
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 20181

Adapted from http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture14.pdf
for Purdue MA 598, Spring 2019

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Today: Reinforcement Learning

5

Problems involving an agent
interacting with an environment,
which provides numeric reward
signals

Goal: Learn how to take actions
in order to maximize reward

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 20189

Agent

Environment

Action at
State st

Reinforcement Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201810

Agent

Environment

Action at
State st Reward rt

Reinforcement Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201811

Agent

Environment

Action at
State st Reward rt

Next state st+1

Reinforcement Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Cart-Pole Problem

12

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Robot Locomotion

13

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Atari Games

14

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Go

15

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201816

Agent

Environment

Action at
State st Reward rt

Next state st+1

How can we mathematically formalize the RL problem?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Markov Decision Process

17

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by:

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Markov Decision Process
- At time step t=0, environment samples initial state s0 ~ p(s0)
- Then, for t=0 until done:

- Agent selects action at
- Environment samples reward rt ~ R(. | st, at)
- Environment samples next state st+1 ~ P(. | st, at)
- Agent receives reward rt and next state st+1

- A policy is a function from S to A that specifies what action to take in
each state

- Objective: find policy * that maximizes cumulative discounted reward:

18

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

A simple MDP: Grid World

19

Objective: reach one of terminal states (greyed out) in
least number of actions

★

★

actions = {

1. right

2. left

3. up

4. down

}

Set a negative “reward”
for each transition

(e.g. r = -1)

states

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

A simple MDP: Grid World

20

Random Policy Optimal Policy

★

★

★

★

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

The optimal policy *

21

We want to find optimal policy * that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

The optimal policy *

22

We want to find optimal policy * that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?
Maximize the expected sum of rewards!

Formally: with

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Definitions: Value function and Q-value function

24

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy
from state s:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Definitions: Value function and Q-value function

25

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy
from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Bellman equation

26

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Bellman equation

27

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

I.e., we can reduce the problem to taking one step plus knowing the solution after that step.
This yields an iterative approach.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Bellman equation

28

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy * corresponds to taking the best action in any state as specified by Q*

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Solving for the optimal policy

29

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

What’s the problem with this?

Solving for the optimal policy

30

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

(the map is a contraction because the discount factor is less than 1)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solving for the optimal policy

31

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Solving for the optimal policy

32

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Solving for the optimal policy: Q-learning

35

Q-learning: Use a function approximator to estimate the action-value function

If the function approximator is a deep neural network => deep q-learning!

function parameters (weights)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Remember: want to find a Q-function that satisfies the Bellman Equation:

37

Loss function:

where

Solving for the optimal policy: Q-learning

Forward Pass

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Remember: want to find a Q-function that satisfies the Bellman Equation:

38

Loss function:

where

Solving for the optimal policy: Q-learning

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):
_ 2 (

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Remember: want to find a Q-function that satisfies the Bellman Equation:

39

Loss function:

where
Iteratively try to make the Q-value
close to the target value (yi) it
should have, if Q-function
corresponds to optimal Q* (and
optimal policy *)

Solving for the optimal policy: Q-learning

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):
_ 2 (

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Case Study: Playing Atari Games

40

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

 :
neural network
with weights

Q-network Architecture

42

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Input: state st

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

 :
neural network
with weights

Q-network Architecture

43

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Familiar conv layers,
FC layer

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

 :
neural network
with weights

Q-network Architecture

44

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d
output (if 4 actions),
corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Action: Game controls e.g.
Left, Right, Up, Down

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

 :
neural network
with weights

Q-network Architecture

45

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d
output (if 4 actions),
corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

 :
neural network
with weights

Q-network Architecture

46

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d
output (if 4 actions),
corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

A single feedforward pass
to compute Q-values for all
actions from the current
state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Remember: want to find a Q-function that satisfies the Bellman Equation:

47

Loss function:

where
Iteratively try to make the Q-value
close to the target value (yi) it
should have, if Q-function
corresponds to optimal Q* (and
optimal policy *)

Training the Q-network: Loss function (from before)

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):

[Mnih et al. NIPS Workshop 2013; Nature 2015]

_ 2 (

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Training the Q-network: Experience Replay

48

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 2018

Training the Q-network: Experience Replay

50

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute
to multiple weight updates
=> greater data efficiency

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201852

Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201853

Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201854

Putting it together: Deep Q-Learning with Experience Replay

Initialize state
(starting game
screen pixels) at the
beginning of each
episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201855

Putting it together: Deep Q-Learning with Experience Replay

For each timestep t
of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201856

Putting it together: Deep Q-Learning with Experience Replay

With small probability,
select a random
action (explore),
otherwise select
greedy action from
current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201857

Putting it together: Deep Q-Learning with Experience Replay

Take the action (at),
and observe the
reward rt and next
state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201858

Putting it together: Deep Q-Learning with Experience Replay

Store transition in
replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201859

Putting it together: Deep Q-Learning with Experience Replay

Experience Replay:
Sample a random
minibatch of transitions
from replay memory
and perform a gradient
descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 22, 201860

Video by Károly Zsolnai-Fehér. Reproduced with permission.

https://www.youtube.com/watch?v=V1eYniJ0Rnk
Another one: https://youtu.be/yxMWqmFu538

http://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk

