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ANNIHILATORS OF GRADED COMPONENTS OF THE
CANONICAL MODULE,

AND THE CORE OF STANDARD GRADED ALGEBRAS

LOUIZA FOULI, CLAUDIA POLINI, AND BERND ULRICH

Abstract. We relate the annihilators of graded components of the canonical
module of a graded Cohen-Macaulay ring to colon ideals of powers of the

homogeneous maximal ideal. In particular, we connect them to the core of the

maximal ideal. An application of our results characterizes Cayley-Bacharach
sets of points in terms of the structure of the core of the maximal ideal of

their homogeneous coordinate ring. In particular, we show that a scheme is

Cayley-Bacharach if and only if the core is a power of the maximal ideal.

1. Introduction

This paper started as an attempt to understand the core of powers of the ho-
mogeneous maximal ideal of a standard graded algebra. The core of an arbitrary
ideal I in a Noetherian ring is defined as the intersection of all reductions of I,
equivalently, of all ideals over which I is integral. The definition simplifies when I
is a power mn of the homogeneous maximal ideal m of a standard graded Cohen-
Macaulay algebra R of positive dimension over an infinite field k. In this case
core(mn) is the intersection of all ideals generated by systems of parameters con-
sisting of forms of degree n; in fact, it suffices to intersect finitely many parameter
ideals generated by general forms of degree n [3, 15]. One has explicit formulas
in this case that express the core of mn as a colon ideal and that are valid in any
characteristic. If char k = 0 or if R is geometrically reduced, then

core(mn) = Jj+(n−1)d+1 : mj ,

where J is an ideal generated by a linear system of parameters of R, j is any integer
≥ a + d, and a, d denote the a-invariant and the dimension of R, respectively (see
Theorem 4.2 and, for prior results, [11, 7]). Thus the question arises of what
more can be said about the colon ideals Jj+(n−1)d+1 : mj and, most notably, when
the obvious inclusion ma+nd+1 ⊂ Jj+(n−1)d+1 : mj is an equality. We were also
wondering in what sense the shape of the core of m or its powers reflects the
geometry of Proj(R) as a subscheme of projective space. As it turns out, the
crucial device in approaching these questions is the graded canonical module ω
of R and the faithfulness of the submodules generated by its graded components.
Thus the main goal of this paper is to study, quite generally, the interplay between
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annihilators of graded components of ω on the one hand and colon ideals of powers
of m on the other hand.

More generally, let R be a standard graded Cohen-Macaulay algebra over a field
k, of dimension d > 0, and write m for its homogeneous maximal ideal and ω = ωR

for its graded canonical module. By a = a(R) we denote the a-invariant of R, which
is the negative of the initial degree of ω. Recall that if J is any ideal generated by
a linear system of parameters then ‘J is a reduction of m with reduction number
rJ(m) = a + d’, which simply means that mi = J i−jmj for every i ≥ j ≥ a + d,
but for no smaller j. It is easy to see that J i : mj = mi−j+a+d for every i and
j ≥ a + d, provided R is Gorenstein or, more generally, level, which means that
ω is generated by homogeneous elements of the same degree, ω = [ω]−aR. Under
these assumptions, the R-submodules [ω]tR of ω generated by the homogeneous
elements of a fixed degree t are all faithful as long as t ≥ −a; this is obvious since
ω = [ω]−aR is faithful and there exists a form of positive degree regular on ω. The
same holds if R is a domain because a suitable shift of ω embeds into R. Without
the additional assumptions on the ring neither the statement about the colon ideals
nor the one about the graded components of the canonical module are true, but
there is a close relationship between the two conditions. In fact in one of our main
results we express, more generally, the annihilators of graded components of ω in
terms of colon ideals of powers of m,

annR([ω]≤tR) = annR([ω]tR) = ⊕i[J i+j−d+t+1 : mj ]i

for every t and j ≥ a + d (see Theorem 2.7). Conversely, this allows one to write
the colon ideals J i : mj for any i and j ≥ a + d in the form

J i : mj = mi−j+a+d + N ,

where mi−j+a+d is the ‘expected’ part and N is an ideal of height zero that is
generated in degrees ≤ i− j + a + d− 1 and can be described as

N = (
⊕

l≤i−j+a+d−1

[annR([ω]i−j−l+d−1R)]l)R

(see Corollaries 2.14 and 2.15). To prove these results it is useful to replace the
colon ideals J i :R mj in R by the corresponding colon ideals J iω :ω mj in ω, which
we then relate to truncations [ω]≥i−j+d of ω and to graded components of the
canonical module Ω of the extended Rees ring of m. This is done in one of our main
technical results. There we also use a bound on the regularity of Ω to show that
J iω :ω mj = J i−j(Jjω :ω mj) for every integer i with i ≥ j (see Theorem 2.3 and,
for related results, [10, 14, 11, 4]).

Our results imply, for instance, that [ω]−aR is faithful, equivalently, [ω]tR is
faithful for every t ≥ −a, if and only if J i : mj = mi−j+a+d for every i and j ≥ a+d,
if and only if J i : ma+d = mi for some i � 0 (see Corollary 2.10). The question
arises how large the integer i has to be chosen in the last statement. Conceivably
i = a + d + 1 always works at least when k is perfect and R is reduced, and we
can show this if d = 1 or if R is an almost complete intersection of embedding
codimension 2, for instance (see Corollaries 2.11 and 3.11). In general we can prove
that i = α + d + 1 suffices, where α = α(R) is the smallest possible a-invariant of a
standard graded Gorenstein ring of dimension d mapping onto R so that the kernel
vanishes locally at its minimal primes (see Corollary 3.8). We deduce this result
from an estimate on the initial degree of certain colon ideals (see Proposition 3.5),
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which in turn follows from a general bound on the generic generator degree of the
canonical module (see Proposition 3.1). The stronger result in the case of almost
complete intersections of embedding codimension 2 is proved using an estimate for
the generic generator degree of the first syzygy module of homogeneous ideals (see
Propositions 3.2).

Returning to the core and the general assumptions used in this context, we
conclude that [ω]−aR is faithful if and only if core(mn) = mnd+a+1 for every n ≥ 1,
if and only if core(mn) is generated in one degree for some n � 0 (see Theorem 4.4).
Furthermore, core(mn) can be replaced by core(m) in the last statement, provided
d = 1 or R is a reduced almost complete intersection of embedding codimension
2, for instance (see Corollary 4.5). This leads, rather directly, to a geometric
interpretation of the core when R is the homogeneous coordinate ring of a finite
set X of reduced points in projective space. Most notably, core(m) = ma+2 if and
only if X has the Cayley-Bacharach property (see Corollary 5.5). Recall that X
is Cayley-Bacharach if the Hilbert function of X \ {P} does not depend on the
point P ∈ X. Since this property is equivalent to the faithfulness of [ω]−aR (see
[8]), the above characterization in terms of the core then follows as an immediate
consequence of Corollary 4.5. We also show that if a large enough subset of X lies
on a hypersurface of low degree then the initial degree of core(m) is forced to be
unexpectedly small (see Corollary 5.4 and Proposition 6.1), underlining once more
the fact that the shape of the core reflects uniformity properties of the set of points.

2. What annihilates the components of the canonical module?

We begin by fixing notation and recalling some general facts. Let k be a field and
R a standard graded k-algebra of dimension d with homogeneous maximal ideal m
and graded canonical module ω. Recall that

a(R) = −min { i | [ω]i 6= 0}
is the a-invariant of R. We also consider the integers

b(R) = −min{i | [ω]iR is R-faithful} and

c(R) = −max{i | [k ⊗R ω]i 6= 0 }.
By local duality, the a-invariant is the top degree of the local cohomology module
Hd

m(R). Also notice that c(R) is the negative of the largest generator degree of ω.
Since ω is R-faithful we have a(R) ≥ b(R) ≥ c(R).

Now assume that R is Cohen-Macaulay. Let S = k[x1, . . . , xn] be a polynomial
ring mapping homogeneously onto R and write g = codimS R = projdimS R. The
integers a(R) and c(R) can be expressed in terms of the minimal homogeneous free
S-resolution of R by means of the formulas

a(R) = max { i | [TorS
g (k,R)]i 6= 0 } − n

c(R) = min { i | [TorS
g (k,R)]i 6= 0 } − n .

Notice that c(R) ≥ −d; in particular, ω is generated in degrees at most d and
a(R) + d ≥ 0.

We also consider the extended Rees algebra R[mt, t−1], which is a bigraded sub-
ring of R[t, t−1]. There are natural maps of bigraded modules

ωR[mt,t−1] ↪→ (ωR[mt,t−1])t−1 ∼= ωR[mt,t−1]t−1 = ωR[t,t−1]
∼= ω ⊗R R[t, t−1] = ⊕ω ti.
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Identifying ωR[mt,t−1] with its image in ⊕ω ti we obtain a bigraded canonical module

Ω = ⊕Ωit
i ⊂ ⊕ω ti,

so that Ωi = ω for i � 0. One has homogenous isomorphisms R[mt, t−1]/(t−1) ∼=
grm(R) ∼= R, thinking of the last R as being diagonally bigraded. They induce
identifications

(2.1) Ω/t−1Ω ∼= ω(1) and Ωi/Ωi+1
∼= [ω]i+1.

We will use the convention that the power of any element or ideal with non-
positive exponent is one or the unit ideal, respectively.

Assumptions 2.1. We assume k is a field and R is a standard graded Cohen-
Macaulay k-algebra of dimension d ≥ 1 with homogeneous maximal ideal m and
graded canonical module ω. We write a = a(R), b = b(R), c = c(R), and let
Ω = ωR[mt,t−1] be as above, with Ωi = ω for i � 0. Let y1, . . . , yd be a system of
parameters in R consisting of linear forms. We write J for the ideal generated by
y1, . . . , yd and J [i] for the ideal generated by the powers yi

1, . . . , y
i
d, where i is any

integer.

Elements y1, . . . , yd as in Assumptions 2.1 always exist if k is infinite. The ideal
J they generate is a minimal reduction of m with reduction number rJ(m) = a+ d,
as can be seen by reducing modulo J . Therefore

J i : mj = J [i] : mj+(i−1)(d−1)

for every i and j ≥ a + d; in fact, one can show as in [15, proof of 2.2] that if I
is any m-primary ideal and β1, . . . , βd are elements of I with Ij+1 = (β1, . . . , βd)Ij

for some integer j, then

(2.2) (β1, . . . , βd)i : Ij = (βi
1, . . . , β

i
d) : Ij+(i−1)(d−1)

for every i.

In this section we prove our results about the relationship between annihilators
of graded components of ω on the one hand and the colon ideals J i : mj on the
other hand. Here it suffices to consider j = a + d, as the next remark shows.

Remark 2.2. With assumptions as in 2.1 one has

J i : mj = J i−j+a+d : ma+d

for every i and j ≥ a + d.

Proof. Since j ≥ a + d = rJ(m), we obtain

J i : mj = J i : Jj−a−dma+d = (J i : Jj−a−d) : ma+d = J i−j+a+d : ma+d.

The last equality holds because the associated graded ring of J has positive depth.

We first study the colons J iω :ω mj in ω, which exhibit a more regular behavior
than the corresponding ideals J i :R mj .

Theorem 2.3. In addition to the assumptions of 2.1 let i and j ≥ a+d be integers,
and set s = j + (i− 1)(d− 1). One has

(a) J iω :ω mj = J [i]ω :ω ms = [ω]≥i−j+d = Ωi−j+d−1
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(b) J iω :ω mj = J i−j(Jjω :ω mj) whenever i ≥ j.

Proof. To prove part (a) we first notice that

Ωi−j+d−1 = J iω :ω mj

according to [4, 3.7]. Next,

J iω :ω mj = (J [i] :R J (i−1)(d−1))ω :ω mj by (2.2)

⊂ (J [i]ω :ω J (i−1)(d−1)) :ω mj

= J [i]ω :ω (J (i−1)(d−1)mj)

= J [i]ω :ω ms because j ≥ a + d = rJ(m) .

To show that J [i]ω :ω ms = [ω]≥i−j+d we may reduce modulo J [i]ω ; indeed,
J [i]ω ⊂ [ω]≥i−j+d because ω is concentrated in degrees ≥ −a and i− a ≥ i− j + d.
However, (J [i]ω :ω ms)/J [i]ω ∼= 0 :ω ms, where m is the homogeneous maximal ideal
of R = R/J [i] and ω = ω/J [i]ω ∼= ωR (−id). As ωR is an Artinian module with socle
concentrated in degree 0, the module ω is Artinian with socle concentrated in degree
id. Thus 0 :ω ms = [ω]≥id+1−s = [ω]≥i−j+d. It follows that J [i]ω :ω ms = [ω]≥i−j+d.

So far we have shown the inclusions

Ωi−j+d−1 = J iω :ω mj ⊂ J [i]ω :ω ms = [ω]≥i−j+d .

Now Ω = ⊕Ωlt
l ⊂ ⊕[ω]≥l+1t

l = Ω′ are bigraded R[mt, t−1]-modules that are finitely
generated because [ω]≥l+1 = m[ω]≥l for l � 0. By (2.1) this inclusion induces an
isomorphism Ω/t−1Ω ∼= Ω′/t−1Ω′, which shows that Ω′ = Ω + t−1Ω′. Therefore
Ω′ = Ω by the graded Nakayama lemma.

We now prove part (b). In the light of (a) we need to show that for every l ≥ d one
has [ω]≥l+1 = J [ω]≥l, or equivalently, [ω]≥l+1 ⊂ Jω. However, ω/Jω ∼= ωR/J(−d)
is concentrated in degrees ≤ d, which gives [ω]≥l+1 ⊂ Jω.

The next result addresses the comparison between the colons J iω :ω mj and
J i :R mj .

Corollary 2.4. In addition to the assumptions of 2.1 let i and j ≥ a+d be integers.
If

J iω :ω mj = (J i :R mj)ω for some i ≥ j ,

then for every l ≥ i,
(a) J lω :ω mj = (J l :R mj)ω
(b) J l :R mj is integral over J l−i(J i :R mj); in particular, if R is reduced then

the initial degree of the former ideal satisfies

indeg(J l :R mj) = indeg(J i :R mj) + l − i .

Proof. One has

(J l :R mj)ω ⊂ J lω :ω mj

= J l−i(J iω :ω mj) by Theorem 2.3(b)

= J l−i(J i :R mj) ω by our assumption

⊂ (J l :R mj) ω .
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This immediately gives J lω :ω mj = (J l :R mj)ω, proving assertion (a). Further-
more, (J l :R mj) ω = J l−i(J i :R mj) ω, which implies (b) since ω is a faithful
R-module.

The next proposition gives a characterization for when the equality assumed in
the previous corollary obtains.

Proposition 2.5. In addition to the assumptions of 2.1 let i and j ≥ a + d be
integers. Set s = j + (i − 1)(d − 1) and let denote images in R = R/J [i]. One
has

J iω :ω mj = (J i :R mj) ω

if and only if
ms = 0 :R (0 :R ms) .

Proof. First notice that R is an Artinian ring and that ω = ω/J [i]ω ∼= ωR (−id).
From Theorem 2.3(a) one has J iω :ω mj = J [i]ω :ω ms. Hence it follows that
(J iω :ω mj)/J [i]ω ∼= 0 :ω ms. Now the latter module is naturally isomorphic to
(0 :ωR

ms)(−id) ∼= ωR/ms (−id). Thus we have shown that

(J iω :ω mj)/J [i]ω ∼= ωR/ms (−id).

On the other hand, from (2.2) one knows that J i : mj = J [i] : ms. Therefore
(J i :R mj) ω/J [i]ω = (0 :R ms) ω, which is isomorphic to (0 :R ms) ωR (−id). The
last module can be identified with ωR/0:(0:ms)(−id), as shown in [16, 2.3(b)]. Hence
we have proved that

(J i :R mj) ω/J [i]ω ∼= ωR/0:(0:ms)(−id) .

We conclude that the obvious containment (J i :R mj) ω ⊂ J iω :ω mj is an
equality if and only if the inclusion ms ⊂ 0 : (0 : ms) is.

If the equalities of Proposition 2.5 hold for all i, then the canonical module of
the extended Rees ring of m has an easy description, namely

Ω = (R[Jt, t−1] :R[t,t−1] mj)td−1−jω

(see Theorem 2.3(a) or [4, 3.7]). These equalities obtain, quite generally, when i ≥ j
and d = 1:

Proposition 2.6. In addition to the assumptions of 2.1 suppose that d = 1 and R
is reduced. For every i ≥ j and j ≥ a + 1 one has

(J i :R mj) ω = J iω :ω mj = [ω]≥i−j+1.

Proof. The second equality follows from Theorem 2.3(a). We prove the first
equality. It suffices to consider the case i = j = a + 1 according to Remark 2.2 and
Corollary 2.4(a), or simply because J is generated by a single regular element. In
light of Proposition 2.5 we need to show that

ma+1 = ya+1R :R (ya+1R :R ma+1)

with y = y1.
In the total ring of quotients K of R we consider the integral closure S of R.

Our assumptions, most notably the reducedness of R, imply that R ⊂ S is a
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homogeneous inclusion of non-negatively graded Noetherian rings and moreover
R :K (R :K S) = S. Thus we obtain

ma+1 ⊂ ya+1R :R (ya+1R :R ma+1)
⊂ ya+1R :R (ya+1R :R ma+1S)
= ya+1R :R (ya+1R :R ya+1S) since yR is a reduction of m

= ya+1R :R (R :R S) since y is R-regular
= [ya+1R :K (R :R S)] ∩R

= [ya+1(R :K (R :K S))] ∩R

= ya+1S ∩R since R :K (R :K S) = S

⊂ ma+1 since S is non-negatively graded.

Next we are going to use the above results to say something about the annihila-
tors of the graded components of ω.

Theorem 2.7. With assumptions as in 2.1 one has

annR([ω]≤tR) = annR([ω]tR) = ⊕i[J i+j−d+t+1 : mj ]i

for every t and j ≥ a + d.

Proof. The first equality is obvious because R contains a linear form, namely y1,
that is regular on ω.

Theorem 2.3(a) shows that

(J i+j−d+t+1 : mj) ω ⊂ [ω]≥i+t+1 ,

which gives [J i+j−d+t+1 : mj ]i[ω]≤t = 0. This proves the inclusion

⊕i[J i+j−d+t+1 : mj ]i ⊂ annR([ω]≤tR) .

To show the containment

annR([ω]≤tR) ⊂ ⊕i[J i+j−d+t+1 : mj ]i ,

we choose an element f ∈ [annR([ω]≤tR)]i. We need to prove that

f ∈ J i+j−d+t+1 : mj = J [i+j−d+t+1] : mj+(i+j−d+t)(d−1) ,

where the last equality holds by (2.2). Write s = j + (i + j − d + t)(d− 1) and let
denote images in the Artinian ring R = R/J [i+j−d+t+1]. The asserted inclusion

fms ⊂ J [i+j−d+t+1] is equivalent to f ms = 0, which in turn means that f msωR = 0
as ωR is faithful over R. Since ωR = R ⊗R ω ((i + j − d + t + 1)d) and f [ω]≤t = 0
it follows that f [ωR]≤t−(i+j−d+t+1)d = 0. Therefore f [ωR]≤−s−i = 0, and as f has
degree i we conclude that

f msωR ⊂ [ωR]≥1 = 0 .

Again, one has a better result in dimension one.
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Corollary 2.8. In addition to the assumptions of 2.1 suppose that d = 1 and write
y = y1. One has

annR([ω]≤tR) = annR([ω]tR) = ⊕i≤−t−1[J i+j+t : mj ]i
⊕

[Jj : mj ]−tk[y]

for every t and j ≥ a + 1.

Proof. We apply Theorem 2.7 using the fact that J i+j+t : mj = yi+t(Jj : mj) for
every i ≥ −t.

The above corollary shows in particular that if d = 1 then the graded R-module
annR([ω]≤tR) = annR([ω]tR) has Castelnuovo-Mumford regularity at most −t; see
also Proposition 3.9. For the definition and basic properties of the Castelnuovo-
Mumford regularity we refer to [1, p.168].

We are now ready to answer one the main questions raised in the introduction.
With the next three corollaries we characterize the faithfulness of submodules gen-
erated by graded components of ω, in terms of certain colon ideals of powers of m
having an ‘expected form’. In light of Remark 2.2 we may restrict ourselves to the
case j = a + d.

Corollary 2.9. With assumptions as in 2.1 the following are equivalent for an
integer t :

(a) [ω]tR is faithful, i.e., t ≥ −b
(b) J i+a+t : ma+d ⊂ mi for every i
(c) J i+a+t : ma+d ⊂ mi for some i � 0.

If R is reduced and J i+a+tω :ω ma+d = (J i+a+t :R ma+d) ω for some i ≥ d − t,
then the above conditions are equivalent to :

(d) J i+a+t : ma+d ⊂ mi.

Proof. Recall that R contains a linear form that is a regular element. Thus, if
a homogeneous ideal vanishes in a certain degree it also vanishes in every smaller
degree. Now Theorem 2.7 gives the equivalence of (a) and (b). The same theorem
shows that if (c) holds then [annR([ω]tR)]i−1 = 0 for some i− 1 � 0, proving (a).
Finally, (d) implies (c) according to Corollary 2.4(b).

Corollary 2.10. With assumptions as in 2.1 the following are equivalent :
(a) [ω]−aR is faithful
(b) J i : ma+d = mi for every i
(c) J i : ma+d = mi for some i � 0.

If R is reduced and J iω :ω ma+d = (J i :R ma+d)ω for some i ≥ a + d, then the
above conditions are equivalent to :

(d) J i : ma+d = mi.

Proof. Notice that mi ⊂ J i : ma+d for every i because a + d = rJ(m). Now the
assertions follow from Corollary 2.9.

Corollary 2.11. In addition to the assumptions of 2.1 suppose that d = 1. The
following are equivalent :

(a) [ω]−aR is faithful
(b) J i : ma+1 = mi for every i
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(c) J i : ma+1 = mi for some i ≥ a + 1.

Proof. In light of Corollary 2.10 it suffices to prove that if J i : ma+1 = mi for
some i ≥ a + 1, then J l : ma+1 = ml for every l ≥ i. Indeed, since J is generated
by a single regular element and i ≥ a + 1 = rJ(m), it follows that

J l : ma+1 = J l−i(J i : ma+1) = J l−imi = ml.

The faithfulness of [ω]−aR, together with the additional condition J iω :ω ma+d =
(J i :R ma+d) ω in Corollary 2.10, means that ω and [ω]−aR coincide from degree
i− a on:

Remark 2.12. In addition to the assumptions of 2.1 let i ≥ a + d be an integer.
Then the equality [ω]≥i−a = mi[ω]−a holds if and only if J iω :ω ma+d = (J i :R
ma+d) ω and [ω]−aR is faithful. The forward direction follows because [ω]≥i−a =
J iω :ω ma+d according to Theorem 2.3(a), mi ⊂ J i : ma+d, and [ω]≥i−a is faithful.
For the converse notice that Corollary 2.10 gives J i : ma+d = mi, hence [ω]≥i−a =
J iω :ω ma+d = miω. Therefore [ω]≥i−a = mi[ω]−a + [ω]≥i+1−a. However, ω is
generated in degrees at most d ≤ i− a, hence [ω]≥i−a is generated in degree i− a.
It follows that [ω]≥i−a = mi[ω]−a.

Unfortunately, the faithfulness of [ω]−aR alone is not sufficient to guarantee the
equality J iω :ω ma+d = (J i :R ma+d) ω, as the next example shows.

Example 2.13. In addition to the assumptions of 2.1 suppose that R is a domain
of type 2 which is not level and which is not Gorenstein locally on the punctured
spectrum. Clearly [ω]−aR is faithful since R is a domain. However, J iω :ω ma+d 6=
(J i :R ma+d) ω for every i ≥ a + d, because otherwise Remark 2.12 implies that ω
and the cyclic module [ω]−aR would coincide locally on the punctured spectrum.

Conversely, Theorem 2.7 can be used to obtain information about the colon
ideals J i : mj . This is done in the remaining corollaries of this section.

Corollary 2.14. With assumptions as in 2.1 one has

J i : mj = mi−j+a+d
⊕ i−j+a+d−1⊕

l=i−j+b+d

[annR([ω]i−j−l+d−1R)]l

for every i and j ≥ a + d.

Proof. Theorem 2.7 shows that

[annR([ω]i−j−l+d−1R)]l = [J i : mj ]l

for every l. On the other hand, [annR([ω]i−j−l+d−1R)]l = 0 for l ≤ i− j + b + d− 1
by the definition of b. Finally, mi−j+a+d ⊂ J i : mj .

Corollary 2.15. With assumptions as in 2.1 there exists an ideal N of height zero
such that

J i : mj = mi−j+a+d + N

for every i and j ≥ a + d.
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Proof. Set N = (
⊕i−j+a+d−1

l=i−j+b+d [annR([ω]i−j−l+d−1R)]l)R. According to Corol-
lary 2.14, J i : mj = mi−j+a+d + N . On the other hand, the first equality of
Theorem 2.7 shows that N ⊂ annR([ω]−aR). The latter ideal has height zero since
[ω]−aR is a nonzero submodule of the maximal Cohen-Macaulay module ω.

Corollary 2.16. In addition to the assumptions of 2.1 let i and j ≥ a + d be
integers. If J i : mj is generated in one degree then J i : mj = mi−j+a+d.

Proof. The claim follows from Corollary 2.15 since J i : mj has positive height.

Corollary 2.17. With assumptions as in 2.1 one has

mi−j+a+d ⊂ J i : mj ⊂ mi−j+b+d.

for every i and j ≥ a + d.

Proof. The containments are direct consequences of Corollary 2.14.

Corollary 2.18. In addition to the assumptions of 2.1 assume that R is a domain
or R is level. One has

J i : mj = mi−j+a+d

for every i and j ≥ a + d.

Proof. The result follows from Corollaries 2.15 and 2.17.

In the one-dimensional case the colon ideals J i : mj can be expressed in terms
of conductor ideals:

Remark 2.19. In addition to the assumptions of 2.1 suppose that d = 1, write
y = y1, let K denote the total ring of quotients of R, and let R[m/y] ⊂ B be a
homogeneous inclusion where B is a non-negatively graded finite R[m/y]-module
contained in K. One has B = R[m/y] and

J i :R mj = J i−j(R :K B) = mi−j(R :K B)

for every i ≥ j and j ≥ a + 1.
To prove the first claim notice that B is a finite R-module and hence B≥l = R≥l

for l � 0. Therefore B≥l = ml, which gives B ⊂ ml/yl. As j ≥ a + 1 = rJ(m) one
has ml/yl = mj/yj . It follows that B = mj/yj = R[m/y]. The remaining assertions
obtain because Jj :R mj = yjR :K mj = R :K B and this is a B-module (see also
[14, proof of 3.2]).

3. Initial degrees of annihilators

The previous section leaves open the question of how large the integer i has
to be chosen in Corollaries 2.9(c) and 2.10(c). Addressing this issue will entail
establishing an upper bound for the generic generator degree of first syzygy modules
(Proposition 3.2), as well as estimating the initial degree of certain colon ideals
(Propositions 3.5 and 3.6).

We begin by recalling a result from [2], which in turn uses earlier work on the
‘fundamental class’ (see [5, p.34], [12, 4.11 and 5.13], [13, 3.1]).
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Proposition 3.1. [2, 1.1] Let k be a perfect field and let R be a standard graded
k-algebra of dimension d such that Rp is regular for every minimal prime p of
dimension d. Write ω = ωR and let C be defined by the exact sequence

0 −→ [ω]≤dR
nat−→ ω −→ C −→ 0 .

Then Supp(C) ⊂ Sing(R).

Proposition 3.2. Let k be a perfect field and S a standard graded Gorenstein k-
algebra of dimension D. Let I be an ideal of height g such that IP is prime for
every prime ideal P of height g containing I. Assume I is generated by m ≥ g + 1
forms f1, . . . , fm of degrees δ1 ≥ . . . ≥ δm, and write ∆ =

∑g+1
i=1 δi + D− g + a(S).

Let H1 be the first Koszul homology of the elements f1, . . . , fm and C the module
defined by the exact sequence

0 −→ [H1]≤∆S
nat−→ H1 −→ C −→ 0 .

Then CP = 0 for every prime P of S such that IP is a complete intersection and
SP/IP is regular. If either g ≥ 2 and δ3 ≥ 2 or g ≥ 1 and S is not a polynomial
ring, one can replace H1 by the first syzygy module of the elements f1, . . . , fm.

Proof. Fix a prime P so that IP is a complete intersection and SP/IP is regu-
lar. We may assume that k is infinite and that f1, . . . , fg form a regular sequence
generating IP. Notice that

((f1, . . . , fg) : I)/(f1, . . . , fg) ∼= ωS/I(−
g∑

i=1

δi − a(S)).

Therefore Proposition 3.1 shows that there exists a homogeneous element β of
degree D − g +

∑g
i=1 δi + a(S) in (f1, . . . , fg) : I generating the factor mod-

ule ((f1, . . . , fg) : I)/(f1, . . . , fg) locally at P. In particular, β /∈ P because
((f1, . . . , fg) : I)P = SP. Hence for g + 1 ≤ j ≤ m there exist homogeneous
syzygies

βfj −
g∑

i=1

λijfi = 0

of f1, . . . , fm that have degree at most ∆ and whose images generate H1 locally at
P.

Finally, if either g ≥ 2 and δ3 ≥ 2 or g ≥ 1 and S is not a polynomial ring, then
the Koszul relations among f1, . . . , fm have degrees at most ∆.

We are now going to introduce the α-invariant of a graded ring that will be the
basis for many estimates proved in this section.

Definition 3.3. Let k be a field and R a standard graded k-algebra of dimension
d. We define

α(R) = min{a(S)} ∈ Z ∪ {∞},
where S ranges over all standard graded Gorenstein k-algebras of dimension d
mapping homogeneously onto R such that SP = RP for every minimal prime
P ∈ SuppS(R) of dimension d.
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Remark 3.4.
(a) One has

a(R) ≤ α(R) ,

because ωR ↪→ ωS for every S as in Definition 3.3.
(b) Write R = k[X1, . . . , Xn]/I as a factor ring of a polynomial ring, where

I is an ideal of height g generated by forms of degrees δ1 ≥ . . . ≥ δm. If
β1, . . . , βg is a homogeneous regular sequence contained in I that generates
I at each of its minimal primes of height g, then

α(R) ≤
g∑

i=1

deg(βi)− n .

In particular, whenever k is infinite and I is generically a complete inter-
section, we have

α(R) ≤
g∑

i=1

δi − n .

Proposition 3.5. Let k be an infinite perfect field and R a standard graded k-
algebra of dimension d. Let H be a homogeneous R-ideal such that Rp is regular
for every minimal prime p of dimension d containing H. If α(R) is finite, there
exists a homogeneous element of degree α(R) + d in 0 : H that is not contained in
any minimal prime p of dimension d containing H.

Proof. We may assume that dim R/H = d, and then by p1, . . . , ps we denote the
minimal primes of dimension d containing H. Let S be as in Definition 3.3 so that
α(R) = a(S). Write N and Pi for the preimages of H and pi in S. Notice that
H = NR, that NPi

= 0, and that (S/N)Pi
= (R/H)pi

is regular for every Pi.
The beginning of the proof of Proposition 3.2, with g = 0, shows that there

exists a homogenous element β ∈ 0 :S N of degree a(S)+ d with β /∈ Pi for each of
the finitely many primes Pi. Thus, denoting the image of β in R by γ we obtain
γ ∈ (0 :S N)R ⊂ 0 :R NR = 0 :R H and γ /∈ pi for each pi.

The α-invariant can be replaced by a(R) in the above estimate if R has dimension
one:

Proposition 3.6. Let k be an infinite field and R a standard graded Cohen-
Macaulay k-algebra of dimension 1. Let H be a homogeneous R-ideal such that
Hp = 0 for every minimal prime p of H. Then there exists a homogeneous element
of degree a(R) + 1 in 0 : H that is not contained in any minimal prime p of H.

Proof. Write m for the homogeneous maximal ideal of R and set L = 0 : H. Notice
that 0 : Hunm = 0 : H since R is Cohen-Macaulay. Passing to the unmixed part of
H we can suppose that R/H is Cohen-Macaulay of dimension 1. Furthermore R/L
is either zero or Cohen-Macaulay of dimension 1, and R/H + L has finite length.
Now the short exact sequence

0 −→ R/H ∩ L −→ R/H ⊕R/L −→ R/H + L −→ 0

induces an exact sequence of local cohomology

0 −→ H0
m(R/H + L) = R/H + L −→ H1

m(R/H ∩ L) .
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As a(R/H ∩ L) ≤ a(R) we conclude that R/H + L is concentrated in degrees
≤ a = a(R). Hence ma+1 ⊂ H + L. Thus any homogeneous non zerodivisor of
degree a + 1 can be written in the form h + l where h, l are homogeneous elements
of degree a+1 in H, L respectively. Now l is an element with the desired properties.

With the next two corollaries we answer the question raised at the beginning of
the section. We give a bound for the initial degrees of annihilators of submodules
generated by graded components of ω and we estimate how large the integer i has
to be chosen in Corollary 2.9(c).

Theorem 3.7. Let k be an infinite perfect field, let R be a standard graded reduced
equidimensional k-algebra of dimension d with ω = ωR, and let t be an integer. If
[ω]tR is not a faithful R-module then

indeg(annR([ω]tR)) ≤ α(R) + d.

Proof. We may assume that α(R) is finite. Since R is generically Gorenstein, ω
is isomorphic to a suitable shift of a homogenous R-ideal W , say ω ∼= W (s). As
[W ]t+sR is not faithful it is contained in some minimal prime p of R. Now

annR([ω]tR) = annR([W ]t+sR) ⊃ 0 :R p,

and the latter ideal contains a non-zero homogenous element of degree α(R) + d
according to Proposition 3.5.

Replacing Proposition 3.5 by Proposition 3.6 in the proof of Theorem 3.7 yields a
better estimate for the initial degree in the one-dimensional case that is still weaker
though than the one implied by Corollary 2.8.

Corollary 3.8. Let k be an infinite perfect field, let R be a standard graded reduced
Cohen-Macaulay k-algebra of dimension d ≥ 1 with homogeneous maximal ideal m,
and let t be an integer. Write ω = ωR and a = a(R). Then [ω]tR is a faithful
R-module if and only if J i+a+t : ma+d ⊂ mi for some i ≥ α(R) + d + 1.

Proof. The forward direction follows from Corollary 2.9, and the converse from
Theorems 2.7 and 3.7.

Under suitable additional assumptions the bound for i in Corollary 3.8 can be
improved, most notably by replacing the invariant α(R) by the more traditional
a(R). This is the content of the next three results of the section.

Proposition 3.9. Let k be a field, let R be a standard graded Cohen-Macaulay
k-algebra of dimension d ≥ 1 with homogeneous maximal ideal m, and let t be an
integer. Write ω = ωR, a = a(R), and −∨ = HomR(−, ω). If ω/(([ω]≤tR)∨∨) is
Cohen-Macaulay then annR([ω]tR) is a Cohen-Macaulay module with Castelnuovo-
Mumford regularity ≤ d− t− 1. In particular, whenever t ≥ −a one has that [ω]tR
is a faithful R-module if and only if J i+a+t : ma+d ⊂ mi for some i ≥ a + d.

Proof. In light of Corollary 2.9, the second statement follows from the first claim
and Theorem 2.7. Indeed, the bound on the Castelnuovo-Mumford regularity shows
that annR([ω]tR) is generated in degrees ≤ d − t − 1 ≤ a + d − 1. Hence this
annihilator vanishes by Theorem 2.7 if J i+a+t : ma+d ⊂ mi for some i ≥ a + d.
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Thus it suffices to prove the assertion about annR([ω]tR). We may assume that
this annihilator is not zero. One has

annR([ω]tR) = annR([ω]≤tR) = annR(([ω]≤tR)∨∨) .

The first equality is part of Theorem 2.7. To see the second equality notice that
since ω is a maximal Cohen-Macaulay R-module, the annihilator of every sub-
module is either the unit ideal or an unmixed ideal of height zero. In particular,
two submodules of ω have the same annihilator if they coincide locally at every
minimal prime of R. Since [ω]≤tR and ([ω]≤tR)∨∨ are generically equal, the sec-
ond equality now follows. Thus we may restrict our attention to the annihilator
ideal annR(([ω]≤tR)∨∨). Likewise, since annR(([ω]tR)∨∨) 6= 0 = annR(ω) it follows
that ([ω]≤tR)∨∨ and ω cannot coincide locally at every minimal prime of R. Thus
ω/(([ω]≤tR)∨∨) has dimension d, hence is a maximal Cohen-Macaulay R-module.

Write R = S/I with S = k[X1, . . . , Xn] a polynomial ring and I a homogeneous
S-ideal of height g. Choose a regular sequence β = β1, . . . , βg of forms of degree
δ � 0 contained in I and set L = (β) :S I. Notice that S/L is a d-dimensional
Cohen-Macaulay ring. Moreover one has (L/(β))(gδ − n) ∼= ω. Thus there exists a
homogeneous ideal H of S so that (β) ⊂ H ⊂ L and (H/(β))(gδ−n) ∼= ([ω]≤tR)∨∨.
Clearly

annR(([ω]≤tR)∨∨) = ((β) :S H)/I .

Since L/H is isomorphic to a shift of the module ω/(([ω]≤tR)∨∨) it follows that
L/H is a maximal Cohen-Macaulay R-module. Therefore S/H is a d-dimensional
Cohen-Macaulay ring, and hence so is S/((β) :S H). Thus ((β) :S H)/I is a
maximal Cohen-Macaulay R-module, proving the assertion in the proposition about
the Cohen-Macaulayness of the annihilator ideal.

Applying Extg
S(−, S(−n)) to the exact sequence

0 −→ ((β) :S H)/I −→ S/I −→ S/((β) :S H) −→ 0

of maximal Cohen-Macaulay R-modules we obtain this exact sequence,

0 −→ ωS/((β):H) −→ ωS/I = ω −→ Extg
S(((β) :S H)/I, S(−n)) −→ 0 .

The canonical module on the left satisfies

ωS/((β):H)
∼= (H/(β))(gδ − n) ∼= ([ω]≤tR)∨∨ ⊃ [ω]≤tR ,

where the first isomorphism holds because H is unmixed. Therefore the above
exact sequence shows that Extg

S(((β) :S H)/I, S(−n)) is concentrated in degrees
≥ t+1, and hence by local duality the local cohomology module Hd

m(((β) :S H)/I)
is concentrated in degrees ≤ −t − 1. As ((β) :S H)/I is a d-dimensional Cohen-
Macaulay module we deduce that it has regularity ≤ d− t− 1.

We follow suit with an estimate for rings of type 2 that does not require the
Cohen-Macaulayness of ω/(([ω]≤tR)∨∨).

Proposition 3.10. Let k be a field and R a standard graded geometrically reduced
Cohen-Macaulay k-algebra of type 2 and dimension d ≥ 1 with homogeneous max-
imal ideal m. Write R = S/I with S = k[X1, . . . , Xn] a polynomial ring and I a
homogeneous S-ideal of height g. Consider the last map in a minimal homogeneous
free S-resolution of R

0 −→ S(−l1)⊕ S(−l2)
ϕ−→ ⊕m

i=1S(−ki) ,
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where l1 ≤ l2 and k1 ≤ . . . ≤ km. Write ω = ωR and a = a(R). If [ω]−aR is not a
faithful R-module then

indeg(annR([ω]−aR)) ≤ gl1 + l2 −
g+1∑
i=1

ki − g = a + d + gl1 −
g+1∑
i=1

ki .

Equivalently, [ω]−aR is a faithful R-module if and only if J i : ma+d = mi for some
i ≥ a + d + gl1 −

∑g+1
i=1 ki + 1.

Proof. By Theorem 2.7 and Corollary 2.10 it suffices to prove the first statement.
We may assume that the field k is infinite and perfect. Since R is Cohen-Macaulay
we obtain the following presentation,

⊕m
i=1S(ki)

ϕ∗−→ S(l1)⊕ S(l2) −→ ω(n) −→ 0 .

Using the standard bases of the free modules this presentation gives rise to homo-
geneous generators w1, w2 of ω(n) and a matrix(

f1 · · · fm

h1 · · · hm

)
representing ϕ∗. Notice that deg(w1) = −l1 ≥ deg(w2) = −l2, deg(fi) = l1 − ki,
and deg(hi) = l2 − ki. One has deg(w1) > deg(w2) since otherwise [ω]−aR = ω
would be faithful. Therefore

annR([ω]−aR) = annR w2 .

Further observe that
w2R :S w1 = (f1, . . . , fm)

and

(3.1) annS w2 = {
∑

λihi |
∑

λifi = 0} ;

the last equality obtains because an element ε of S belongs to annS w2 if and only

if the vector
(

0
ε

)
is in the column space of the above matrix.

As annR w2 6= 0 and R is unmixed, there exists a minimal prime p of R such that
(annR w2)p 6= 0. In particular, w2Rp 6= w1Rp + w2Rp because the latter module is
faithful. Thus the ideal (f1, . . . , fm) = w2R :S w1 is contained in P, the preimage
of p in S. On the other hand, this ideal contains I. It follows that (f1, . . . , fm)
has height g. Furthermore, since I is radical the localization (f1, . . . , fm)SQ is a
complete intersection prime ideal for every prime Q of height g in S containing
(f1, . . . , fm). Finally, g = ht I = ht I2(ϕ) ≤ m − 1 by the Eagon-Northcott bound
on the height of determinantal ideals. Now Proposition 3.2 shows that locally
at P, the syzygy module of (f1, . . . , fm) is generated by its elements of degrees
≤

∑g+1
i=1 (l1 − ki) + n− g + a(S) and by the Koszul relations. Therefore 3.1 gives

(annS w2)P = ([annS w2]≤∑g+1
i=1 (l1−ki)+n−g+a(S)+l2−l1

+ I2(ϕ∗))P .

As I2(ϕ∗) ⊂ annS ω = I we conclude that

(annR w2)p = ([annR w2]≤∑g+1
i=1 (l1−ki)+n−g+a(S)+l2−l1

)p

= ([annR w2]≤gl1+l2−
∑g+1

i=1 ki−g)p .

The assertion now follows since (annR w2)p 6= 0 .
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Corollary 3.11. Let k be a field and let R be a standard graded equidimensional
geometrically reduced k-algebra of dimension d ≥ 1 with homogeneous maximal ideal
m. Assume that R is an almost complete intersection of embedding codimension 2.
Write ω = ωR and a = a(R). If [ω]−aR is not a faithful R-module then

indeg(annR([ω]−aR)) ≤ a + d .

Equivalently, [ω]−aR is a faithful R-module if and only if J i : ma+d = mi for some
i ≥ a + d + 1.

Proof. Notice that R is Cohen-Macaulay by the Syzygy Theorem and has type
2, see [6, 2.1]. Hence we may apply Proposition 3.10 with g = 2. It suffices to
show that 2l1 −

∑3
i=1 ki ≤ 0. This holds, because k3 = l1 + l2 − k1 − k2 by the

Hilbert-Burch Theorem and l1 ≤ l2 .

We finish this section with a different estimate for initial degrees of annihilators
– an estimate from below. In the proof we use the notation Hunm for the unmixed
part of an ideal H, which is the intersection of the primary components of maximal
dimension.

Proposition 3.12. Let k be a field, let R be a standard graded Cohen-Macaulay
k-algebra of dimension d, and let H be a homogeneous R-ideal. Write c = c(R) as
in 2.1. One has indeg(0 : H) ≥ c + d + 1− e(R/H).

Proof. We may assume that k is infinite and that 0 : H 6= 0. Set e = e(R/H).
We prove the claim by induction on d. First let d = 0. In this case e = λ(R/H).
Therefore me ⊂ H, which gives 0 : H ⊂ 0 : me. But indeg(0 : me) ≥ c + 1 − e
because c is the initial degree of the socle of R.

Next let d ≥ 1. Notice that 0 : Hunm = 0 : H since R is Cohen-Macaulay and
that e(R/Hunm) = e(R/H) by the associativity formula for the multiplicity. Hence
we may replace H by Hunm to assume that H is unmixed. Since 0 : H 6= 0 we have
htH = 0. Furthermore, 0 : H is unmixed with ht(0 : H) = 0 or else 0 : H = R.
Now let x ∈ R be a linear form that is regular on R, and write for images in the
d−1 dimensional Cohen-Macaulay ring R = R/(x). Notice that x is regular modulo
H and is regular modulo 0 : H unless 0 : H = R. It follows that e(R/H) = e(R/H)
and indeg(0 :R H) = indeg(0 :R H). Furthermore, c(R) = c(R) + 1 as ωR

∼= ωR(1).
Thus we conclude

indeg(0 :R H) = indeg(0 :R H)

≥ indeg(0 :R H) since 0 :R H ⊂ 0 :R H

≥ c(R) + dim R + 1− e(R/H) by induction hypothesis
= (c + 1) + (d− 1) + 1− e

= c + d + 1− e .

If R is zero-dimensional in the above proposition, then the lower bound c + 1−
e(R/H) can be improved to c − a(R/H). This shaper estimate immediately gives
the inclusion J i : mj ⊂ mi−j+c+d in the setting of Corollary 2.17.
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4. The core of standard graded algebras

In this section we apply the previous results to the core of powers of the maximal
ideal.

Assumptions 4.1. In addition to the assumptions of 2.1 suppose that if char k > 0
then k is infinite and R is geometrically reduced.

The next result is essentially present, in a more general form, in [7, 4.2].

Theorem 4.2. With assumptions as in 4.1 one has for every n ≥ 1,

core(mn) = Jnd+a+1 : ma+d.

Proof. From [15, 2.3 and 2.5] we know that

core(mn) = (J [n])j+1 : (mn)j for j � 0 .

Furthermore

(J [n])j+1 : (mn)j = (J [n])[j+1] : (mn)jd by (2.2)

= J [nj+n] : mnjd

= Jnj+n : mnj+n−nd+d−1 by (2.2)

= Jnd+a+1 : ma+d by Remark 2.2.

The above theorem relates the core of powers of the maximal ideal to the colon
ideals studied in the previous sections. We leave it to the reader to express most of
the earlier results in terms of cores. Here we only collect the main applications:

Corollary 4.3. With assumptions as in 4.1 one has for every n ≥ 1 :
(a) core(mn) = mnd+a+1 + N for some ideal N of height zero
(b) mnd+a+1 ⊂ core(mn) ⊂ mnd+b+1.

Proof. The result follows immediately from Theorem 4.2 and Corollaries 2.15 and
2.17.

Item (b) of the next theorem was asserted in [11, 4.1], assuming only that R
is reduced. However, as the theorem shows, this statement is equivalent to the
faithfulness of the module [ω]−aR. Furthermore, R being geometrically reduced is
essential according to [7, 5.1].

Theorem 4.4. With assumptions as in 4.1 the following are equivalent :
(a) [ω]−aR is faithful
(b) core(mn) = mnd+a+1 for every n ≥ 1
(c) core(mn) is generated in one degree for some n � 0 .

Proof. Theorem 4.2 and Corollary 2.10 show that (a) implies (b). If (c) holds then
according to Theorem 4.2 and Corollary 2.16 one has Jnd+a+1 : ma+d = mnd+a+1.
Notice that nd + a + 1 � 0. Thus again Corollary 2.10 gives that (a) obtains.

Corollary 4.5. In addition to the assumptions of 4.1 suppose that one of the
following conditions holds :
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• R is reduced and [ω]≥d+1 = core(m) ω
• d = 1
• R is a reduced almost complete intersection of embedding codimension 2.

Then the following are equivalent :
(a) [ω]−aR is faithful
(b) core(m) = ma+d+1

(c) core(m) is generated in one degree.

Proof. We apply Theorem 4.2 and Corollary 2.16. In the first case we also use
Corollary 2.10 via Theorem 2.3(a), in the second case Corollary 2.11, and in the
third case Corollary 3.11.

5. The core of points

Assumptions and Discussion 5.1. Let k be an infinite field and let X =
{P1, . . . , Ps} be a set of s reduced points in Pn

k . Write S = k[x0, . . . , xn] for the
polynomial ring and R = S/IX for the homogeneous coordinate ring of X ⊂ Pn

k .
Let m denote the homogeneous maximal ideal of R, K its total ring of quotients,
B the integral closure of R in K, and C = R :K B the conductor. Furthermore, we
write ω = ωR, a = a(R), b = b(R) and we define core(X) = core(m). Finally, let
y ∈ R be a linear form that is R-regular and set J = yR. Notice that a ≤ s − 2
and that R is geometrically reduced.

Homogeneous polynomials f1, . . . , fs in S are called separators of X if fi(Pj) =
δij for every i, j. They are called minimal separators if in addition each fi has
smallest possible degree.

With the next lemma we recall a known fact describing the conductor in terms
of minimal separators (see for instance [8, 3.13]). We include a proof for the con-
venience of the reader.

Lemma 5.2. With assumptions as in 5.1 let h1, . . . , hs be a collection of sepa-
rators of X and f1, . . . , fs a collection of minimal separators. One has hiR ⊂
fiR and f1, . . . , fs minimally generate C as an R-ideal; in particular, ma+1 ⊂
(f1, . . . , fs)R = C and deg(fi) ≤ a + 1.

Proof. Fix λij ∈ k with Pi = (λi0 : . . . : λin). We use these identifications of
non-negatively graded rings,

ϕ : R ↪→ B ∼= k[t]× . . .× k[t] = ⊕s
i=1k[t]ei ,

where k[t] is a standard graded polynomial ring, ei are standard basis elements
of degree zero, and ϕ maps the image in R of a polynomial h ∈ [S]l to the tuple∑

h(λi0 , . . . , λin
)tlei. Thus the elements tl1e1, . . . , t

lses belong to R if and only if
there exist separators h1, . . . , hs of degrees l1, . . . , ls, in which case tlieiR = hiR.
From this we see that hiR ⊂ fiR. It also follows that the minimal separators
f1, . . . , fs minimally generate the largest R-ideal of the form

∑
tlieiR =

∑
tlik[t]ei,

equivalently, the largest homogeneous B-ideal contained in R. However, this ideal
is the conductor C.

Finally, the long exact sequence of local cohomology shows that B/R is concen-
trated in degrees ≤ a, hence ma+1 ⊂ C.
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The next proposition gives a geometric interpretation of the core of points in
terms of separators:

Proposition 5.3. With assumptions as in 5.1 let f1, . . . , fs be minimal separators
of X. One has

(a) core(X) = yC = mC = yR(f1, . . . , fs) = m(f1, . . . , fs)
(b) [ω]≥2 = core(X) ω.

Proof. According to Theorem 4.2 one has core(X) = Ja+2 : ma+1. Now the first
and second equality in (a) follow from Remark 2.19, and (b) is a consequence of
Proposition 2.6. Finally, Lemma 5.2 implies C = (f1, . . . , fs)R.

Corollary 5.4. In addition to the assumptions of 5.1 suppose that X = Y ∪ Z,
where Y is contained in a hypersurface f = 0 and Z is a collection of e reduced
points whose homogeneous coordinate ring has a-invariant a′. One has

ma+2 + fme ⊂ ma+2 + fma′+2 ⊂ core(X) ⊂ mb+2 .

Proof. Let h1, . . . , he be minimal separators of Z, and write H for the defining
ideal of Z in X. From Lemma 5.2 we know that ma′+1 ⊂ (h1, . . . , he)R + H. Since
fH = 0 in R, multiplying this equation by f we obtain fma′+1 ⊂ (fh1, . . . , fhe)R.
However, those elements of fh1, . . . , fhe that are not contained in IX form part of a
collection of separators of X. Hence (fh1, . . . , fhe)R ⊂ C by the same Lemma 5.2,
and therefore fma′+2 ⊂ core(X) according to Proposition 5.3(a). The remaining
assertions follow from Discussion 5.1 and Corollary 4.3(b).

The previous result suggests that the shape of the core is related to uniformity
properties of the set of points. We recall one such condition: The scheme X ⊂
Pn

k is said to have the Cayley-Bacharach property if each subscheme of the form
X\{Pi} ⊂ Pn

k has the same Hilbert function.

Corollary 5.5. With assumptions as in 5.1 the scheme X has the Cayley-Bacharach
property if and only if core(X) = ma+2.

Proof. It is easy to see that X has the Cayley-Bacharach property if and only if
the minimal separators all have the same degree. According to Proposition 5.3(a)
this means that core(X) is generated in one degree, which in turn is equivalent to
core(X) = ma+2 as shown in Corollary 4.5.

Alternatively, in [8, 3.5] the Cayley-Bacharach property has been characterized
in terms of the faithfulness of [ω]−aR. Again according to Corollary 4.5 the latter
condition holds if and only if core(X) = ma+2.

The next example illustrates the previous two corollaries.

Example 5.6. In addition to the assumptions of 5.1 suppose char k 6= 2 and take
X to be the 4 points (0 : −1 : 1), (0 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1) in P2

k. These points
and their separators are depicted in this figure:
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Notice that

R = k[x0, x1, x2]/(x0x1, x0(x0 − x2), x1(x1 − x2)(x1 + x2)),

and one easily sees that a = 1. We choose y to be the image of x2, and as minimal
separators of X we take x1(x1− x2), (x0− x1− x2)(x1− x2), x1(x1 + x2), x0. From
the geometric interpretation of the core in terms of separators, Proposition 5.3(a),
one immediately sees that core(X) = m3 + x2

0R ) m3 = ma+2. The inclusion
x2

0R ⊂ core(X) would have also been predicted by Corollary 5.4 with f = x0, and
the strict containment m3 ( core(X) reflects the obvious fact that X does not have
the Cayley-Bacharach property.

Corollary 5.7. Let k be a field of characteristic zero, let Y ⊂ Pn+1
k be a re-

duced and irreducible arithmetically Cohen-Macaulay curve, and write n for the
homogeneous maximal ideal of the homogeneous coordinate ring of Y . Consider a
general hyperplane section X ⊂ Pn

k of Y and use the notation of 5.1. One has
core(Y ) = core(n) = na+2 and core(X) = ma+2.

Proof. According to [9, 3.4] the set of points X has the Cayley-Bacharach property.
Now the two equalities follow from Corollaries 4.3 and 5.5.

6. Local estimates on cores

We finish this paper with a generalization of Corollary 5.4 to the context of
zero-dimensional ideals in local rings.

Proposition 6.1. Let (R,m) be a local Cohen-Macaulay ring with infinite residue
field, I an m-primary R-ideal, L and H two R-ideals such that LH = 0 in R. Write
e = e(I;R/H) for the multiplicity of the ring R/H with respect to the ideal I. Then
LIe ⊂ core(I).

Proof. We prove the claim by induction on d = dim R. If d = 0 then e is the
length of R/H, and we easily obtain Ie ⊂ H. Therefore LIe ⊂ LH = 0. Now
consider the case d ≥ 1. For J an arbitrary reduction of I we need to show that
LIe ⊂ J . Let x be a general element of J and write for images in the d − 1
dimensional Cohen-Macaulay ring R = R/(x). Notice that LHunm = 0 since R is
Cohen-Macaulay and that e(I;R/Hunm) = e by the associativity formula for the
Hilbert-Samuel multiplicity. Thus we may replace H by Hunm to assume that H is
unmixed. We may further suppose that L 6= 0. Therefore dim R/H = dim R = d
since R is Cohen-Macaulay. We conclude that the general element x of J is regular
on R/H. Thus e(J ;R/H) = e(J ;R/H). As J and J are reductions of I and
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I, respectively, we have e(J ;R/H) = e(I;R/H) and e(J ;R/H) = e(I;R/H). It
follows that e(I;R/H) = e(I;R/H) = e. Now our induction hypothesis gives
LIe ⊂ core(I) ⊂ J . Hence indeed LIe ⊂ J .

We obtain the estimate fme ⊂ core(X) of Corollary 5.4 from the above propo-
sition if we take L = fR and H = IZR.
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117 (1984).

[14] C. Polini and B. Ulrich, A formula for the core of an ideal, Math. Ann. 331 (2005), 487–503.
[15] C. Polini, B. Ulrich, and M. A. Vitulli, The core of zero-dimensional monomial ideals, Adv.

Math. 211 (2007), 72–93.

[16] B. Ulrich, Artin-Nagata properties and reductions of ideals, Contemp. Math. 159 (1994),
373–400.

Department of Mathematics, University of Texas, Austin, TX 78712, USA

E-mail address: lfouli@math.utexas.edu

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA

E-mail address: cpolini@nd.edu

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
E-mail address: ulrich@math.purdue.edu


