg(R/R) +d — 3 + Lmult(R/J) — | Sing(C)| .

Finally, we have indeg(R/R) > 0 because R is reduced, and indeg(R/R) > 1 if R is a domain

since k is algebraically closed. O

The bounds of Proposition 4.4 can be generalized to curves which are not necessarily planar, see

Theorem 4.10. For plane curves on the other hand, they can be improved as follows.

Remark 4.5. We use the assumptions and the notation of Proposition 4.4 and its proof. We write

s = max{s;} and consider the sets of reduced points U; = |J, - ; V(p;) C P3. One has

8i>J
min{d — 2,2d —4 — > reg(U;)}
indeg(Derg(R)/Re) > j=1
d—2 if C is smooth.

Proof. Write I; = I(U;) for the reduced defining ideal of U; and notice that J**™ > [] I;. Now
=1

J
apply Lemma 4.3 as in the previous proof to see that

a(R/J) < ZG(R/I]‘) +25s—-2= Zreg(Uj) - 2.
=1 =1

O

In order to deal with subschemes that are not necessarily arithmetically Gorenstein, we introduce

the following notion:

Definition 4.6. Let R be a standard graded algebra over a field. We say that R has the generalized
Cayley-Bacharach property if findegwr = indegwg.

Examples of rings with the generalized Cayley-Bacharach property are domains, Gorenstein rings,
and more generally level rings. If the ground field is algebraically closed and R is reduced and one-
dimensional, then R has the generalized Cayley-Bacharach property if and only if the corresponding

set of points in projective space has the Cayley-Bacharach property in the usual sense (see [23]).

The next theorem is inspired by work of Esteves [16, Theorem 17]. We do not require arithmetic
Cohen-Macaulayness as in [16] and our proof is short and elementary. We will say that a ring
extension A C R is birational if R is a torsionfree A-module and the induced map Quot(4) —
Quot(R) is an isomorphism. The following fact, which is a special case of [14, Proposition 5.2], will

be used frequently.
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Lemma 4.7. Let k be an infinite perfect field and let R be a reduced and equidimensional k-algebra
of dimension D generated by y1,...,yn. If A is the k-subalgebra generated by D + 1 general k-linear
combinations of y1,...,yn, then A C R is a finite and birational extension and the induced map
Quot(A) — Quot(A) ®4 R is an isomorphism.

Theorem 4.8. Let k be perfect field and let A C R be a finite and birational homogeneous extension
of standard graded k-algebras. Assume that R is reduced and equidimensional of dimension at least

two, with maximal homogenous ideal m, and that A is Gorenstein.
One has
findeg(Derg(R)/m ™ 'eg) > indeg(Dery(A)/Ac4) — a(A) + a(R)
and
findeg(Dery(A)/Ae 1) > indeg(Dery(R)/mlegr) — a(A) + a(R) .
If in addition R has the generalized Cayley-Bacharach property, then
findeg(Dery(R)/m™'ep) > findeg(Dery(A)/Ac4) — a(A) + a(R)

indeg(Dery,(R)/m ™ teg) > indeg(Dery(A)/Ae4) — a(A) + a(R)
and
findeg(Dery(A)/Ac4) > findeg(Derg(R)/m™'eg) — a(A) + a(R)

indeg(Der,(A)/Ae 4) > indeg(Dery,(R)/m teg) — a(A) + a(R).

Notice that the inverse of the maximal homogeneous ideal of A is equal to A since depth A > 2.
Proof. We consider the conductor
f =A ‘A R HOHIA(R, A) = HOHIA(}%7 wA)(—a(A)) = wR(—a(A)) .

Notice that indegf = a(A) — a(R). In addition, f annihilates the R-module Q4(R); indeed, if
d: R — Q4(R) denotes the universal A-derivation of R, then for any a € f and r € R,

ad(r)=d(ar) —rd(a) =0

since both ar and a are in A.

In the exact sequence
R®4 Q(A) = Q(R) — Qa(R) — 0,

ker v and Q4 (R) are R-torsion modules because the extension A C R is birational. Thus this

sequence induces an exact sequence

0 —— Homp(QA(R), R) —— Homp(Qu(R), R) —— Homa(Qk(A), R) —— ExthL(Qu(R), R)
| 2l 2l
0 Dery(R) —— 5 Der(A, R)
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Observe that 8(cr) = €4 and that Exth(Q4(R), R) is annihilated by . Thus we obtain an embed-
ding

Der(R)/mlep —2— Derp(A4, R)/m ley

whose cokernel is annihilated by f.

On the other hand, the obvious inclusion of Dery(A) C Derg (A, R) induces an A-linear map
¢ : Der(A)/Acs — Derj(A, R)/m tey.

Since the extension A C R is birational, this map is generically injective and hence it is injective
because Dery(A)/Ae 4 is torsionfree as an A-module according to Proposition 2.4.

Now we have embeddings
Dery(R)/m™'ep —— Derp(A4, R)/m ey
9) w}
Dery(A)/Aey,

where the cokernels of both ¢ and ¢ are annihilated by §f. Thus we obtain containments

(10) frime Cimy

(11) f-imvy C ime.

The inclusion (10) shows that

indeg f + findeg(Dery(R)/m 'er) > indeg(Dery(A)/Ae 1)
)/m~! )

findeg f + indeg(Deri(R)/m™ er) > indeg(Dery(A)/Ac )
findeg f + findeg(Dery,(R)/m ™ teg) > findeg(Dery(A)/Ae ) ;

in the second inequality we use the fact that Derj(R)/m~leg is torsionfree as an R-module (see
Proposition 2.4). The inclusion (11) implies the same inequalities with the roles of Dery(R)/m™eg
and Dery(A)/Ae 4 reversed.

Finally recall that indeg f = a(A) — a(R) and that findegf = a(A) — a(R) if R has the generalized
Cayley-Bacharach property. O

Proposition 4.9. In addition to Setting 2.1 assume that R is reduced. Let p be a minimal prime
ideal of R so that Ry is a field and write R = R/p and m' = m/p. Then findeg(Dery(R)/m™1eg) >
findeg(Dery,(R')/m'"lep).

Proof. Since R is reduced, every derivation in Der(R) induces a derivation in Derg(R’), see for
instance [9, page 614]. This gives a natural map Dery(R) — Derg(R’). The projection R — R’
induces a map ¢ : Quot(R) — Quot(R’), which is surjective since R is reduced. It follows that

@o(m~!) € m’~!. Combining these facts we obtain a natural map

P Derk(R)/m_lz—:R — Derk(R')/m’_leR/ .
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Notice that v, is an isomorphism since R is reduced. It follows that if v € Derg(R)/m™lep with

anng v = 0, then ann’, ¢)(v) = 0, which proves the lemma. O

In some items of the next theorem we will assume that the curve C is locally irreducible. By this
we mean that the local ring at every point of C is a domain, or equivalently, that C is the disjoint

union of its irreducible components.

Theorem 4.10 (The case of curves with plane singularities). Let k be an algebraically closed field
and C C PZ_l be a reduced curve of degree d. Let R be the homogeneous coordinate ring of C, with
mazximal homogeneous ideal m, and let Jr be the Jacobian ideal. Assume d is not a multiple of the
characteristic. If C has at most plane singularities, then

findeg(Dery (R)/m~'e) > a(R) + | Sing(C)| — Lmult(R/JR)

a(R) + 1+ | Sing(C)| — Lmult(R/JR) if C is locally irreducible
a(R) +|Sing(©)| + > (97 —7(C)
> p€eSing(C)
 la(R)+1+|SingC)|+ X (G(OCQP)_I) —7(C) if C is locally irreducible.
p€eSing(C)

Proof. 1t suffices to prove the first inequality. We may assume that n > 3. Let x,y, z be general
linear forms in R and write A = k[z,y, 2] C R. Notice A C R is a finite and birational homogeneous
extension of standard graded k-algebras by Lemma 4.7, and A is the homogeneous coordinate ring
of a plane curve D. Write J4 for the Jacobian ideal of A. By Theorem 4.8 and Proposition 4.4 one
has

findeg(Derg(R)/m ™ 'eg) > indeg(Dery(A)/Aca) — a(A) + a(R)

and

e(A) — 3+ |Sing(D)| — Lmult(A/J4)

indeg(Dery(A)/Aea) >
e(A) — 2 +|Sing(D)| — Lmult(A/J4) if D is irreducible.

Since D is a plane curve we have a(A) = e(A) — 3. Thus we obtain

a(R) + | Sing(D)| — Lmult(A/J4)

findeg(Derg(R)/m ™ tep) >
a(R) + 1+ | Sing(D)| — Lmult(A/J4) if D is irreducible.

Next we show that | Sing(D)| — Lmult(A/J4) = | Sing(C)| — Lmult(R/Jg). Let p1,...,p; be the
distinct minimal prime ideals of Jr having height one. As edim R;, = 2, it follows that R, = Ap,na,
see [14, Proposition 5.2] for instance. In particular, /((R/Jg)p,) = CL((A/Ja)p;na). The ring A
may acquire additional prime ideals q1,...,qs of height one where it is not regular, but they all

correspond to ordinary nodes of D, see [25, Chapter IV, Proposition 3.5 and Theorem 3.10], in other



24 MARC CHARDIN, S. HAMID HASSANZADEH, CLAUDIA POLINI, ARON SIMIS, AND BERND ULRICH
words £0((A/Ja)q) = 1. It follows that
Lmult(A/J4) — Lmult(R/Jg) = s = | Sing(D)| — | Sing(C)| ,

as required. This completes the proof of the first inequality if the assumption of C being local
irreducible is replaced by C being irreducible.

It remains to reduce the locally irreducible case to the irreducible case. Thus assume that C is
locally irreducible and let @1, ..., @, be the minimal prime ideals of R. Consider the exact sequence
of R-modules

0— R xI_(R/pi) — N — 0.
Since C is locally irreducible, the map ¢ is an isomorphism locally on the punctured spectrum of R,

so IV is a module of finite length. It follows that wgp = X]_;wg/,, and therefore
a(R) = max{a(R/p;) |1 <i<r}.

Now let o be a minimal prime of R such that a(R) = a(R/gp), write R' = R/gp, and let C’ be the

corresponding irreducible curve. We obtain

findeg(Derg(R)/m 'eg) > findeg(Dery(R')/m'lep) by Proposition 4.9
> a(R') + 1+ |Sing(C’)| — Lmult(R'/Jr:) since C' is irreducible
= a(R) + 1+ |Sing(C’)| — Lmult(R'/Jr)
> a(R)+1+|Sing(C)| — Lmult(R/JR) ,
where the last inequality holds because C is the disjoint union of its irreducible components. O

Remark 4.11. If in addition to the assumption of Theorem 4.10, the ring R satisfies the generalized
Cayley-Bacharach property, then according to Theorem 4.8

indeg(Dery(R)/m™'e) > a(R)+ |Sing(C)| — Lmult(R/JR)
> a(R)+|Sing(C)| + Y _ (e(oc’p) N 1) -7(C).

- 2
p€Sing(C)
The next result was first proved for plane curves in [7], then for complete intersection curves in
[1], and finally for arithmetically Cohen-Macaulay curves in [16, Theorem 1].

Corollary 4.12 (The case of curves with ordinary nodes). Let k be an algebraically closed field
and C C PZ_l be a reduced curve of degree d. Let R be the homogenous coordinate ring of C with
maximal homogeneous ideal m. Assume d is not a multiple of the characteristic. If C has at most

ordinary nodes as singularities, then

findeg(Dery(R)/m™te) >

a(R)+1 if C is locally irreducible.
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Proof. The assertion follows from Theorem 4.10, because Lmult(R/Jr) = | Sing(C)| if (and only if)

C has only ordinary nodes as singularities. O

Corollary 4.13. Let k be a perfect field and C C PZ’_I be a curve of degree d. Let R be the
homogenous coordinate ring of C with mazximal homogeneous ideal m. Assume d is not a multiple

of the characteristic. If C is smooth, then

findeg(Dery(R)/m™te) > a(R) + 1.

Corollary 4.14. Let k be a perfect field and C C PZ’_I be a curve of degree d. Let R be the
homogenous coordinate ring of C with mazximal homogeneous ideal m. Assume d is not a multiple

of the characteristic. If C is smooth and arithemetically Gorenstein, then
Derg(R)/Re = m(—a(R)).
In particular, indeg(Derg(R)/Re) = findeg(Derg(R)/Re) = a(R) + 1.

Proof. First notice that R is a domain, hence indeg(Dery(R)/Re) = findeg(Dery(R)/Re). As in the

proof of Corollary 2.10 we have an exact sequence
0 — Derg(R)/Re — wh — Ext%(k, R),

where Ext%(k, R) is concentrated in degrees < a(R). Since indeg(Dery(R)/Re) > a(R) + 1 by
Corollary 4.13, we conclude that

Dery(R)/Re = (WR)>a(R)+1 -

Now the assertion follows because, wy, = R(—a(R)). O

5. LOWER BOUNDS IN TERMS OF ALGEBRAIC AND GEOMETRIC GENUS

The main results of this section are the estimates on the degrees of vector fields of Theorem 5.6
and Theorem 5.10. Our estimates will require Corollary 5.3 below, a remarkable lower bound for
the Castelnuovo-Mumford regularity of R/(imp)%** that was proved in [17, 4.5]. As in [17], we
deduce this bound from the nonvanishing of a map between cohomology modules. Our proof of the
nonvanishing, Theorem 5.2, uses general properties of the Koszul complex and of regular differential
forms, and is different from the proofs of the corresponding results [17, 2.1 and 2.2]. In Section
7 we will apply Theorem 5.2 to obtain structural information about the module Dery(R) and the
natural map Dery(R)/m~te — L*, see Proposition 7.1 and Proposition 7.4.

Lemma 5.1. Let k be a field, let d and n be integers with 1 < d < n, let x1,...,x, be variables over
k, and consider the standard graded polynomial rings A = k[xy,...,x4) C D = klz1,...,x,] with
homogeneous maximal ideals n and N, respectively. By Be(A) and Bo(D) we denote the boundaries
in the Koszul complexes Ko(A) = Ko(x1,...,24; A) and K¢(D) = Ke¢(x1,...,24; D).
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(a) There exists a homogeneous A-linear map § fitting in the commutative diagram

H§(Ba-1(D)) —*— H{(Bg-1(D))
51 /ﬁ
H 7 (Bg-o(A)) —— Hi(Ba-1(A)).
Here « is the natural map arising from the fact that n C N, B is induced by the morphism of
complexes Ko(A) — Ko(D), and v is the connecting homomorphism in the long exact sequence

associated to the exact sequence 0 — Bg_1(A) — K4_1(A) = Bg_2(A) — 0.

(b) The map v as in item (a) is an isomorphism in degree zero.

Proof. To prove part (a) we first show that the map « is injective. Write B = By_1(D) and
N; = (x1,...,7;)D, and notice that H(B) = Hgtd(B)' By [2, 8.1.2], for n > i > d there are natural
exact sequences

H§ ' (By,) — Hg (B) — Hg,_ (B).

As B, = @ D,, and grade(M;—1D,,) > i — 1 > d it follows that H&j_ll(Bxi) = 0, hence Hglti(B) —
Hg%_1 (B) for n > i > d. This shows that « is injective.
The morphism of complexes Ko(A) — Ko(D) and the naturality of the long exact sequence of

local cohomology gives a commutative diagram

H{™Y(By—2(D)) —— H{(By-1(D))

| [

H{™ (Ba—2(A)) —— H{(Ba-1(4)).

Since « is an isomorphism onto its image, the existence of § will follow once we have shown that

im € C im «. In fact, we are now going to prove that
im ¢ = socp(HZ(Byg_1(D))) = ima .
The acyclicity of K4(A) and Ke(D) imply that for 0 <i < d — 2,
HY(Bj(A) =2 HY (k) =k as graded A-modules, and
HYBy(D)) = H(k) = k as graded D-modules.
In particular, we have homogeneous D-isomorphisms
HA Y (By(D) =k for 0<i<n-2.
The long exact sequence of local cohomology gives an exact sequence of graded D-modules

HI Y (Kq1(D)) —— H{ ' (Ba—2(D)) —— H{(Ba_1(D)) ——— H{(Kq1(D))
[ Al Al
0 k HY K4 1(A)®@aD .
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As 1441 is a non zerodivisor on the D-module H4(K4_1(A)) ®4 D, this module has trivial socle. It
follows that

socp(HY(By_1(D))) =im e = k.

On the other hand,
k= HY(By-1(D)) S HY(Ba_y(D)).

This shows that

0# ima C socp(HI(By_1(D))).
This inclusion is an equality since the socle is one-dimensional. It follows that im € = im «a.

We prove part (b). As before, the long exact sequence of local cohomology gives an exact sequence
of graded A-modules

HIH Ky 1(A)) —— HEY(By_a(A)) —— HI(By-1(A))
I 2l 2l
0 k Hﬁl(Kd(A)) .

Since HI(Kq(A)) =2 HI(A(—d)) = k[z1',..., 2], we see that 7 is an isomorphism in degree

Zero. O

Let k be a field and R be a standard graded Noetherian k-algebra with homogeneous maximal
ideal m. Set Q := Qu(R). Let Ko = Ko(R) be the Koszul complex of the functional @ — R
corresponding to the Euler derivation of R over k. Write Z, = Z4(R) for the cycles of K,. If R is
regular, then this notation is consistent with the one introduced in Lemma 5.1. As Z, is a graded

commutative R-algebra, there is a natural homomorphism
/\. Zl — Z,.

Moreover, the complex K, is acyclic if R is regular. It is also acyclic if k has characteristic zero,
since the differential of the de Rham complex produces a k-linear contracting homotopy in positive
internal degree. If T is a flat R-algebra with m7T = T, then K, ®p T is split-exact and the map
(N*Z1) @rT — Ze ®r T is an isomorphism. In particular, the kernel and cokernel of A*Z; — Z,
have dimension zero.

Any morphism of positively graded Noetherian k-algebras S — R induces homomorphisms of
differential graded algebras Ko(S) — Ko(R) and then Zo(S) — Zo(R).

Theorem 5.2. Let k be a field, let R and S be standard graded k-algebras with homogeneous
mazimal ideals m and mg, respectively, and assume that the multiplicity of R is not a multiple

of the characteristic of k. If S — R is a homogeneous homomorphism that is module finite and
d:=dim R > 2, then the induced maps

HY (Za-1(8))o — Ha(Z4-1(R))o and  HE (AN'Z1(S))o — HE(A'Z1(R))o

are nonzero.
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Proof. Since d > 2 and the natural maps A“1Z;(S) — Z4_1(S) and AY"1Z1(R) — Z4 1(R)
have zero-dimensional kernels and cokernels, it follows that these maps become isomorphisms after
applying Hgi ¢ and Hgi, respectively. Thus it suffices to prove that the first map in the statement of
the theorem is not zero.

To show that this map is not zero, we may pass to the algebraic closure of k£ to assume that k
is infinite and perfect. Our assumption on the multiplicity of R and the associativity formula for
multiplicities imply that, for some prime ideal p of R with dim R/p = d, the multiplicity e of R/p
is not a multiple of the characteristic of k. Write n = dim S and let z1,...,z, be general linear
forms in S. We consider the polynomial subrings A = k[z1,...,z4] C D = k[z1,...,z,] of S, and
we denote their maximal ideals by n and 91, respectively. Notice that D is a Noether normalization
of S and A is a Noether normalization of R and of R/p. Moreover, rank4R/p = e is a unit in k.

Since D C S and A C R are integral extensions, it follows that H, s = Hgﬂt g ~ H}n and
Hi ~ Hi, ~ Hi Thus it remains to show that the map H$(Z4-1(S)) — H(Za-1(R)) is
nonzero in degree zero. Composing this map with the natural homomorphisms H%(Zd_l(D)) —
HE(Z4-1(9)) from the right and HZ(Z4_1(R)) — H3(Z4_1(R/p)) from the left yields a homomor-
phism H$(Z4-1(D)) — HE(Z4-1(R/p)), and it suffices to prove that this last map is nonzero in
degree zero. Replacing R by R/p we may now assume that R is a domain, with Noether normal-

ization A. We need to prove that
H,(Za-1(D)) — Hy(Za-1(R))

is nonzero in degree zero.
Recall that the complexes Ko(D) and Ko(A) are acyclic and that d > 2. We use Lemma 5.1 and

the natural maps D — R and A — R to obtain a commutative diagram

H&(Z4-1(D)) —*— HX(Zy_1(D)) —— HI(Z4-1(R))

| T /

HEY(By-a(A)) — = HXZa-(

where 7 is an isomorphism in degree zero. We need to prove that the composition g o « is not zero
in degree zero. As v is an isomorphism in degree zero, this will follow once we have shown that f
is nonzero in degree zero.

The morphism of complexes Kq(A) — Ko(R) induces a commutative diagram with exact rows

0 —— Zg1(R) —— Kg(R) ——— Z43 1(R) —— Hy_1(K+(R)) —— 0

[ [

Kq(A) —=— Zg_1(A)

The bottom map is an isomorphism because Ko(A) is acyclic and has length d. Recall that the
complex Ko(R) is exact locally on the punctured spectrum. The module Q(R) has rank d because
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K C L is aseparable algebraic field extension. Thus Z4(R) has rank zero and therefore its dimension
is < d. In addition, the module Hy_1(K4(R)) has finite length, hence dimension < d — 1. Thus we

obtain an induced commutative diagram

H{(Ka(R)) —— H{(Zy1(R))
g d
H{(Ka(A)) — H{(Zs1(4)).
It remains to show that h is nonzero in degree zero.
Let K C L be the extension of quotient fields of A and R. This field extension has degree e and is

separable since e is a unit in k. Since A C R is a separable Noether normalization, we can consider

the complementary module
Ca(R) ={z € L | Try x(2R) C A},
which is a finitely generated graded R-module. The image of the natural map
ANQL(R) — NI (L) = L dxy A ... Adxg = L

is contained in €4(R), see for instance [30, Theorem 9.7]. Hence we obtain a homogeneous R-linear
map
CR: /\ko(R) — QA(R) dri N ... Ndxg.

Likewise we have
(R /\ko(A) =AdriN...Ndxy —>Q:A(A) dxi N...Ndxg=Adri N... Ndzg,

which is the identity map. Notice that Trz g (€a(R)) C A by definition of the complementary
module.

Now we have a diagram of homogenous A-linear maps
Kq(R) = N (R) —E €A(R) dzy A ... Adag

T J%TI“L/K dﬂ?l/\/\dl‘d

Kq(A) = N9y (A) —2— Adei AL Adayg .

This diagram commutes, as can be seen by following the element dzi A ... A dzg € AQ(A) and
using the fact that é -Trp i (1) = 1. Applying the functor HZ to this diagram, the left vertical map
becomes h, and it suffices to prove that Hg (c4) is nonzero in degree zero. However, this map is the
identity map and HI(A(—d)) = k[z7", ...,z '], which is the field k in degree zero. O

In the remainder of this section we use Theorem 5.2 to estimate the degree of the singular locus
of vector fields. These estimates in turn will lead to bounds on the degree of the vector fields

themselves.
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Corollary 5.3. Adopt Setting 2.7 and assume that the degree of C is not a multiple of the charac-
teristic of k. Let n be a vector field on szl of degree m leaving C invariant whose singular locus
does not contain an irreducible component of C. This vector field induces a homogeneous R-linear
map p: H — R of degree m — 1 such that htimp > 0. Let L = Z1(R) be as in (2).

(a) The natural maps
Hls(S/ imn) — HX(R/imu) and HL(R/imp) — H2(im p)

are both nonzero in degree m — 1.
(b) dim(R/impu) =1, reg R/(im )% > m, and e(R/imu) > m + 1.
(c) If [H2(L)]o &k, then m > a(R) + 2.

Proof. Let Z = Z1(S) be as in (2). According to Theorem 5.2 the natural map Hj (Z) — Ha(L)
is not zero in degree zero.
There is a commutative diagram
zZ 1y imn

|

H*H»imu
L

where the horizontal maps are homogeneous of degree m — 1. We also have a commutative diagram

with exact rows
0 > im 7 ) » S/imnp —— 0

L

0 > im > R » R/impy —— 0

Together, these diagrams induce a commutative diagram

12,(2)
/ l
Hy (S/imn) —*— Hg _(im1n) H)
| | / l
H)(R/im p) —— H2(im p) H2(

In this diagram, the two diagonal maps are homogenous of degree m — 1, the map « is bijective
because depth.S > 3, the map [ is bijective since dim(ker u) < 1 due to the assumption that
gradeim p > 0, and h is bijective as L/H is a module of finite length (see page 4). As h o g is not

zero in degree zero, the same holds for g. Now the diagram readily implies part (a).
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From (a) we obtain, in particular, that [H}:(R/im p)]m-1 # 0. Now the assertions about di-
mension and regularity in part (b) follow immediately. As to the claim about the multiplicity,
e(R/impu) = e(R/(im p)**) and the ring R/(im u)%* is Cohen-Macaulay, hence its multiplicity is
bounded below by its regularity plus 1.

In the setting of (c), the diagram shows that [H2(im p)]m—1 = k. Thus, since [y]n_1 # 0, this
map is surjective, and then the long exact sequence of local cohomology implies that [H2(R) |;m—1 =
0. Therefore [H2(R)]; = 0 for all j > m — 1, showing that m — 1 > a(R) as asserted. O

The multiplicity estimate in Corollary 5.3(b) can be improved substantially if the curve C is

arithmetically Gorenstein:

Proposition 5.4. We use the hypotheses and notation of Corollary 5.3, and write a for the a-

invariant of R and py for the geometric genus of C. If R is Gorenstein, then

e(R/im p) > dimg(Ry—54a+1) +6 —a — 1 — py.

Proof. We first observe that the natural map S/(f1,..., fn_2) — R is a surjection of rings having

the same dimension. Thus
n—2
a=a(R) <a(S/(fi,..., [n-2)) = —n—i—Z(Sj =6-2.
j=1

This inequality and the regularity estimate in Corollary 5.3(b) give
m—0+a+1<m <regR/(im p)%*.

Again by Corollary 5.3(b), the standard graded algebra R/(im ) is one-dimensional and there-
fore Cohen-Macaulay. Thus its Hilbert function increases strictly up to degree reg R/(im u)*** and
is equal to the multiplicity afterward. As e((R/(im u)%a') = e(R/im ), it follows that

e(R/im p) > dimy((R/(im 12)*") s 1ar1) +0 —a — 1.

Write t = m — 6 + 1. It remains to prove that

dimy, ((im £2)*) 144 < pg-

Indeed, Corollary 2.11 shows that im yu = J(—t), and since R is Cohen-Macaulay of dimension
> 2, this isomorphism induces an isomorphism
(imu)sat o~ Jsat(_t)'

On the other hand, J is contained in Jg, the Jacobian ideal of R. Let R denote the integral
closure of R, and f := R :g R the conductor. As is classically known, see e.g. [37], one has Jg C f.
Thus, as § is unmixed,

Jsat C f
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In turn, since R is Gorenstein,
f =~ Hompg(R, R) = Hompg(R,wr(—a)) = wi(—a).
Combining these facts we conclude that
dimy ((im 1)**) 144 = dimg(J**), < dimy, fo = dimy,(wg)o = Py,
as required O

The main application in this section, Theorem 5.6, generalizes results of du Plessis and Wall and

of Esteves and Kleiman [12, 15] for the case of plane curves. In this paper, it is an easy consequence of
Corollary 2.11 and Corollary 5.3. Our proof was inspired by an argument in [15, proof of Proposition
5.2].

Lemma 5.5. Let R be an equidimensional Noetherian standard graded algebra over a field, with
depth R > 0, let a and b be homogeneous ideals of height one, and assume that a = b(—n) for some
n € Z. Then

e(R/a) =e(R/b)+n-e(R).

Proof. By symmetry we may assume that n > 0, and by induction one reduces to the case n = 1.
We may further suppose that the ground field is infinite, and hence there exists a linear form = € R
that is non zerodivisor. Thus a = b(—1) and zb have the same Hilbert function, and so do R/a and
R/xb, which gives e(R/a) = e(R/xb). So it suffices to show that e(R/xb) = e(R/b) + e(R).

Consider the exact sequence
0 —b/zb— R/zb — R/b — 0.

The three R-modules in this sequence have the same dimension, because b is in no minimal prime
ideal of R and therefore anng b C /0. Thus,

e(R/xb) = e(R/b) 4+ e(b/xb).

On the other hand, e(b/zb) = e(b) since the linear form x is a non zerodivisor on b, and e(b) = e(R)

by the associativity formula because b is in no minimal prime ideal of R. 0

The estimates in the next theorem use the multiplicity of R/J, where J is a partial Jacobian
ideal as defined in Setting 2.7.

Theorem 5.6. In addition to Setting 2.7, assume that the degree d of C is not a multiple of the

characteristic. One has

a(R)+1 if C is a smooth complete intersection
findeg(Dery (R)/m~1e) > 4 ) / P

- e(R/J)—6
52— )

7 otherwise.

Proof. 1f C is a smooth complete intersection the assertion follows from Corollary 4.13. Otherwise
ht J =1 by Theorem 3.3 (c).
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Let © and m be as in Corollary 2.11 and assume that m is minimal. Recall that
impu=J@o—-—m-—1)
by that corollary. We use Corollary 5.3(b), which says that htim g = 1 and
e(R/impu) >m+1.
Now combining Lemma 5.5 with the two displayed formulas, we obtain
(12) m+1<e(R/imp)=e(R/J)+ (m+1-10)e(R),
as required. O

Part (a) of the next corollary is essentially [12, Theorem 3.2] and [15, Corollary 6.4]. The estimate

of part (b) is often sharper for plane curves of small genus.

Corollary 5.7. Let k be a perfect field and C C P% be a reduced curve of degree d that is not smooth.
Assume that d is not a multiple of the characteristic. Let T and py denote the total Tjurina number

and the geometric genus of C and let R be the homogeneous coordinate ring of C. One has

(a) findeg(Dery(R)/Re) > d—2— 775 ;

(b) findeg(Dery(R)/Re) > d —

[\G][WV]

—\/27(0) +2py — 2 +3d - ]

Proof. Part (a) follows from Theorem 5.6. We prove part (b). Let m be the minimal degree of a
vector field leaving C invariant and recall that findeg(Dery(R)/Re) = m — 1. We start from the in-
equalities (12), but replace the multiplicity estimate of Corollary 5.3(b) by the one of Proposition 5.4

to obtain

dimg(Rym—s4at1) T —a—1—py <e(R/imp) =e(R/Jg) + (m+1—-19)-e(R).
Notice that 6 =d—1,a=d—3,and m—9d+a+1=m—1<d— 2, where the last inequality will
be proved in Theorem 6.1(d). Thus dimg(R,,—s4q+1) = dimg(Spm—1) = (m;rl), and we obtain

m? — (2d — 1)m — 2e(R/Jr) — 2py + 2d*> —4d +2 < 0.

Since there exists a vector field of degree m whose singular locus does not contain an irreducible
component of C, the polynomial in m on the left-hand side has a real root and the smallest real

root is

1
d—2—\/QE(R/JR)+2pg—d2+3d—Z.

O

In addition to the assumptions of Corollary 5.7 suppose that C is a rational curve, that is p; = 0.

If moreover C has only ordinary nodes as singularities, then the lower bound in part (a) of the

corollary gives a(R2)+1, whereas the bound in (b) gives a(R) + 1, which is the exact value for

indeg(Dery(R)/Re) proved in Corollary 4.12. For rational curves in general, the bound in (b) is
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better than the bound in (a) if and only if 7 < (dgl) +a—3v3a%+ a, where o = (d — 1)2. For a
rational curve with only ordinary nodes and ordinary cusps as singularities, this inequality holds if
and only if the number of cusps is less than o — %\/m.

It will follow from Theorem 6.1(e) below that if C is a smooth complete intersection, then the
equality findeg(Derg(R)/Re) = a(R) + 1 holds in Theorem 5.6. Therefore we are not going to

consider this case in the remainder of this section.

Theorem 5.8. Let k be an algebraically closed field of characteristic zero and X C Pz_l be an
equidimensional subscheme of dimension s, where 1 < s < 3. Assume that X is locally a complete
intersection and has only isolated singularities. If X is defined scheme theoretically by an ideal T
generated by forms of degrees < t, let Z be a complete intersection of dimension s defined by general
forms of degree t in I, and let Y be the link of X with respect to Z.

(a) Y and X NY are nonsingular;
(b) Sing(Z) is the disjoint union of Sing(X) and X NY'; if p € Sing(X), then Oz, = Ox, , and if
p€ XNY, then 6;4) = Lz, ... ws1]/(z122).

Proof. Let S = k[x1,...,z,] be the homogenous coordinate ring of PZ_l, let a be the saturated
ideal of Z, and K = a : I be the saturated ideal of Y. Replacing I by I>;, we may assume that [
is generated by forms fq,..., fi, of degree t. We write g = ht I = n — s — 1. We may assume that
the ideals I and a are equal locally at every minimal prime of I. Therefore a = I N K, the ideal K
is unmixed of height g, and all associated primes # mg of I + K have height g + 1, as can be seen

from the exact sequence
0— S/a— S/ IeS/K— S/(I+K)—0.

We now prove (a). The ideal a is generated by g k-linear combinations ) \;; f; with A = (\5) a
general point in A7™.

We consider the polynomial rings U = k[{u;; |1 <i < g,1 < j < m}] and S = S ® U, and the
S-ideals @ = (N fj|1<i<g)and K =4 :5 I. There are natural maps

1 :U—T:=8/K and t:U— P:=S/(IS+K).

According to [29, 2.4(b)], the generic fiber of v, satisfies Serre’s condition Rs and the generic fiber
of 1o satisfies Rs_1.

Let @ be the quotient field of U, and write T = T Qu Q and Pr, = P ®u Q. The rings Ty and
Py are standard graded ()-algebras of dimension at most s+ 1 and s, respectively. Since these rings

satisfy Rs and Rs_1, respectively, they are regular locally on the punctured spectrum. Thus by

Theorem 3.1 there exits an integer ¢ such that

(1,...,2,)" Tg C Fitts11(Qo(Tg)) and (x1,...,2,)" Po C Fitts(Qq(Pg)).
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Hence for some nonzero polynomial h € U,
(13) h(x1,...,2,)" T C Fittey1(Qu(T)) and  h(z1,...,2,)" P C Fitts(Qu(P)).

For a point A = (\i;) € A", we write k(A) = U/ (uij — Aij), Sx = S @y ka, T\ = T ®u k()), and
Py =P @y k()) . Tt follows from (13) that whenever h()A) # 0, then

(21, ..., 20) Ty C Fitter1(Qu(T)) ®u k(A) = Fittey1(Q(Th))

(21, .., 2)" Py C Fitty(Q (P)) @y k() = Fitts 1 (Q(Py) -
We conclude that locally on the punctured spectrum, (7)) is generated by s + 1 elements and
Q,(Py) is generated by s elements.

On the other hand, we may assume that a = aS). Hence there is a natural epimorphism of

S-algebras

Ty = Sy/KSy — Sy/(@Sy : 1) = S/K,
and likewise Py — S/(I + K). Thus locally on the punctured spectrum, the modules Q(S/K) and
Qi(S/(I + K)) too are generated by s + 1 and s elements, respectively. As S/K and S/(I + K)
are equidimensional k-algebra of dimension s + 1 and s, respectively, it follows that both rings are
regular on the punctured spectrum, see Theorem 3.1.

For the proof of part (b), recall that Z = X UY. Let p € Z. If p ¢ Y, then Oz, = Ox,. If
p ¢ X, then Oz, = Oy, which is regular by part (a). If p € X NY, then Oz, has at least two
distinct minimal primes, hence cannot be regular. This shows that Sing(Z) = Sing(X)U (X NY).

By the general choice of a, we have I, = a, for the finitely many prime ideals p corresponding to
the singular points of X (here we also use the fact that a is also general in I, see [38, 2.5(a)]). So
p pa:I =K. Thus for every p € Sing(X), p ¢ Y and so Oz, = Ox,. Moreover, Sing(X) and
X NY are disjoint.

It remains to prove the claim about Oz, for p € X NY. By part (a) and since p ¢ Sing(X), the
rings Ox p, Oy,p, Oxny,p are regular. Write S" = Opn-1,,, and let I’, K’, a’ be the defining ideals in
S" of Ox p, Oy, Oz,. It suffices to find a regular system of parameters x,...,z,—1 of S’ such that
o = (T1,..., 091, Tglgs1).

Recall that the ideals I’ and K’ have height g and are geometrically linked by a’. Since S’/K’ is
Gorenstein, we have I'/a’ = wg/ /g = S’/ K' is cyclic, so g — 1 generators of a’ are part of a minimal
generating set of I’. Call these elements z1,...,z,_1. Since S’/I" is regular, these elements are part
of a regular system of parameters of S" and I’ = (x1,..., %) with x1, ..., x4 part of a regular system
of parameters. Notice a’ = (x1,...,24-1,yzy) for some y € S’ Now K' =da' : I' = (z1,...,24-1,9),
soI' + K' = (z1,...,24,y). Since this ideal has height g+ 1 and S’/K’ +I' is regular, z1, ..., 24,y

form a part of a regular system of parameters of S’, as claimed. O

Remark 5.9. Following the approach of [3, 4.4] one sees that Theorem 5.8 still holds when Z is

not necessarily defined by general forms of the same degree.
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In the next theorem we assume that the curve C is not a smooth complete intersection because
otherwise we know from Corollary 4.14 that findeg(Dery(R)/m~le) = a(R) + 1.

Theorem 5.10. Let k be an algebraically closed field of characteristic zero and C C szl be a
reduced curve of degree d that is locally a complete intersection. Assume that C is not a smooth
complete intersection. Let T and p, denote the total Tjurina number and the arithmetic genus of C

and let R be the homogeneous coordinate ring of C with maximal homogeneous ideal m.

(a) If R is a domain or, more generally, R has the generalized Cayley-Bacharach property, then

d T—2
“le) > - .
findeg(Derg(R)/m™"¢) > 1 a(R) T 1
(b) If R is Cohen-Macaulay, then
2p, —
findeg(Derg(R)/Re) > Z — 1T

Proof. We deduce the theorem from Theorem 5.6. In Setting 2.7 we choose elements fi,..., fn—2
that satisfy the conclusion of Theorem 5.8 with X = C and Z = V(f1,..., fn—2). For the proof
of parts (a) and (b) we are going to estimate and compute, respectively, e(R/J). We write a =
(fiy--- fn—2) and A = S/a. By Theorem 5.8, Sing(Z) = Sing(C)U(CNY") and for every p € Sing(Z)
either Oz, = O¢, or else p € CNY and O/Z\J, = kfx1, z2]/(x122). In the latter case the Jacobian
ideal Jo, , of Oz, is the maximal ideal and therefore Oc /Jo, ,Ocp = k. It follows that

(14) e(R/J)=1+deg(CNY).

We are now going to estimate and compute, respectively, the degree of CNY. We write K = a: [
for the saturated ideal defining the link Y. The subscheme C NY is defined by the ideal I + K, and
S/(I+ K)= R/KR, so deg(CNY) =e(R/KR). On the other hand, wr = (KR)(J — 2).

We now prove part (a). Since R has the generalized Cayley-Bacharach property, we have
findegwp = indegwr = —a(R). Therefore K R contains a homogeneous R-regular element of degree
d —2 — a(R). Since moreover ht KR = 1, it follows that

(15) deg(CNY) = e(R/KR) < d(6 — 2 — a(R)).

Now the assertion follows by combining (15), (14), and Theorem 5.6.
To prove part (b) we write the Hilbert series of R as Hr(t) = (lq_(?)g. Since R is Cohen-Macaulay,

the Hilbert series of wg is Hy,, (t) = t?fg;);). Therefore

Q1)
(11—t

where Q(t) = q(t) — t°q(t™!). Since dim R/K R = 1, we have

Hp/kp=Hp —t*7%H,, =

(16) e(R/KR) = —Q/(1) = 6q(1) — 2¢/(1) = deq — 2e1 ,
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where eg = d and eq is the first Hilbert coefficient of R. On the other hand p, = e; — eg + 1. Now
the conclusion follows from (16), (14), the equality deg(CNY) = e(R/KR), and Theorem 5.6. [

To illustrate the above bounds we are going to present a family of curves C C PZ_l for which the
inequality in Theorem 5.8(b) is an equality, see Proposition 5.12 and in particular part (¢). We will

use the following lemma:

Lemma 5.11. Let k be a perfect field and A be a Noetherian positively graded k-algebra generated
by n homogeneous elements of degrees 41, ...,0, none of which is a multiple of the characteristic.
Assume A is a reduced complete intersection of dimension 1. Write m for the mazximal homogeneous
ideal, a for the a-invariant, J4 for the Jacobian ideal, and § for the conductor of A.

One has Jao = m(—a). If in addition k is algebraically closed and A is a domain, then

7(A) a+1

= 5 = DA =20(4).

Proof. Write A = S/(f1,..., fn—1), where S = k[x1,...,z,] is a positively graded polynomial ring
with deg x; = §; and f; are homogeneous polynomials of degree d;. Write y; for the image of z; in A,
© for the Jacobian matrix of fi,..., f,—1 with entries in A, and Ay, ..., A, for the signed maximal
minors of ©. Since the image of the matrix © has rank n — 1 over A and since both vectors

(1 Aq

: and

Yn Ay
are in the kernel of © and their images have rank 1, it follows that these vectors are proportional,
by multiplication with a quotient of two homogeneous non-zerodivisors in A. On the other hand,
m is generated in degrees d; and J4 is generated in degrees (> d; — > 9;) + 0; = a + 0;. It follows
that J4 & m(—a).

If k is algebraically closed and A is a domain, then the integral closure A is a graded polynomial
ring k[t], where ¢ has degree ged(dy, ..., d,). After regrading we may assume that this degree is 1.
We may also assume that A # A. The ring A is a monomial subalgebra of A = k[t], and computing
local cohomology with support in m one sees that ¢ is the highest degree monomial in A\ A. Thus
Attt = and it follows that

a+1=MXA/) =2AA/f) =20(A),

where the last two equalities hold because A is Gorenstein.
On the other hand, the isomorphism J4 = m(—a) reads as J4 = mt®. We also recall Proposi-

tion 3.5, which applies since A is a complete intersection. Thus we obtain
T(A) = MA/J4) = M(A/mt?) = A(A/m) + A(m/mt?) =a+ 1,

as required. O
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Proposition 5.12. Let k be an algebraically closed field of characteristic zero and let r be a positive
integer. Let C C PTkal be the curve defined by the ideal I of S = klz1,...,zy,] generated by the

mazimal minors of the matrix

T4 T2 ... ... Tp—2  Tp—_1
(17) r r r r + r
Ty oo e Ty o Xp_q X)X

(a) The curve C has degree

arithmetic genus

1
Pa = g((n— 2rn =" ) = (=2 —d+ 1),
geometric genus
r _
Pg = Q(rn 2 1)7
total Turina number
T=r((n=3)r"3 " 1) =n-3)r" " —d+r+1,
and singularity degree
1
o= % = 5((71—3)7“”_1 —d+r+1);
(b) If r > 1, the set {(1:0:...:0:p;) | pf = —1} is the singular locus of C and for every singular
point p of C,
(5(1\;) o k:[[t,’,,n73 t,r,n73+7,.n74 o t,,,n73+“_+1]] .

(¢) Let R = S/I be the homogeneous coordinate ring of C and let y; denote the images of x; in R.

The element

n—1 P 9 n 9
n—2 n—i r—1 r r
e i — +d —
ZZ:;(T e T g ) g € Z@Raxi
gives a minimal generator of Derg(R)/Re. In particular
204 —
indeg(Derg(R)/Re) = findeg(Derg(R)/Re) =7 — 1= 2_ 1T .
Proof. The formula for the degree of C follows by applying [20] to a regular sequence of n forms of

degree 7.
We begin by proving part (b). Observe that y1,y, is a regular sequence on R. To show the claim
about the singular locus, let p € V(Jg) with dim R/p = 1. We claim that

(18) (y237yn717y;+y:1) Cp

To this end we first prove that y; & p. Suppose y1 € p. Modulo y; R, the (n—2) x (n—2) subblock
of the Jacobian matrix over R that uses the partial derivatives with respect to x1,...,x,—2 and the

minors of (17) involving the last column is an upper triangular matrix with g, along the diagonal.
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Hence y,, € p. Now we see from (17) that (y2,...,yn—1) is also in p. Thus (y1,...,y,) € p, which is
impossible because dim R/p = 1.
Next we show that y, € p. One easily sees that

Ry, /(yn) = M, a7t en]/ (2 — o),

which is reduced because the characteristic is zero. Now suppose that y, € p. Since both ideals
(yn) C p have height one and y, R, is radical, it follows that pR, = (y»)Ry. So R, is a DVR, which
is impossible since p € V(Jg).

Now, the (n—2) x (n—2) subblock of the Jacobian matrix over R that uses the partial derivatives
with respect to xs, ..., x, and the minors of (17) involving the first column turns out to be a lower

1

triangular matrix with diagonal entries ry1y; *, where 3 < i < n. It follows that y1y3-- -y, € p.

Hence, as both y; and y,, are not in p, we obtain that y; € p for some ¢ with 3 < ¢ < n—1. Reducing

modulo the ideal (y;), one sees that the maximal minors of the matrix

yioy2 - oo Wi | 00 w1 oo o Yna
S L R R T
are in p. Therefore (y2,...,yn—1) € p and y1(y] +y;,) € p. As y1 & p, it follows that

(Y2, s Yn—1,91 +yp) TP,

as asserted.

Recall that y; ¢ p. Claim (18) gives the containment Sing(C) C {(1:0:...:0:p;) | pf = —1}.
To prove equality and the remaining assertion of part (b) it suffices to show that for every point
p=(1:0:...:0:p) with p” = —1 one has (@ o k[[t’"n_S,trn_3+Tn_4, TP Writing
z; = :% for 2 <4 < n we obtain Oc = k(22,.. ., 2n)(2s,....2n_1,2n—p)/ H, Where H is generated by the

1 2z ... ... Zn—1
2y oo oo 2l 4 oz +1

The ideal H contains the element z), + 1 — 252, 1 = (2, — p)v — 252,—1, Where v is a unit, which

maximal minors of the matrix

shows that the maximal ideal of O¢ ) is generated by the images of 22,...,2,-1. Now the Cohen

structure theorem gives the natural surjection
0:B:=k[z,....,2n-1]/K — Oc,,

where K is the ideal generated by the maximal minors of the matrix

1 Z9 e e Zn—2
r r r :
2y e e Zp_a o Zp_q
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On the other hand, there is a natural surjection
n—3 n—3 n—4 n—3
VB —— C = k[t ¢ T L]

The ideal K is generated by the n — 3 elements 2] — 25z;_1 for 3 < ¢ <n — 1. It follows that 23 is
a non zerodivisor on B and that B/zB has multiplicity 7"~3. Therefore e(B) < 7"~3 = ¢(C). As
B and C are Cohen-Macaulay rings of the same dimension, 1 is an isomorphism. In particular, B

is a domain, which then shows that ¢ is an isomorphism. This completes the proof of part (b).

We now prove part (a). According to part (b) the total Tjurina number and the singularity
degree of C are
T=r-7(B) and o(C)=r-0(B),
where B is the ring defined in the proof of part (b). Write A = k[za,...,2,-1]/K where K is the

ideal generated by the maximal minors of the matrix

1 Z9 e e Zn—2
r r r :
2y e e Zp_a o Zp_q

Giving the variables z; degree degz; := "3 4+ ... + """~ the ideal K is generated by the

homogenous regular sequence z] — z52;_1, where 3 <4 <n — 1. In particular

n—1 n—2
a(A) = Zr'degzi - Zdegzi = (n—3)r" 2 — "3 — 1.
=3 =2

To compute 7(A) and o(A) we apply Lemma 5.11. Since ged(deg 2o, ...,deg z,—1) = 1, it follows
that
7(A)=2-0(A)=a(Ad)+1=r(n—-3)r" 3 —r" - . —1).
Since B = K, the asserted equality for the total Tjurina number and the singularity degree of C
now follow.
To compute the arithmetic genus of C, we pass to a rational curve C' C PZ‘I with homogenous
coordinate ring R’, so that R and R’ have the same Hilbert function. We take C’ to be the curve

defined by the maximal minors of the matrix

rT X9 ... N Tp—1
(19) r r nr ’

A T
Clearly R and R’ have the same Hilbert function.

We claim that C’ is parametrized by the map F : P! — Pz_l, where

F = (Sr”_2+...+r+1 . tr"_QSr"_3+...+r+1 . . tr”_2+...+r8 . tr”_2+...+r+1)

Let C := k[s™" *Frtl 4" edrg ¢r" 4] he the homogenous coordinate ring of the
image of F. Since im F' is a monomial curve, it is covered by two affine charts obtained by setting

t =1 or s = 1, respectively. If we set ¢ = 1, then the affine coordinate ring is the polynomial ring
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k[s], which shows that this chart is smooth and F' is birational onto its image (for the latter see
also [32, 4.6(3)]). The other affine chart has at most one singular point, namely (1,0,...,0). Since
the map F is birational onto its image, it follows that degim F = "2 + ... +r+ 1 =d. As the

multiplicity of R’ is also d, the natural surjection

¢:R —— C
shows that ¢ is an isomorphism. Thus C’ is a rational curve with at most one singular point, namely,
p=(1,0,...,0).
Now
(20) Pa(C) = pa(C) = pa(C) — py(C") = 0(C") = 0(Oc ) ,

where the first equality obtains because R and R’ have the same Hilbert function, the second
equality holds because C’ is rational, and the third equality follows from Proposition 3.9 since C’ is
irreducible.

To compute o(O¢ ,,), we let A be the coordinate ring of the affine chart obtained by setting s =1
and we write z; = % for 2 <1i < mn. Notice that A := k[za, ..., 2,|/H, where H is generated by the

1 zZ2 ... PN Zn—1
2o o )
"7 the ideal H is generated by the homogenous

maximal minors of the matrix

Giving the variables z; degree deg z; = t"

regular sequence z] — 2z5z;—1, where 3 <7 < n. In particular

a(A) = Zr deg z; — Zdegzi =(n—2)yr"! —d.
=3 =2

Thus by Lemma 5.11, 0(4) = a(A2)+1 = 2((n —2)r" ' —d+1). On the other hand O, =
A
The assertion about p, follows from Proposition 3.9 and the formulas for p, and o .

24 - Now (20) gives the asserted equality for p,(C).

2;ee0s

We now prove part (c). To see that the vector

n—1 n
. 0 0 0
— n—2 o n—i ; r—1 d (" r
¢ ;2 (" T g AW ) g € ZG? Ro

belongs to Derg(R) one has to check that ¢ is in the null space of the Jacobian matrix over the
ring R. To show that ¢ annihilates the row corresponding to the ij minor of (17) one uses that
the same minor is zero in R. Also notice that ¢ is not a multiple of the Euler derivation, hence
its image in Dery(R)/Re is non zero. This element is homogenous of degree r — 1, and therefore
indeg(Derg(R)/Re) <r—1.
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On the other hand, R is a domain because R is Cohen-Macaulay and locally a domain by part
(b). Therefore indeg(Der(R)/Re) = findeg(Dery(R)/Re). According to Theorem 5.10(b)

2D, —
findeg(Derg(R)/Re) > Z_ 1T =r—1,
where the last equality holds by part (a). Thus indeg(Derg(R)/Re) = findeg(Derg(R)/Re) =r —1
and the image of ¢ is a minimal generator of Dery(R)/Re. O

6. UPPER BOUNDS

Recall that a Cohen-Macaulay positively graded algebra R over a field is called nearly Gorenstein
if the homogenous maximal ideal m of R is contained in the trace of wg, the image of the natural

map wp ® wg — R. Clearly every Gorenstein ring is nearly Gorenstein.

Theorem 6.1. Let k be a perfect field and C C PZ_I be a reduced curve of degree d that is arithmeti-
cally Cohen-Macaulay. Let R be the homogenous coordinate ring of C with maximal homogeneous

ideal m. One has
(a) indeg(Dery(R)/Re) < max{indeg wj,, a(R) + 1};
(b) findeg(Dery(R)/Re) < max{findeg wy,, a(R) + 1};
(c) if C is smooth and d is not a multiple of the characteristic, then
indeg(Dery(R)/Re) = findeg(Derg(R)/Re) = max{indeg wp, a(R) + 1};
(d) if R is nearly Gorenstein or, more generally, the trace of wg is not contained in m?, then
indeg(Derg(R)/Re) < a(R) + 1;

(e) if R is Gorenstein, then
findeg(Derg(R)/Re) < a(R)+ 1.

Proof. We prove parts (a), (b), and (c). Since depth R > 2, Proposition 2.4 gives an exact sequence
0 — Dery(R)/Re — H* — Ext?(k, R).

This sequence shows, in particular, that indeg(Derg(R)/Re) > indeg H*. Recall from the proof of
Corollary 2.10 that Ext%(k, R) is concentrated in degrees at most a(R). Since depth H* > 0, we
conclude that
indeg(Der(R)/Re) < max{indeg H*, a(R) + 1},
and likewise for the faithful initial degree.
Now parts (a) and (b) follow because
H* <> wp

by Proposition 2.9(b).
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For part (c) we first notice that indeg(Der(R)/Re) = findeg(Dery(R)/Re) because R is a domain
and Dery R/Re is torsionfree by Proposition 2.4. Furthermore indeg(Dery(R)/Re) > a(R) + 1 by
Corollary 4.13. Thus we are done if max{findeg w¥, a(R)+1} = a(R)+1. Otherwise, Dery(R)/Re =
wp by Corollary 2.10, and the assertion follows again.

(d) Assume that the trace of wg is not contained in m?, and let z # 0 be a linear form in the trace
of wgr. There exist homogenous non-zero elements ¢; € wy and w; € wg such that z = > wi(w;)
and ¢;(w;) are linear forms. As degw; > indegwrp = —a(R), it follows that degp; < a(R) + 1.
Thus indegw}, < a(R) + 1. Now the assertion follows from (a).

(e) Since R is Gorenstein, we have w}, = R(—a(R)). Thus findegwy = a(R) and the assertion
follows part (b). O

Corollary 6.2. Let k be an algebraically closed field and C C P’lz*l be an irreducible curve of degree
d. Let R be the homogenous coordinate ring of C. Assume d is not a multiple of the characteristic.

If C is arithmetically nearly Gorenstein and has at most ordinary nodes as singularities, then
findeg(Dery(R)/Re) = a(R) + 1.

Proof. This follows from Corollary 4.12 and Theorem 6.1. g

Theorem 6.3. Let k be a perfect field and C C PZ_I be a reduced curve of degree d. Let R be the

homogenous coordinate ring of C with mazximal homogeneous ideal m. Then

(a) indeg(Dery(R)/m~te) <2d — 5 —a(R);

(b) findeg(Derg(R)/Re) < d—2 if chark = 0 and C is smooth and arithmetically Cohen-Macaulay.
Proof. We may assume that k is infinite and n > 3. Let x1, 22,23 be general linear forms in R

and consider the subalgebra A = k[x1,z2,23] of R. Notice that A C R is a finite and birational
extension by Lemma 4.7 and that A is a hypersurface ring. Thus Theorem 6.1(d) gives

findeg(Dery(A)/Aca) < a(A) + 1.
Also observe that e(A) = e(R) by Lemma 4.7, hence a(A) = e(A) —3=¢(R) —3=d— 3.

Now part (a) follows because
indeg(Dery(R)/m 'er) < findeg(Dery(A)/Ac4) + a(A) — a(R)

by Theorem 4.8. If the assumptions of part (b) are satisfied, then R is the integral closure of A
and R is a domain. Hence every derivation of A can be extended to a derivation of R, according to

[39, Theorem, page 168]. From (9) in the proof of Theorem 4.8 we see that there are embeddings
Dery,(A)/Ae g4 — Dery(A, R)/m ey «+2— Derg(R)/m 'eg.

Since every derivation of A can be extended to a derivation of R, the map ¢ is an isomorphism.
Thus we obtain an embedding Dery(A)/Ae4 < Dery(R)/m 'er. As depth R > 0, this embedding
shows that

findeg(Derg(R)/m ™ 'ep) < findeg(Derg(A)/Ac ),
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which proves part (b). O

Proposition 6.4. Let k be a perfect field and C C Pz_l be a reduced curve that is arithmetically
Cohen-Macaulay. Let R be the homogenous coordinate ring of C. One has

findeg(Derg(R)/Re) < max{r(R) - (a(R)+2)—2, a(R) + 1}.

Proof. In view of Theorem 6.1(b) it suffices to prove that findegwy, < r7(R) - (a(R) +2) — 2. We
may assume that n > 3 and that C C PZ_l is non-degenerate. We write S for the coordinate ring of
szl and consider a minimal homogeneous free S-resolution F, of R. Since R is Cohen-Macaulay,
the resolution F, has length n — 2 and F),_o is generated in degrees at most a(R) 4+ n. Moreover,
indeg Fj,_3 > n — 2 because the curve is non-degenerate. It follows that the entries of ¢, the last
matrix in the resolution F,, have degrees at most a(R) + 2.

Let o be a general homogeneous minimal generator of wgr of maximal degree. Observe that
anng o = 0. Moreover, the graded module wr/Ra is minimally generated by r(R) — 1 homogeneous
elements and is presented by the transpose of ¢, with one row removed. This is a matrix with r(R)—1
rows and homogeneous entries of degrees at most a(R) 4+ 2. The ideal a of (r(R) — 1) x (r(R) — 1)
minors of this matrix satisfies a C anng(wr/Ra) C +/a, has positive grade, and is generated by
forms of degrees at most (r(R) — 1)(a(R) + 2). Thus, there exists a homogeneous non-zerodivisor
b € a C anng(wgr/Ra) with degb < (r(R) — 1)(a(R) + 2).

Now the exact sequence

0 — wh — (Ra)* — Extk(wr/Ra, R)
shows that
b(Ra)* C wh.
Since (Ra)* = R(dega) and dega > indegwr = —a(R), it follows that findeg(Ra)* < a(R). As
moreover b is a non-zerodivisor, we conclude that
findegw}, < findegb(Ra)* = degb + findeg(Ra)* < (r(R) — 1)(a(R) +2) + a(R) ,

as required. O

We finish this section by providing the minimal graded free resolution of the module Dery(R)/Re
for the case of a smooth arithmetically Cohen-Macaulay curve in Pz. From this we obtain, for
instance, the initial degree, the minimal number of generators, and the entire Hilbert series of
Derg(R)/Re. In particular, we see that the upper bound of Theorem 6.1(d) fails dramatically

without the nearly Gorenstein assumption.

Theorem 6.5. Let k be a perfect field and C C P% be a curve of degree d that is smooth and
arithmetically Cohen-Macaulay. Let R be the homogenous coordinate ring of C and S = klx1, . .., z4]
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be the homogenous coordinate ring of Pz. Let
Fo:0— F =21 S(=b;) = Fi = &}, S(~a;) — S

be the minimal homogenous S-free resolution of R. We may assume that a1 < ... < ap.

(a)

m(—a(R if n =2 and d is not a multiple of the characteristic
Do (e = | M) ple of

Wk n>3.
(b)

a1 +as—3 ifn=2 and d is not a multiple of the characteristic
indeg(Dery(R)/Re) =4 "+ "2 / ple of
a1+ax—4 n>3.

(¢) If n > 3, then the minimal homogenous S-free resolution of Dery(R)/Re is of the form

@ S(_bjl - bj2 + 4) GB S(_bj —a; + 4)
2<j1<j2<n~1 2<j<n-1
0 —— @ —_— lsisn @ R — @ S(—ail — 5, + 4)
@ S(—b1 — bj + 4) @ S(—bl —a; + 4) lsiy<igsn
1<j<n-—1 1<i<n

(d) Assume n > 3 and let ¢ be the n — 2 by n matriz obtained by deleting the first column of .
One has ht I,,_o(v)) = 3 and

In—Q(w)

In—l(gp)

(e) Assumen > 3. Write Fy = Fy1 @ Fae where Fa1 is generated by the first basis element of Fy and

Fso is generated by the remaining basis elements, so that v : Fog — F, and let m: Fo — Fao

n—1 n—1
be the natural projection. Write —¥ = Homg(—,S). Set b = Y b; and ¥’ = 3 b;. Consider
j=1 J=2

Derg(R)/Re = wp =

(4—"b1).

the diagram
n n—1 n—2
0—— DQ(FQQ) & /\Flv(—b/) —— Fo® /\ Flv(—b/) — /\ Flv(—b/)

-0 4

n n—1
0 —— B N\EFY(-b) —— A FY(-D),
where the first and the second row are the truncated Fagon-Northcott complexes associated to the
matrices ¥ and @, respectively, and § is the differential in the Koszul complex of the sequence

consisting of the entries of the first column of p. These vertical maps give a morphism of
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complexes ue, and the mapping cone C(ue) is a minimal homogeneous S-free resolution of
Der(R)/Re.

Proof. We first prove the claim about the height and the second isomorphism in part (d). Notice
that
FY 10— S(—4) — FY(—4) 25 Fy (—4) = @12} S(b; — 4)

is a minimal homogeneous free S-resolution of wg. Since wg is a torsionfree R-module and R is a
domain, the image o € wp of the first basis element of F'(—4) generates a submodule Ra = R(b; —
4). Notice that dim(wg/Ra) < 1. As an S-module, wr/Ra is presented by the n by n — 2 matrix
YV It follows that ht I,,_o(¢)) = ht I,_a(¢)") > 3. Therefore anng(wg/Ra) = I—2(¢") = I—2(¢))
according to [3, Theorem page 232].

On the other hand, a shift of wg is isomorphic to a homogenous ideal K of R. Let § € K be the

element corresponding to . One has

wr(by —4) = Hom(wR, Ra) =2 Hom(K,RpB) = R g K

= anng(K/RB) = anng(wr/Ra) = W
I 1)
In-1(p) '

Next we prove parts (a) and (b), which will also completes the proof of (d). If n = 2, the assertions

follow from Corollary 4.14. Hence we may assume that n > 3. The second isomorphism in (d)
n—1 n

shows that indegw}, = indeg I,,_2(1)) + b1 — 4. On the other hand, indeg I,_2(¢)) = > bj — > a; =
j=2 i=2

n—1 n
a1 + az — by. The last equality holds because ) b; = > a;, by the Hilbert-Burch theorem. We
j=1 i=1
conclude that indegwy, = a1 + a2 — 4. Now parts (a) and (b) follow from Corollary 2.10 once we
have shown that a; + as —4 > a(R).

To this end we may assume that by < ... < b,_1. Hence a(R) = b,—1 — 4 and we need to prove
that a1 +as > by,—1. We consider the degree matrix associated to ¢, which is the n — 1 by n matrix

with entries u;; = b; — a;. Notice that ¢;; = 0 if u;; < 0. It easily follows that u;;2; > 0 for all j
n—2
since I is a prime ideal (see also [22, page 3142]). As as = u1,—1 + D ujt2; and n > 3, we see
j=1
that as > b,_1 — a1.
We now prove (e). Since ht I,,_2(¢) > 3 by part (d), the two truncated Eagon-Northcott com-
plexes are minimal homogeneous S-free resolutions of I,,_2(1)) and I,,_1 (), respectively. One easily

checks that ue is a morphism of complexes. Thus C(u,) is a homogeneous S-free resolution of

ﬁ"%ﬁ&ﬁ%. It is minimal because the matrices of the vertical maps have entries in mg. We deduce part
n—1 n
(c) from (e), repeatedly using the equality > b; = > a;. O

7=1 i=1
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7. THE EULER DERIVATION IN THE MODULE OF DERIVATION

In proving the graded case of the Zariski-Lipman conjecture, Hochster showed that, for any
Noetherian positively graded algebra R over a field of characteristic zero, the Euler derivation is a
minimal generator of Dery(R), unless R is a polynomial ring over a subalgebra [28, pg 412]. One
may wonder whether the Euler derivation can generate a free direct summand. In this section we
use the results from Section 5 to address this issue and the related question of whether the natural

map Dery(R) — L* of Proposition 2.4 can be surjective.

Proposition 7.1. Let R be a two-dimensional Noetherian standard graded algebra over a field k,
with homogeneous maximal ideal m, and assume that the multiplicity of R is not a multiple of the
characteristic of k. If R is Gorenstein, then the natural map Derg(R) — L* is not surjective and

the Euler derivation does not generate a free direct summand of Derg(R).

Proof. Let S be a polynomial ring over k of dimension > 3 with homogeneous maximal ideal mg

that maps homogeneously onto R. The commutative diagram with exact rows

00— Z —— (9) mg > 0
0 —— L —— Qi(R) > m > 0

induces a commutative diagram

Hy (ms) —*— Hg o (Z)

| s

Hl(m) —— H2(L) .

Here « is an isomorphism since depth,, Qx(S) > 3, and f is nonzero by Theorem 5.2. We conclude
that + is nonzero.

We use the exact sequence of Proposition 2.4

0 — Derg(R)/Re —— L* —Y— Ext%(k, R) = ExtL(m, R)

that was also induced by the exact sequence 0 — L — Q;(R) — m — 0. Since R is Gorenstein and
v # 0, local duality shows that v # 0. Thus § is not surjective. Moreover, depth Dery(R)/Re =1
by the depth lemma because im v has depth zero. Thus R e cannot be a direct summand of Derg(R),
a module of depth two. O

Surprisingly, if R is Cohen—Macaulay, but not Gorenstein then the natural map Derg(R) — L*
can be surjective in dimension two. This is always the case for the coordinate rings of rational

normal curves of degree n > 3 in P, as we will see in Proposition 7.4 below.
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Lemma 7.2. Let T be a standard graded Noetherian domain with gradeT) > 2. Let s € N be

invertible in T and denote the sth Veronese functor by —®). Then

Derp, (T®)) = (Derq, (T')®) .

Proof. We may assume that T # 0 and s > 2. We write R = T(%) and consider the exact sequence
(21) T @r Q1 (R) —2— Qp(T) — Qr(T) —— 0

We first prove that Supp(Qgr(7)) C V(T4). Let d : T — Qg (T') denote the universal derivation.
Let p € Spec(T') \ V(T4) and ¢ an arbitrary linear form in 7. We need to show that d(¢) € (im ¢),.
We choose x € Ty \ p. Since sz*"1d(z) = d(z*) € im it follows that d(z) € (imp),. Now the
containment (s — 1) 2520 d(z) + 2°1d(¢) = d(fz*~') € im ¢ implies that d(£) € (im ).

Let K and L be the quotient fields of R and T, respectively. Since Qx (L) = 0 by the above, the
field extension K C L is separable algebraic. Therefore ¢ ®7 L is an isomorphism, which shows that
ker ¢ is a torsion module. Again, since Supp(Qr(T)) C V(T4), it follows that grade Qr(T) > 2,
hence Exth(Qr(T),T) = 0. Now, dualizing the sequence (21) into T gives the identification

DerTO (T) == DerTO (R, T) .

Thus Derr, (R) C Derrg,(T'), and a degree argument immediately yields the desired equality. [

Corollary 7.3. Let T = Ty|z1, .. ., 2] be a standard graded polynomial ring with t > 2, and let s > 2
be invertible in T. Then Dery, (T®)) is the T®)-submodule of Derr,(T) = ®t_, T{% minimally

generated by the homogeneous elements Zia%j for1<4,5<t.

Proof. Applying Lemma 7.2 we obtain
Dery, (T®)) = (Derg, (T))®) = T [Derg, (T)]o

where the last equality holds because Derr, (T") is generated in degree —1 and —s < —1 < 0. U

The coordinate ring of the rational normal curve of degree n in P} is of the form R = S/I, where

S = k[xg,...,x,] and I is the ideal generated by the maximal minors of the matrix
To T1 T2 .. .. Ty
r1T T2 ... .. Tp-1 In

We write y; for the images of z; in R.

Proposition 7.4. Let R be the coordinate ring of the rational normal curve of degree n > 3 in P,

and assume that the characteristic of the field k is not a divisor of n.
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(a) The module Dery(R) is the R-submodule of Dery(S,R) = @&}, Ra%i minimally generated by

the following 4 homogeneous elements of degree 0,

n—1 9 9 n ‘ P n . o
Z 0)Yi 5 oz, ) Yit1 5 Y Z Wi-1 g ; Zyi(?Tq ;

e
i=0 v i= g

M |

=0
in particular, Derg(R)/Re is minimally generated by three homogeneous element of degree zero.

(b) L= (yOa y17y2)(1) :
(¢) The natural map Dery(R) — L* is surjective.

Proof. We consider the polynomial ring 7' = k[u, v], where the variables v and v are given degree
1. By mapping y; to u" %, one identifies R with the Veronese subring k[{u"~‘v'}] = ®jezs, T of

T. By Corollary 7.3 the R-submodule Derg(R) of Dery(7") is minimally generated by the elements

e} 0 o) 0
of degree zero ug,, vg., Uzs, Vg,

i

_iU .

Consider the natural map S — T of k-algebras with x; — u”" It induces a T-linear map
Q(S) @ T — Q(T) with dx; — (n — i)u”_i_1 fdu + iu" ' L dw. Dualizing into T', we obtain a
map Dery(T) — Dery(S,T) with 8 =Y ' — i) unilyt 2 5., and av DD RV ai.

Using the identification of Derk(R) as an R—submodule of Der(T") and Der(S,T),

Der(T) » Dery(S,T)
. C
Derk(R)
the generators
Wl w2 Wl W2
ou’ ou’ v’ v

of Derg(R) become
n—1 n—1 n n
0 0 . 0 .0
go n_ZyZa% ; szrl z, ;Zyllaxia ;Zylaxi-

We now prove (b). We may assume that & is perfect. As the rational normal curve is smooth,

~

Proposition 2.4 and Proposition 2.9(b) imply that L* = w},.
Since R is a determinantal ring, one has wr = (yo,y1)" 2(n — 3). It follows that

wi(=1) = g Rk (yo,91)" R
W™ AT AR) :p (W™, u™~ lv)” ’R
(u"" AT (u",u" )" 2R) N
= (u”" 2T o (U, u) AT N
(u"2T)NR

(

Y0, Y1, Y2)-
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To prove part (c) recall that according to Proposition 2.4, the natural map Dery(R) — L*
induces an embedding Dery(R)/Re — L*. Now use that Dery(R)/Re is minimally generated by
3 homogenous elements of degree zero according to (a) and L* is generated by 3 homogeneous
elements of degree zero by (b). O
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