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Abstract. We study the Buchsbaum-Rim multiplicity br(M) of a �nitely gen-
erated module M over a regular local ring R of dimension 2 with maximal ideal
m. The module M under consideration is of �nite colength in a free R-module F .
Write F=M �= I=J , where J � I are m-primary ideals of R. We �rst investigate the
colength `(R=a) of any m-primary ideal a and its Hilbert-Samuel multiplicity e(a)
using linkage theory. As an application, we establish several multiplicity formu-
las that express the Buchsbaum-Rim multiplicity of the module M in terms of the
Hilbert-Samuel multiplicities of ideals related to I , J and a minimal reduction ofM .
The motivation comes from work by E. Jones, who applied graphical computations
of the Hilbert-Samuel multiplicity to the Buchsbaum-Rim multiplicity [11].

Let R be a Cohen-Macaulay local ring with maximal ideal m and in�nite residue
�eld. Let a be an m-primary ideal. In this paper, we study the connection between
the colength of a, i.e., the length `(R=a) of R=a, and the Hilbert-Samuel multiplicity
e(a) of a. It is known for an m-primary ideal b contained in a that e(a) = e(b) if and
only if b is a reduction of a (cf. [16], [17]). Furthermore, if b is a minimal reduction
of a, then

e(a) = e(b) = `(R=b) :(1)

However, e(a) and `(R=a) are not equal in general. In one of our main theorems,
Theorem 2.2, we express, under certain conditions, the colength of a in terms of the
Hilbert-Samuel multiplicity of ideals which are in the same linkage class as a.
Equation (1) can be generalized to modules using the Buchsbaum-Rim multiplicity

of a module M , denoted br(M). Let U � M be submodules of a free R-module F
of �nite rank such that `(F=U) < 1. It is known that U and M have the same
Buchsbaum-Rim multiplicity if and only if U is a reduction of M . Similar to ideals,
if U is a minimal reduction of M , then

br(M) = br(U) = `(F=U)(2)

(cf. [6], [13], [14], [12], [19]).
In the case where F has rank one, M is an m-primary ideal and br(M) = e(M).

Thus the Buchsbaum-Rim multiplicity is a generalization of the Hilbert-Samuel mul-
tiplicity to modules. Like the Hilbert-Samuel multiplicity, it characterizes reductions.
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Using the theory of reductions of modules, we reduce the problem of �nding for-
mulas for the Buchsbaum-Rim multiplicity to the relationship between the colength
and the Hilbert-Samuel multiplicity of ideals. The latter question is answered for
arbitrary licci ideals in Theorem 2.2. As an application, we obtain formulas for the
Buchsbaum-Rim multiplicity of a two-dimensional module in terms of the Hilbert-
Samuel multiplicities of a certain Fitting ideal and ideals linked to it, see Theorem 2.4.
We also prove expressions for the Buchsbaum-Rim multiplicity that involve Bourbaki
ideals associated to the module, see Theorems 3.1, 3.3, and Corollary 3.4. The last
corollary contains the work of [11] as a special case.
The paper is organized in the following way: Section 1 introduces the notion of

the Buchsbaum-Rim multiplicity and its basic properties. We also include some
de�nitions and theorems that will be used in the later sections. In Section 2, we
state and prove the main theorem that relates the colength and the Hilbert-Samuel
multiplicity of m-primary ideals in regular local rings of dimension two. In Section 3,
we discuss several multiplicity formulas that express the Buchsbaum-Rim multiplicity
of a module in terms of the Hilbert-Samuel multiplicity of m-primary ideals related to
the module. In Section 4 we compare the multiplicity formulas obtained in Section 3
to the results of Jones [11], who provides a method for computing the Buchsbaum-Rim
multiplicity of modules of a special type.

1. Introduction to the Buchsbaum-Rim Multiplicity

In 1964, Buchsbaum and Rim [6] introduced and studied the multiplicity that
bears their names. It was further studied by Ga�ney, Kirby, Rees and many oth-
ers, including Kleiman and Thorup who investigated the geometric theory of the
Buchsbaum-Rim multiplicity in [14]. In this paper, we study the connection between
the Buchsbaum-Rim multiplicity and the Hilbert-Samuel multiplicity.
Throughout the paper, we assume that R is a Noetherian local ring of dimension d

with maximal ideal m. Let a be an m-primary ideal of R. There exists a polynomial
Pa(n) of degree d such that Pa(n) = `(R=an) for large n 2 N . This polynomial is

called the Hilbert-Samuel polynomial and the coeÆcient of nd

d!
is the Hilbert-Samuel

multiplicity e(a).
The Buchsbaum-Rim multiplicity can be viewed as a generalization of the Hilbert-

Samuel multiplicity. For a submodule M of �nite colength in a free R-module F of
rank r, Buchsbaum and Rim [6, 3.1] proved that there exists a polynomial �(n) such
that for all large n 2 N ,

�(n) = `(Sn(F )=Rn(M)) ;

where S(F ) = �n�0Sn(F ) is the symmetric algebra of F and R(M) = �n�0Rn(M) is
the image of the natural map S(M)! S(F ). Notice that R(M) is the R-subalgebra
of S(F ) generated by M . According to [6, 3.4], the polynomial �(n) has degree

d + r � 1 unless M = F . The coeÆcient of nd+r�1

(d+r�1)!
in this polynomial is de�ned to

be the Buchsbaum-Rim multiplicity br(M). It is a positive integer whenever M 6= F
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and only depends on F=M [6, 3.3]. Notice that if r = 1 and M 6= F , then M is an
m-primary ideal of R, �(n) = PM(n) and br(M) = e(M).
If depthR � 2, then any inclusion M � F with `(F=M) < 1 can be identi-

�ed with the natural embedding of M into its double dual M��. Indeed, one has
ExtiR(F=M;R) = 0 for i � 1, therefore M � F induces the identi�cation F � = M�

and then M�� = F �� = F . Hence in this case br(M) is independent of the embedding
of M into a free module. Moreover, if R is a two-dimensional regular local ring, one
can de�ne the Buchsbaum-Rim multiplicity of any �nitely generated R-module M :
simply consider the natural map from M to M�� and replace M by its image. The
cokernel of this map has �nite length, and the module M�� is free by the Auslander-
Buchsbaum Formula because it has depth at least 2.
Let F be a free R-module of rank r, letM be a submodule of F with `(F=M) <1,

and let U be a submodule of M . Again, we write R(U) and R(M) for the R-
subalgebras of S(F ) generated by U andM , respectively. We say that U is a reduction
ofM ifR(M) is integral over R(U) as rings. A minimal reduction ofM is a reduction
that is minimal with respect to inclusion. A free module M = F has no proper
reduction. On the other hand, when M 6= F and the residue �eld of R is in�nite,
then a reduction U of M is minimal if and only if its minimal number of generators
is r + d� 1 (cf. [6, 3.5], [18, 2.1 and 2.2], [7, page 707]).
After �xing a basis for F , the submoduleM of F is associated to a matrix, denoted

by fM , whose columns are a �nite generating set of M . Recall that the zeroth Fitting

ideal Fitt0(F=M) is the ideal generated by the r by r minors of fM . This ideal only
depends on F=M . More generally, if N is an R-module presented by a matrix with
r rows, then the ith Fitting ideal Fitti(N) of N is the ideal generated by all r � i by
r � i minors of this matrix.
We recall a theorem by Rees relating reductions of ideals and modules:

Theorem 1.1. (Rees [18, 1.2]) The submodule U of M is a reduction of M if and

only if the subideal Fitt0(F=U) is a reduction of Fitt0(F=M).

Reductions of modules in turn are closely related to Buchsbaum-Rim multiplicities.
If U is a reduction of M then br(U) = br(M) [14, 6.3(i)], and the converse holds in
case R is universally catenary and equidimensional with d > 0 (cf. [13, 4.11], [14,
6.3(ii)], [12, 2.2], [19, 5.5]). Furthermore one has:

Theorem 1.2. (Buchsbaum-Rim [6, 4.5(2)], Ang�eniol-Giusti [5, 2.8 and 2.10]) As-
sume that R is a Cohen-Macaulay local ring with in�nite residue �eld. If U is a

minimal reduction of M , then

br(M) = br(U) = `(F=U) = `(R=Fitt0(F=U)):

We say that an R-ideal I is a Bourbaki ideal of an R-module N , if I �= N=G for
some free submodule G of N . Now let R be a Cohen-Macaulay local ring of dimension
d � 2 with in�nite residue �eld and let M be a submodule of �nite colength in a free
R-module F of rank r. For such M � F , there exist ideals J � I of height � 2 such
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that F=M is isomorphic to I=J . In fact one can take I �= F=G with G � M a free
submodule of rank r�1 and J the image ofM in I (cf. [4, Chapter 7, no. 4, Theorem 6],
[20, 3.2(a),(c)]). Hence I and J are Bourbaki ideals of F and M , respectively. Notice
that if r � 2 and M is generated by 3 elements, then M = F or r = d = 2 [6,
3.5]. In this case I and J can be chosen to be the unit ideal or m-primary complete
intersections. SinceM is its own minimal reduction, we obtain the following equalities
by Theorem 1.2,

br(M) = `(F=M) = `(R=J)� `(R=I) = e(J)� e(I) :(3)

We see that the Buchsbaum-Rim multiplicity is connected to the Hilbert-Samuel mul-
tiplicity in this special case (cf. also [11]). We are interested in such a relationship
for arbitrary modules. By Theorem 1.2, br(M) is equal to the colength of the Fit-
ting ideal corresponding to a minimal reduction of M . Thus, the question can be
reduced to investigating the connection between the colength and the Hilbert-Samuel
multiplicity of ideals.

2. Colength and Hilbert-Samuel multiplicity

In a Cohen-Macaulay local ring R, two proper ideals a and a1 are linked with respect
to a complete intersection ideal c, denoted a � a1, if a1 = c : a and a = c : a1. If R
is Gorenstein local and a is unmixed (i.e., all associated prime ideals of a have the
same height), it suÆces to require a1 = c : a. We say an ideal a is in the linkage class

of a complete intersection (or a is licci for simplicity) if there are ideals a1; : : : ; an
with a � a1 � � � � � an and an a complete intersection. Examples of licci ideals are
m-primary ideals I of �nite projective dimension in a local ring (R;m), if either R is
Cohen-Macaulay of dimension 2 or else R is Gorenstein of dimension 3 and R=I is
Gorenstein (cf. [1], [2], [8], [3, 3.2(b)], [21, proof of Theorem]).

Theorem 2.1. (Huneke-Ulrich [10, proof of 2.5]) Let (R;m) be a Gorenstein local

ring with in�nite residue �eld and let a be a licci m-primary ideal linked to a complete

intersection in n steps. Then there exists a sequence of links a = a0 � a1 � � � � � an

such that an is a complete intersection, and ai and ai+1 are linked with respect to a

minimal reduction of ai.

We are now ready to prove our result that expresses the colength of licci ideals in
terms of Hilbert-Samuel multiplicities.

Theorem 2.2. In the setting of Theorem 2:1, we have

`(R=a) =
nX
i=0

(�1)i e(ai) :

Proof. We use induction on n. If n = 0 then a = a0 is a complete intersection. Hence
`(R=a) = e(a) and the assertion is clear. Assume n � 1 and let b0 be a minimal
reduction of a such that a1 = b0 : a. Notice that e(b0) = e(a). The quotient ring
R=b0 is Gorenstein since b0 is generated by a regular sequence. Moreover,

(b0 : a)=b0 �= HomR=b0(R=a; R=b0)
�= HomR=b0(R=a; !R=b0)

�= DR=b0(R=a) ;
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where !R=b0 is the canonical module of R=b0 and D denotes the dualizing functor.
Since the dualizing functor preserves length, we have

`((b0 : a)=b0) = `(R=a) :

Therefore

`(R=a) = `(R=b0)� `(R=(b0 : a))
= e(b0)� `(R=a1)
= e(a)� `(R=a1) :

Our assertion now follows from the induction hypothesis. �

Corollary 2.3. Let (R;m) be a regular local ring of dimension 2 with in�nite residue

�eld. If a is an integrally closed m-primary ideal, then

`(R=a) =
1X
i=1

(�1)i+1 e(Fitti(a)) :

Proof. Since a is licci we may choose a0; : : : ; an as in Theorem 2.1. We prove the
assertion by induction on n. Notice that a = Fitt1(a) by the Hilbert-Burch Theorem.
Now if n = 0 then a = a0 is a complete intersection generated by two elements.
Therefore `(R=a) = e(a) = e(Fitt1(a)), whereas Fitti(a) = R for every i � 2. Next
assume n � 1. According to Huneke and Swanson [9, 3.1 and 3.4], a1 is integrally
closed and Fitti(a1) = Fitti+1(a) for every i � 1. Now apply Theorem 2.2 and the
induction hypothesis. �

Theorem 2.4. Let R be a Gorenstein local ring of dimension 2 with in�nite residue

�eld, let M be a proper submodule of �nite colength in a free R-module F of rank r,
and let U be a minimal reduction of M .

(a) There exists a sequence of links Fitt0(F=U) = a0 � a1 � � � � � ar�1 such that

ar�1 is a complete intersection, and ai and ai+1 are linked with respect to a

minimal reduction of ai.

(b)

br(M) = e(Fitt0(F=M)) +
r�1X
i=1

(�1)i e(ai) :

Proof. To prove part (a), notice that a = Fitt0(F=U) has height 2 and is generated
by the maximal minors of an r by r + 1 matrix. Thus a can be linked to a complete
intersection in r � 1 steps a = a0 � a1 � � � � � ar�1 [3, 3.2 (b)]. By Theorem 2.1 we
may assume that ai and ai+1 are linked with respect to a minimal reduction of ai.
Part (b) follows from (a), Theorems 1.1, 1.2 and 2.2. �

A di�erent formula for br(M) can be obtained with the assumptions of Theo-
rem 2.4, if in addition R is regular and Fitt0(F=U) is integrally closed. In this case
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Theorem 1.2, Corollary 2.3 and the equalities Fitti+1(Fitt0(F=U)) = Fitti(F=U) im-
mediately show that

br(M) =
r�1X
i=0

(�1)i e(Fitti(F=U)) :

Remark 2.5. The ideals ai, 0 � i � r�1, of Theorem 2.4 can be obtained concretely
in the following way: After applying general row and column operations to the matrixfM presenting F=M , the ideal ai is generated by the maximal minors of the matrix

consisting of the last r � 2d i�1
2
e rows and the last r + 1 � 2d i

2
e columns of fM ([3,

3.2(b)]); here dke denotes the smallest integer greater than or equal to k.

The following remark provides another point of view on the formula of Theorem 2.4.

Remark 2.6. As in Remark 2.5 we apply general row and column operations to the

matrix fM , and then obtain an exact sequence

Rn fM
�! F �! C0 = F=M �! 0 :

The Auslander dual D(C0) of C0 is presented by fM�,

F � fM
�

�! Rn� �! D(C0) �! 0 :

Let C1 be the quotient of D(C0) modulo the submodule generated by the image of

the �rst n�r+1 basis elements of Rn�. The submatrix of fM� involving the last r�1
rows presents C1.
Continuing this way, we obtain a sequence of modules C0; : : : ; Cr�1, where Ci for

i � 2 is the quotient of D(Ci�1) modulo the submodule generated by the �rst two
generators. Notice that Ci is presented by the matrix consisting of the last r�2d i�1

2
e

rows and the last r + 1 � 2d i
2
e columns of fM if i � 2 is even and by the transpose

of this matrix if i � 1 is odd. Hence Fitt0(Ci) = ai as described in Remark 2.5 and
then Theorem 2.4(b) shows that

br(M) =
r�1X
i=0

(�1)i e(Fitt0(Ci)) :

3. Multiplicity Formulas

In this section, we discuss other connections between the Buchsbaum-Rim multi-
plicity of modules and the Hilbert-Samuel multiplicity of ideals. In fact, we relate the
Buchsbaum-Rim multiplicity ofM to the Hilbert-Samuel multiplicity of a suÆciently
general Bourbaki ideal of F with respect to M , see Theorem 3.1. However, if there
is a need to �x a speci�c Bourbaki ideal I of F , the result in Theorem 3.1 does not
apply anymore. Instead Theorem 3.3 takes care of these cases.
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Theorem 3.1. Let (R;m) be a Gorenstein local ring of dimension 2 with in�nite

residue �eld, let M be a proper submodule of �nite colength in a free R-module F of

rank r, let U be a minimal reduction of M , and let ai be ideals as in Theorem 2:4(a).
Then there exists an m-primary Bourbaki ideal I of F and a subideal J � I, such
that F=M �= I=J and

br(M) = e(J)� e(I) + e(a2) + � � � + (�1)r�1 e(ar�1) :

In particular, if rankM = 2, then there exist m-primary ideals J � I such that

F=M �= I=J and

br(M) = e(J)� e(I) :

Proof. We may assume r � 2. Let b0 be a minimal reduction of a0 = Fitt0(F=U)
de�ning the link a0 � a1. We can �nd generators u1; : : : ; ur+1 of U in F so that

a0 and a1 are the ideals of maximal minors of the matrices eU = (u1j � � � jur+1) andeV = (u1j � � � jur�1), and b0 is generated by the determinants of (u1j � � � jur�1jur) and
(u1j � � � jur�1jur+1).

Let G be the submodule of U generated by u1; : : : ; ur�1. As a1 = Ir�1(eV ) has
height 2, it follows that G is free and a1

�= F=G is an m-primary Bourbaki ideal of
F . Thus we may take I to be a1.
Now let J be the image of M in I. Clearly J �= M=G and hence I=J �= F=M .

Notice that b0 is the image of U in I. As U is a reduction of M , it follows that
b0 is a reduction of J . Since by de�nition b0 is also a reduction of a0, we deduce
e(J) = e(b0) = e(a0) = e(Fitt0(F=M)). Now Theorem 2.4(b) gives

br(M) = e(J)� e(I) + e(a2) + � � � + (�1)r�1 e(ar�1) : �

We would like to point out that the result of Theorem 3.1 does not hold for an
arbitrary pair of Bourbaki ideals J � I of M and F satisfying F=M �= I=J . What
simpli�ed the proof of Theorem 3.1 is the fact that we were able to assume that the
free module G is contained in the reduction U . This is no longer true in the general
case that we are going to treat next. Theorem 3.3 provides an expression for br(M)
in terms of e(I) and e(J) if I and J are already speci�ed. This is motivated by the
work in Jones [11] where it is necessary to choose I and J to be monomial ideals
in order to extend the graphical computation of the Hilbert-Samuel multiplicity of
monomial ideals to the Buchsbaum-Rim multiplicity of modules. Jones also provides
a class of examples where the formula of Theorem 3.1 does not hold for arbitrary
Bourbaki ideals J � I ([11, Theorem 7]).

Assumption 3.2. Let (R;m) be a Gorenstein local ring of dimension 2 with in�nite
residue �eld, let M be a submodule of �nite colength in a free R-module F of rank
r, and assume M has no free direct summand. Write F=M �= I=J , where J � I are
m-primary ideals, I has �nite projective dimension, and �(I) � r. Since M � mF ,
we have �(I=J) = �(F=M) = �(F ) = r � �(I) and therefore J � mI. Thus the lift
F �! I of the above isomorphism is surjective by Nakayama's Lemma. It induces
an isomorphism I �= F=G, where G is a free submodule of F of rank r � 1. By
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restriction we obtain J �= M=G. In particular, I and J are Bourbaki ideals of F and
M , respectively.
Let s1; : : : ; sr�1 be generators of G and let zr; : : : ; z2r be generators of a minimal

reduction U of M . Thinking of si 2 F and zj 2 F as column vectors we form the
matrices

eL = (s1j � � � jsr�1jzrj � � � jz2r); eU = (zrj � � � jz2r); eN = (s1j � � � jsr�1jz2r�1jz2r) :

By performing row operations on eL and by adding suitable linear combinations of
columns of eL to later columns we may achieve these properties:

� s1; : : : ; sr�1 still generate G.
� zr; : : : ; z2r still generate a minimal reduction U of M .
� the images of z2r�1; z2r in M=G = J generate a minimal reduction J 0 of J .
� if for each i with 0 � i � r� 1, Ji denotes the ideal of maximal minors of the
matrix consisting of the last r�2d i�1

2
e rows and the last r+1�2d i

2
e columns

of eU , then Ji and Ji+1 are linked with respect to a minimal reduction of Ji for
0 � i � r � 2.

� if for each i with 0 � i � r� 1, J 0i denotes the ideal of maximal minors of the
matrix consisting of the last r�2d i�1

2
e rows and the last r+1�2d i

2
e columns

of eN , then J 0i and J
0
i+1 are linked with respect to a minimal reduction of J 0i for

0 � i � r � 2. Notice that Jr�1 = J 0r�1 and if r is odd then also Jr�2 = J 0r�2.

Finally, let I 0 be any minimal reduction of I, and Fitt0(I=I
0) = I0 � I1 � � � � � Ir�3

be a sequence of links as in Theorem 2.1.

Note that for the last two conditions in 3.2, one only has to check that the two
minors corresponding to the �rst two rows or columns in the matrix of Ji (or J

0
i)

generate a reduction of Ji (resp. J
0
i).

Theorem 3.3. With assumptions as in 3:2 one has

br(M) = e(J)� e(I) + (e(Fitt0(I=J)) + EU)� (e(Fitt0(I=J
0)) + EN )

+ (e(Fitt0(I=I
0)) + EI) ;

where EU =

2d r�3
2
eX

i=1

(�1)i e(Ji), EN =

2d r�3
2
eX

i=1

(�1)i e(J 0i), and EI =

r�3X
i=1

(�1)i e(Ii) :

Proof. As U is a reduction of M , Theorem 1.1 shows that Ir(eU) is a reduction of
Fitt0(F=M) = Fitt0(I=J). Therefore

e(Ir(eU)) = e(Fitt0(I=J)):

The module I=J 0 is presented by the matrix eN , hence in particular

Ir( eN) = Fitt0(I=J
0):
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Applying Theorem 2.2 to the ideals Ir(eU), Ir( eN) and Fitt0(I=I
0) we obtain

`(R=Ir(eU)) =
�

e(Fitt0(I=J)) +EU + (�1)r�1 e(Jr�1) if r is even
e(Fitt0(I=J)) +EU + (�1)r�2 e(Jr�2) + (�1)r�1 e(Jr�1) if r is odd

(4)

�`(R=Ir( eN )) =

�
� e(Fitt0(I=J

0))�EN � (�1)r�1 e(J 0r�1) if r is even
� e(Fitt0(I=J

0))�EN � (�1)r�2 e(J 0r�2)� (�1)r�1 e(J 0r�1) if r is odd

(5)

`(R=Fitt0(I=I
0)) = e(Fitt0(I=I

0)) +EI :(6)

Moreover by Theorem 1.2,

`(R=Ir( eN))� `(R=Fitt0(I=I
0)) = `(I=J 0)� `(I=I 0)

= (`(R=J 0)� `(R=I))� (`(R=I 0)� `(R=I))
= e(J 0)� e(I 0)
= e(J)� e(I) :

Thus we have

`(R=Ir( eN))� `(R=Fitt0(I=I
0)) = e(J)� e(I) :(7)

Theorem 1.2 also shows

br(M) = br(U) = `(R=Ir(eU)) :(8)

Now by adding equations (4), (5), (6), (7) and applying (8), we obtain the multiplicity
formula in Theorem 3.3. �

We state the rank two and rank three cases as a corollary. The multiplicity formulas
have a more simple form in these cases.

Corollary 3.4. We use the assumptions of 3:2.

(a) If r = 2 then

br(M) = e(J)� e(I) + e(Fitt0(I=J))� e(Fitt0(I=J
0)) :

(b) If r = 3 then

br(M) = e(J)� e(I) + e(Fitt0(I=J))� e(Fitt0(I=J
0)) + e(Fitt0(I=I

0)) :

Proof. These results follow immediately from Theorem 3.3. If r = 2, then the ideal I
is its own minimal reduction and e(Fitt0(I=I

0)) = 0. �

Remark 3.5. It should be pointed out that if a minimal reduction J 0 of J is suf-
�ciently general, then there exists a minimal reduction U of M such that Assump-
tion 3.2 is satis�ed. The following example shows that the formula of Corollary 3.4(a)
fails for a speci�c J 0, and therefore 3.2 does not hold for this J 0.
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Let R = k[x; y](x;y) be a localized polynomial ring over a �eld and M a submodule
of �nite colength in a free R-module F of rank 2 such that the presenting matrix of
F=M is �

�y14 x16 0 0 x5y4

x20 0 y10 x8y4 0

�
:

Then F=M �= I=J , where I = (x20; y14) and J = (x36; x25y4; x8y18; y24). Note that
J 0 = (x36 + y24; x25y4) is a minimal reduction of J . The value on the right-hand side
of the formula of Corollary 3.4(a) is

e(J)� e(I) + e(Fitt0(I=J))� e(Fitt0(I=J
0)) = 744� 280 + 546� 594 = 416 ;

while br(M) = 420 (see [15, page 50] for details).
This example also shows that e(Fitt0(I=J

0)) is not independent of the choice of a
minimal reduction J 0 of J .

4. A Graphical Interpretation of the Buchsbaum-Rim Multiplicity

In this section, we consider modules of rank two arising from monomial ideals. We
compare our formulas to the result of E. Jones [11, page 51], who gave a graphical
computation of the Buchsbaum-Rim multiplicity in this case.
We assume R = k[x; y](x;y) where k is a �eld, and let m denote the maximal ideal

of R. Let I and J be m-primary monomial ideals with J � mI, �(I) = 2 and
�(J) � 3. Let F be a free R-module of rank 2 and M a submodule of F such that
F=M �= I=J . Jones computes the Buchsbaum-Rim multiplicity of M and shows that
br(M) = e(J)�e(I) with a few exceptions. For this one may assume that k is in�nite.
We write I = (xs; yt) and may assume that J = (xs+i; xdyt+e; yt+j). The module

M can be taken to be the image in F = R2 of the matrix

fM =

�
�yt xi 0 0
xs 0 xdye yj

�
:

In [11] the modules M are classi�ed into seven cases: In Figure c, the point T (s; t)
corresponds to the monomial xsyt and similarly for other points including those in
Figures a's and b's.

T(s,t)

T(s,t)

Q(0, t+j)

P(s+i, 0)

Figure c

If T is above the line segment PQ, then there are four cases determined by the relative
positions of the point B(d; t+ e) and TQ; PQ;AQ as shown in Figures a1{a4, where
AQ is parallel to PT :
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Q

Figure a1

   

B

A
T

P

Q

Figure a2

   

B

A
T

P

Q

Figure a3

   

B

A
T

P

Q

Figure a4

If T in Figure c is below PQ, there are three cases determined by the relative positions
of B and PQ, PT as shown in Figures b1{b3:

B

T

Q

P

Figure b1

B

T

P

Q

Figure b2

B
T

P

Q

Figure b3

For the cases in Figures a1 and b1, let U be the submodule of F = R2 generated
by the columns of the matrix

eU =

�
�yt xi 0
xs 0 yj

�
:

Then U is a minimal reduction of the module M . Notice that the �rst column in eU
is the syzygy of the ideal I and the image of U in J is a minimal reduction J 0 of J .
Therefore in 3.2, we may take eN to be eU and eL to be eU with the �rst column repeated.
By performing row operations on eU and by adding suitable linear combinations of
columns of eU to later columns we have all the conditions required for Corollary 3.4.
Since J 0 is the image of U in J and U is a reduction of M , Theorem 1.1 shows that
Fitt0(I=J

0) is a reduction of Fitt0(I=J). Hence by Corollary 3.4(a),

br(M) = e(J)� e(I) :

This was also shown in [11].
In the cases of Figures a4, b2 and b3, let U be the submodule of F generated by

the columns of the matrix

eU =

�
�yt xi 0
xs yj xdye

�
:

By the same argument, br(M) = e(J)� e(I) :
For the remaining cases, the modules of Figures a2 and a3, we use the computation

of the Buchsbaum-Rim multiplicity given in [11]. There it is shown that M is a
reduction of the module generated by M itself and the vector (0; xs) in F , which is
a direct sum of two monomial ideals. This allows for a computation of br(M). Thus
in the case of Figure a2,

br(M) = e(J)� e(I)� 2 � dark area ;(9)
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where the dark area is the area of the triangle TBQ indicated in the following Fig-
ure a20. On the other hand, the modules of Figure a3 have Buchsbaum-Rim multi-
plicity

br(M) = e(J)� e(I)� 2 � dark area + 2 � light area ;(10)

where the dark area is the area of the triangle TBQ and the light area is the area of
the triangle PBQ as indicated in Figure a30.

  B

Q

T

P

Figure a20

Q

B
T

P

 

Figure a30

By Corollary 3.4(a), the extra terms subtracted in (9) and (10) are exactly

e(Fitt0(I=J
0))� e(Fitt0(I=J))

for a suÆciently general minimal reduction J 0 of J . We remark that in the �rst
�ve cases, since Fitt0(I=J) has a simple form, one can �nd a minimal reduction U
of M that is close to being monomial. For the cases a2 and a3, this is much more
complicated.
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