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Abstract

The T-cell antigen-activated signaling pathway is a highly regulated intracellular
biochemical system that is crucial for initiating an appropriate adaptive immune response. To
improve the understanding of the complex regulatory mechanisms controlling the early events
in T-cell signaling, a detailed mathematical model was developed that utilizes ordinary
differential equations to describe chemical reactions of the signaling pathway. The model
parameter values were constrained by experimental data on the activation of a specific
signaling intermediate and indicated an initial rapid cascade of phosphorylation events
followed by a comparatively slow signal downregulation. Nonlinear analysis of the model
suggested that thresholding and bistability occur as a result of the embedded positive and
negative feedback loops within the model. These nonlinear system properties may enhance
the T-cell receptor specificity and provide sub-threshold noise filtering with switch-like
behavior to ensure proper cell response. Additional analysis using a reduced second-order
model led to further understanding of the observed system behavior. Moreover, the
interactions between the positive and negative feedback loops enabled the model to exhibit,
among a variety of other feasible dynamics, a sustained oscillation that corresponds to a stable
limit cycle in the two-dimensional phase plane. Quantitative analysis in this paper has helped
identify potential regulatory mechanisms in the early T-cell signaling events. This integrated
approach provides a framework to quantify and discover the ensemble of interconnected T-cell
antigen-activated signaling pathways from limited experimental data.

1. Introduction

The immune system is responsible for mounting a response to infection. T-lymphocytes



(T-cells) are cellular components of the immune system that mediate the adaptive immune

response. Without T-cells, an organism is vulnerable to infections as evidenced by acquired

immune deficiency syndrome (AIDS). To initiate an adaptive immune response, T-cells must

become activated through the engagement of antigen receptors (T-cell receptors, TCRs)

expressed on the cell surface. The signal initiated by receptor engagement is transduced to the
cell nucleus through intracellular signaling pathways. The signaling pathways comprise a
series of cascaded chemical reactions that result in the modulation of cellular functions
important in directing the immune response: lymphocyte proliferation and differentiation,
and cytokine secretion.

Cellular signaling pathways comprise complex and interconnected networks of
biochemical reactions acting as molecular circuits that relay signals to the genetic machinery.
Although many of the proteins that participate in these biochemical reactions are known,
details of their interactions and regulation remain to be elucidated. The available
experimental techniques limit the ability to discover all the complex interconnected
biochemical pathways without assistance from systems analysis of mathematical models.
Such quantitative analysis helps to extract the control structures and the myriad of interactions
from experimental results, extending the utility of the data beyond that solely available through
intuition. The resulting quantitative descriptions of the T-cell signaling pathways will be
useful for designing treatments for diseases arising from defects in signaling pathways such as
cancer, autoimmune diseases, and asthma.

A number of researchers have developed relevant mathematical models to study T-cell

signaling activation. McKeithan [34], Hlavacek et al. [22], Chan, George, and Stark [10],



Rabinowitz et al. [43], Sontag [47], and Lord, Lechler, and George [32] investigated how the

duration of TCR-antigen engagement influences the cellular response. The effects of receptor

internalization and serial engagement have been addressed by Sousa and Carneiro [48] and

Wofsy, Coombs, and Goldstein [53]. An analysis of TCR dynamics resulting from

interactions with antigen presenting cells was performed by Agrawal and Linderman [3]. A
more detailed model of TCR engagement by antigen to form an immunological synapse has
been generated through both analytical and experimental studies by Lee ef al. [28, 29]. In a
recent review [8], Charkraborty, Dustin, and Shaw discussed the power of the dual approach of
experimentation and in silico modeling with examples of pioneering studies in immunology.
Among them, the study by Lee et al. [27] determined that the lack of activated TCRs in the
center of the immunological synapse was due to their rapid degradation, thus explaining the
absence of TCRs in what was thought to be the site of active receptor signaling. This was
achieved by integrating a stochastic model of the dominant signaling protein interactions and
T-cell synapse formation with focused experiments. Other models related to the T-cell
signaling pathway include work by Kim et al. [25] on calcium flux and Chan [9] with a
simplified three component model to represent early signaling events.

All of these models have proven useful for understanding aspects of T-cell activation;
however none of them paid sufficient attention to the importance of the regulatory mechanisms
embedded within the intracellular signaling map. Grossman and Paul [20] suggest the
interplay between positive and negative feedback regulations dynamically tune the T-cell
activation threshold. Herein, this paper develops a detailed deterministic model that

investigates the early T-cell signaling events through a combined effort in experimentation,



modeling and nonlinear systems analysis. In particular, the focus is to recognize positive and

negative feedback regulatory regimes underlying the signaling map and their quantitative and

qualitative consequences on cellular responses in a detailed kinetic context.

2. Model development

A model assembled from reported interactions that reflects the current understanding of
the early TCR signaling reaction scheme is shown in Fig. 1 [2, 7, 11, 16-18, 20, 37, 42, 49, 52].
The reaction scheme shown encompasses only the common events that occur upon TCR
engagement prior to the divergence into multiple downstream signaling pathways. Briefly,
the engagement of a TCR results in the phosphorylation (addition of phosphate groups
catalyzed by kinases) to its cytoplasmic units, denoted by TCRp in Fig. 1. This
phosphorylated cytoplasmic TCR unit serves as a binding site for the cytoplasmic tyrosine
kinase, Zap70. Upon binding to the TCR, Zap70’s kinase activity is regulated by its
phosphorylation by Lck and Fyn, members of the Src family of tyrosine kinases. The activity
of Src-family kinases is regulated by the removal of an inhibitory phosphate group by protein
tyrosine phosphatases (PTP). Table 1 describes each signaling element and assigns a symbol
for use in constructing a mathematical model. Table 2 summarizes each of the reactions
primarily in terms of protein binding, phosphate group transfers, kinase and phosphatase

activation.
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early T-cell signaling events. Solid arrows denote reactions for which the forward

direction is indicated; dashed arrows connect the reactions (either forward or reverse) with their catalysts.

Table 1. Summary of symbols used in the reaction scheme
Name Symbol Description
TCRp u Phosphorylated TCR-{ chain
Zap Yo Protein tyrosine kinase Zap70
Zapb yi Zap70 that is bound to phosphorylated receptor
Zap* Y2 Activated Zap70 (phosphorylated at Y493 in the activation loop)
Zapp y3 Doubly phosphorylated Zap70 (at Y493 and Y319)
SFK X0 Src-family kinase (including Lck and Fyn)
SFKdp X1 SFK dephosphorylated at the inhibitory site
SFK* X2 Free fully activated SFK
SFK*-Zapp X3 Fully activated SFK bound to pY319 of Zap70
Cbp Zy Transmembrane scaffold protein Cbp
Cbpp VA Tyrosine phosphorylated Cbp
Csk Vo Free protein tyrosine kinase Csk in the cytoplasm
Csk* Vi Membrane localized Csk recruited by Cbpp
CD45 Wo Transmembrane tyrosine phosphatase CD45
CD45tr Wi CD45 translocated away from the receptor complex
SHP-1 my Inactive tyrosine phosphatase SHP-1
SHP-1* m SHP-1 recruited to the membrane and activated




Table 2. Description of the reactions

Symbol Description

I Zap70 binding to and dissociating from phosphorylated receptor

0 SFK dephosphorylation by CD45 and re-phosphorylation by Csk* at the
inhibitory site (Y505 in Lck, Y528 in Fyn)
SFK phosphorylation at the activation loop (Y394 in Lck,Y417 in Fyn) by

3 autophosphorylation (or by another kinase) and dephosphorylation by PTPs
including SHP-1

T4 SFKdp binding to and dissociating from Zapp

Is Activated SFK releasing from and rebinding to Zapp

Te Cbp phosphorylation by SFK or other kinases and dephosphorylation by CD45

. Csk recruitment by phosphorylated Cbp enabling its availability to SFK, and
the corresponding reverse reaction

e Zap70 phosphorylation at the activation loop (Y493) by activated SFK (SFK*
and SFK*-Zapp) and dephosphorylation by PTPs including SHP-1

o Additional Zap70 phosphorylation at Y319 by activated SFK and Zap70 and
dephosphorylation by PTPs including SHP-1

I SHP-1 activation (by SFK*) and deactivation

. CD4S5 translocation away from and towards the receptors and the SFK upon
T-cell activation

A mathematical model is formulated to quantitatively describe and predict the time
course of kinase activation that dominates the initial signaling events, namely Src-family
kinases (Lck and Fyn) and Zap70. The activation of these kinases is critical for propagation of
the signal to the cell nucleus [31]. The model, coded in MATLAB, consists of 16 ordinary
differential equations (ODEs) of which 10 are independent, 36 parameters, and one input signal.
This model utilizes the receptor phosphorylation level (TCRp) as the system input. All
reactions are modeled with first or second order kinetics. Molecular association and complex
dissociation obey the rule of the Law of Mass Actions, i.e., assuming that the rate of a reaction
is proportional to the product of reactant concentrations. Second-order kinetics are utilized
for most enzyme-catalyzed reactions. This was derived from a simplification of the

Michaelis-Menten enzyme kinetics assuming the substrate concentration is limiting. Such a



simplification contributes to minimizing the complexity of the nonlinearities and limiting the

dimension of the parameter space while retaining the structure of the pathway connectivity. It

is partially justified by the timing of the companion experimental data that is collected on a

minute time scale, insufficient to uniquely identify detailed enzyme kinetic rate parameters. A

similar representation was utilized by Heinrich, Neel, and Rapoport [21] for protein
kinase/phosphatase actions in intracellular signaling pathways. For protein phosphorylation
and/or dephosphorylation by enzymes not explicitly included in this model, the above
expression is further reduced to first-order kinetics where the enzyme concentration becomes a
constant. In addition, single molecular transitions are also governed by first order kinetics.
Molecule diffusion is assumed to be rapid so no spatial information is included in the model.

The differential equations and rate terms resulting from the application of these principles are

stated in (1).
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It is assumed that no protein is degraded or synthesized during the time period of interest.
Thus, there are six mass conservation equations, provided in (2) for SFK, Zap70, CD45, Csk,

Cbp, and SHP-1, respectively.

Xy + X, +X, +X; =X,

Yo+ Y tY,+Yy;+x3=Y,

w,+w, =W, 2)
Vot Vv, =V,

Zy+z2,+v, =7

t

m,+m, =M,
An example of a typical state variable differential equation is provided in (3) for free fully
activated SFK where the rate terms reflect the activation of SFKdp to SFKF* (k, x, ), SFK*’s
inactivation by SHP-1* (k, ,m,x, ), its inactivation by other PTPs (k;, ,x, ), dissociation from

Zapp (k;;x;), and re-association with Zapp (k; x,y,) respectively.

X, =0, +05 = k3,fX1 _(k3,rlml +k3,r2)x2 +k5,fx3 _ks,rX2Y3 (3)



3. Model simulation and comparison to experimental data

To evaluate the model structure and constrain the parameter values, experiments were
conducted to obtain a time course of Zap70 activation for comparison with the simulation
results.  Zap70 activation upon TCR engagement was measured in Jurkat E6.1 T-cells (2x10’
cells/ml), stimulated at 37°C for up to 2 hours with anti-CD3 antibody UTCHI1 at 2 pg/ml.
After the indicated time, the cells were lysed with NP40 lysis buffer containing ImM NazVO4
and 1mM NaF to inhibit phosphatase activities. Nuclei were removed by centrifugation at
12,700 x g. Cell lysates were processed by immunoblotting with a phospho-specific antibody
against Zap70 phosphorylated at Y319 and detected by enhanced chemiluminescence. To
eliminate possible Erk feedback to Lck [49], the cells were preincubated with the Mek inhibitor
U0126 (2 pg/ml) at 37°C for 30 minutes. Densitometric measurements of the immunoblot
films were performed using NIH software ImageJ.

Model simulations were conducted with MATLAB ODE solver ‘odel5s’ with the
relative integration tolerance of le-3, which was shown to be sufficient to obtain accurate time
course results. The parameters used to simulate the model were constrained by experimental
measurements, observations and related mathematical models in literature as described in
Table 3. The exact values of the 29 reaction rate parameters were manually tuned to fit the
timing of the initial peak and decay and the maximal activation level by visual inspection.

The model simulations compare favorably to the obtained experimental data as shown in

+
Fig. 2. The ordinate of this figure is computed as 100)(% ., which corresponds to the

t



total percentage of Zap70 phosphorylated at Y319. As the experimental antibody
concentration was in excess of the amount of TCRs, the model simulations assume a constant
input signal (TCRp). With the current parameter set, the model was not able to capture the
second rising phase in the data, although it successfully predicted a damped response that has
been consistently observed throughout all experiments. As this model captures only the early
signaling events, the validity of the model at longer time periods is unknown. The second
rising phase of the experimental data may be due to downstream protein synthesis, not

incorporated in this model but currently under investigation.
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Table 3. Parameters

Parameter Values

Description

Source

Y. = 1e5; X, = 1.2e5; V, = 5¢4;
Z,=5e4; W, = 1e5; M, = 1¢6;
[TCR], = 1e5.

Total numbers of protein
copies per cell (number/cell,

abbreviated as #/cell herein)

Total SFK (X,) refer to [40]; total TCR refer to
[19]; others are estimated based on relative

abundances.

u = 2e4 #/cell

Number of phosphorylated

receptor (input signal)

Assume 10% of total TCR is phosphorylated.

ky r=2e-5 cell/(#:s)
ki, =42e2s"

Association/dissociation rate
constants for Zap70-
phospho-TCR( binding

Correspond to Kp = 7nM * that is within the range
of measured Kp for Zap70 SH2-TCR{ pITAM2,3
(higher affinity pITAMs) binding [26, 41].

k4.f = 56'6 Cell/(#s), k4,r = 8e-3 s'l
ks, = le-6 cell/(#s); ks ;= 8e-2 s
kyr= 8.89e-7 cell/(#5); ky, = 4e-2 5™

Association/dissociation rate
constants for SFK/Csk’s
binding to phosphorylated
Zap70/Cbp via their SH2

domains.

The correspondent Kps are consistent with those
measured for a variety of SH2-bearing proteins to

their target phospho-peptide sequences. These

values ranges from the order of 1 to 1e2 nM [41].

ky , = 4e-6 cell/(#:s)

k.11 = 0.833e-6 cell/(#:-s)

ks.f1 = koo = 0.833e-6 cell/(#:s)
kg = ko 13 = 2.5e-6 cell/(#:s)
ko g = 4.44e-6 cell/(#-s)

Second-order rate constants for
the tyrosine phosphorylation of
proteins by activated kinases
Zap, SFK or Csk

Consistent with the range of values used in
literatures [5, 6, 45] for a variety of tyrosine
kinases including PKC, MAPK and Shc, spanning

from the order of 1e-7 to le-4 cell/(#-s) *".

Kyp=4e-3s”

kep = le-2s™

First-order rate constants for
protein phosphorylation by

other kinases

Estimated based on the correspondent
second-order rate constants and the assumptions
on the abundance of the responsible kinases ¢

(le3~1e4 #/cell).

ko ¢ = 4e-7 cell/(#:s)
Ke.r = 8e-7 cell/(#:s)
a1 = kg1 = Ko = 4e-6 cell/(#-s)

Second-order rate constants for
protein dephosphorylation by
CD45 or activated SHP-1

k310 = kg = koo = 8e-2 st

First-order rate constants for
protein dephosphorylation by
other PTPs

These values are within the range of the first order
rate constants (second order rate constants are
converted with maximal CD45 or SHP-1
activation ) used in literatures for the
dephosphorylation of FCeRI receptor (20 s™) [14]
and She (0.05s™ ) [6].

ki = 4e-8 cell/(#-5)

CD45 translocation

CD45 translocation is observed ~20 minutes after

ki =2e-4 s T-cell stimulation [16].
Kjor = 8.64e-10 cell/(#:s) SHP-1 activation and Estimated by fitting to the experimental data as
Kior = 4e-4 57! deactivation shown in Fig. 2.

2 For unit conversion, assume a cell volume of Se-13L, consistent with a normal T-cell diameter of 8-10um [1].

" To convert Michaelis-Menten parameters (E +Sc b sES N SR+ P) to
k

the second/first-order rate

constants used in this paper, assume the substrate concentration << K., then Kong.orer = ky/Ki and Kigorger =
Vmax/Klm where sz(k-l'l'kp)/kl’ Vmaxzkp[E]mb

¢ Conversion between first and second order kinetics constants: K .order= Kond-orderX[El.

11
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Fig. 2. Model simulations with comparison to experimental data. Elimination of the negative feedback loops
was achieved with ke 1=k;; =kj0,;=0. All other parameters are the same as in Table 3. Y axis (100x(y3+x3)/Y})
is the percentage of Zap70 phosphorylated at Y319, referred to as % Zap70 Phosphorylation hereafter.
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Fig. 3. Increasing negative feedback strength increases the damping. CD45-Csk feedback is eliminated
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Table 3. a. Model simulation results. b. Changes in the steady state of the system with increasing K.
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4. Feedback regulation

In the model, the pathway regulations are reflected in several feedback loops, in which a
downstream pathway product serves to modulate upstream signaling events. Such a feedback
loop is positive when the modulation enhances signal propagation through the pathway,
whereas a negative feedback loop will inhibitit. Two negative feedback regulation loops were
considered in the model: (i) inhibition of Zap70 and SFK by SHP-1 activation [17, 49, 52]
(through reactions ryg, 13, 13 and r9 in Fig. 1), herein referred to as the SHP-1 feedback; (ii)
inhibition of SFK activation through CD45 translocation [16] and Csk recruitment [7, 11] (12, 16,
r7, and ry;), herein referred to as the CD45-Csk feedback. In addition, a positive feedback
results from enhanced SFK function when bound to the doubly phosphorylated Zap70 (14, 1s) as
evidenced by increased receptor phosphorylation and Zap70 activation [2, 42].

The model implies that the negative feedback loops play an important role in signal
downregulation as without them the response is sustained (Fig. 2). The role of SHP-1
feedback loop strength was investigated by modifying the ratio of the forward and reverse rate
constants associated with SHP-1 activation (K;o=kjo ko). Fig. 3 illustrates an increasingly
damped response with increasing K;o. As anticipated, modulating the CD45-Csk negative
feedback strength by changing the ratio of the forward and reverse rate constants associated
with CD45 translocation (K;;=kj; ¢k ) has similar results (data not shown). Contributions

from the positive feedback loop are discussed in Section 7.
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5. Switch-like behavior of the model

Interestingly, Fig. 3a demonstrated a gap region where small variations in the negative
feedback strength cause a switch in the equilibrium level of the model. As shown in Fig. 3b,
a threshold exists for which the negative feedback strength becomes sufficient large to damp
out the sustained response. Below this threshold value, the negative feedback strength causes
the equilibrium response to change proportionally.

Such switch-like behavior is also seen with variations of the input level, TCRp, implying
the input signal must exceed a threshold to acquire detectable responses (Fig. 4). When the
input exceeds the threshold, the response increases proportionally until it saturates. Fig. 4 also
indicates that a larger threshold value is required for sustaining rather than initiating the early

T-cell signaling events.
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Fig. 4. Changes in the response of the system with varying input signal. Amount of TCRp (u) is varying

between 0 and 1e5 (100% receptor phosphorylation), other parameters are the same as in Table 3.
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6. Generation of equilibrium continuation curve

The switch-like behavior in the equilibrium state of the system shown in Fig. 3b and 4
suggest that by changing model parameters or input stimulus, the system may switch between
different families of steady states, indicating the potential presence of bifurcation at the switch
point. To further examine this hypothesis and explain the observed simulation dynamics, an
analytical solution to the singular points of the model was obtained to inspect the continuation
of the equilibrium states with varying parameters.

At equilibrium all of the derivatives of the state variables are zero which defines
conditions on the rate terms (V;)):  V=V2=Ve=V7=Vg=Vo=L19=011=0 and -V3=V4=Vs.
Supplementing these with the 6 mass conservation equations, the analytical solution to the
system’s equilibrium states is specified by these 16 equations of 16 variables. The direct
numerical solution of such coupled, high-order nonlinear equations can be a daunting task
especially when multiple roots could exist. Instead, the 16 equations are reduced to 3 by
explicitly expressing the rest of the state variables as functions of three “basic” variables: y;3
(Zapp), m; (SHP-1%*), and r = wo/v; (CD45/Csk*). The resulting equations are presented in (4),

(5) and (6) (see Appendix for derivation).

k k m,k, , +k
[y3 Y, R+ 9.£2 %+ 9.f3 §3]A2 _( 1 9,1 9,r2)Y3 ~0 4)
9,f1 9,f1 9,f1
M, —m, = —oL 5)
KX,
n W, — W
W()_ t AWO (6)
K, X,

where X,, X,, ¥,,and W, are equilibrium values of x,, x3, y» and wy as functions of y3, m;

15



and r as defined in the Appendix. The equilibrium values of all the remaining variables can
also be expressed as functions of the three ‘basic’ variables as shown in the Appendix.
Therefore, once the equilibrium values for y3, m; and r are solved from (4), (5) and (6), the
equilibrium states of the system are fully specified.

Eliminating either one of the negative feedback loops simplifies the solution to (4), (5),
and (6) and enables the investigation of the continuation of the equilibrium states with changes
in the negative feedback strength.

(i) No CD45-Csk feedback:

The CD45-Csk feedback is removed when the SFK* does not lead to the recruitment of
Csk (ke r1=0) and translocation of CD45 (k;;=0). Under these conditions, (6) is uncoupled
and gives W =W, then r can be solved from Appendix equation (2a) as a constant (R). With
constant R, (4) and (5) define two curves on the y3-m; plane whose intersection specifies the
equilibrium values of y; and m;. Changing K;o shifts the curve corresponding to (5) and
hence the movement of the intersection point along the curve of (4). In order to obtain
analytical equilibrium solutions with varying Ko, (4) is solved numerically for m; at fixed y;
values using MATLAB function solver ‘fsolve’ with an optimization tolerance of 1e-4. Then
for each (ys3, m;) pair defined by the solution of (4), K¢ can be computed using (5) and %Zap70
phosphorylation using derivations in the Appendix. The equilibrium continuation curve,
shown in Fig. 5, indicates the corresponding steady-state %Zap70 phosphorylation with

respect to K.

16



% Zap70 Phosphorylation

2e-6 6e-6 8e-6

4e-6
K, (cell#)

Fig. 5. The equilibrium continuation curve with varying Ky, as determined by numerical solution of
equilibrium states, is provided by the dashed line. Solid lines indicate the variations in the steady state
obtained from model time course simulations by gradually increasing or decreasing K;, with a step size of
8e-8 taken far from and 1.6e-9 around the switch points. The system exhibits hysteresis. The dashed line is
entirely hidden by the hysteresis curve in the upper and lower branches while the visible dashed intermediate

branch suggests unstable solutions. Parameters are the same as those used in Fig. 3.

Comparing Fig. 5 to the time course simulation results in Fig. 3 implies the gap region
results from a switch from the upper branch of the equilibrium continuation curve to the lower
one. Moving the system along the lower branch (with gradually decreasing K,o) eventually
leads to a switch back to the upper branch. As the switch points are not equivalent for
increasing and decreasing Ko, this system exhibits hysteresis. These results imply that the
region between the two switch points (the intermediate branch of the curve) corresponds to
unstable equilibrium. Thus the switch points may be bifurcation points where an equilibrium

branch turns from stable to unstable. Therefore, this analysis provides insight into the

17



switch-like behavior of the system by revealing the possible the existence of bifurcation;
although its complete verification requires a bifurcation analysis, which can be performed with
professional software such as AUTO [12]. In Section 8, analysis of a reduced-order model
renders partial theoretical basis for the proposed changes in the system’s stability with varying
negative feedback strength.
(ii) No SHP-1 feedback:

In this case, the negative feedback is removed assuming the SFK* does not activate
SHP-1 (kjp=0). Under this condition, (5) is uncoupled and gives m;=0. Similarly for each
pair of y; and r determined by (4), K;; can be calculated from (6) with wy solved from (2a).

The generated continuation curve is very similar to that of Ko in Fig. 5 (and hence not shown).

7. Impact from the positive feedback loop

The analysis in Section 6 suggests that under certain conditions, the system can have two
stable steady states: one with a high activation level, and the other with a low activation level.
Such bistability usually happens with positive feedback. In this model, such a positive
feedback results from the enhanced SFK activity when bound to doubly phosphorylated Zap70.
Therefore, the system can reside either in a state where both SFK and Zap70 are highly
activated, or a state when both are weakly activated. One of the parameters dictating the
strength of this positive feedback is the activity of the bound form of activated SFK
(SFK*-Zapp) relative to free activated SFK (SFK*): o=ksn/ksi=kon/kor. Using a
procedure similar to that used to construct Fig. 5, a family of equilibrium continuation curves

of Kjp with varying o is shown in Fig. 6 (0@ was initially set to be three). This figure

18



demonstrates that the range over which the bistability occurs changes dramatically with o and

even disappears when o drops below a critical value between 1 and 2 (in which case, the

system has only one singular point with any K, value).

35

30t

% Zap70 Phosphorylation

Fig. 6. The equilibrium continuation curves with varying K, at different o values as determined by numerical
solution of equilibrium states. kgp=1/(1+a)x (K’sp+ k%), ksp=0xks s, where k% and k’%p are the

original parameter values in Table 3. Other parameters are the same as those used in Fig. 3.

Interestingly, with some values of o that cause the bistability to disappear, the presence of
the positive feedback loop can lead to the generation of a sustained oscillation that occurs
within an intermediate range of values of the negative feedback strength. The transitions
between sustained, oscillatory, and damped time course responses are illustrated in Fig. 7 for
selected values of Ky, a similar result exists for K;;. As really small values of o make the
positive feedback negligible and the system responds gradually to variations in the negative

feedback strength, these transitions between response types only happen for an intermediate

19



range of o. With these intermediate o values, the observed transitions between
non-oscillatory and oscillatory responses in Fig. 7 may be explained by the alternation of the
only singular point of the system between stable and unstable. The construction of a reduced

2" order model will help to further explore the origin of this behavior.
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Fig. 7. Model simulations with oi=1show the existence of sustained oscillations with intermediate values of

Kjo. Other parameters are the same as in Table 3.

8. Reduced 2" order model
As high order nonlinear systems are unwieldy, it is desirable to attempt to reduce the
order of the model to second order. This reduced order model will facilitate further analysis
and insight into the dominant regulatory principles embedded within the early signaling events.
From the previous analysis, the two negative feedback loops serve nearly identical roles
in the full model. Without loss of generality one of the negative feedback loops can be

eliminated to reduce the model to a 2™ order model by setting kg f1= ki =0 to eliminate the

20



recruitment of Csk and translocation of CD45. (In this case, the CD45-Csk feedback is
eliminated.) The signal downregulation by SHP-1 activation is slow compared to the fast
signal propagation through Zap70 and SFK activation (ko << kg or ks ¢in Table 3). Based
on the existence of these two distinct time scales in the system, the reduced-order model
assumes that everything except for Zapp (y3;) and SHP-1* (m;) (and the complementary Zap*
and SHP-1) are always at quasi-steady state. By assuming all of the rapid reactions are in a
quasi-steady state with changes in Zapp (y3) and SHP-1* (m,), the derivatives of y; and m, are

fully defined by (7) and (8) which originated from the full model (1):

dy N N R I

d_t3 =(ko (¥, +y; +X3) +ko X, +Ko3X5)Y, (7
—(mk,, +ky )y, _k4,f§(1}I3 + k4,r)’i3 _kS,r)’i2Y3 +k5,f§(3

dm N

d_t1=kl0,l‘x2(M1 _ml)_k|0,rm| (8)

where the quasi-steady state values of all of the other participating chemical species,
X, (1=0,1,2,3)and ¥,(i =0,1,2), are defined in the Appendix as functions of y3, m; andr. The
functional definitions of these quasi-steady states in the Appendix are derived from their
corresponding differential equations being set to zero as well as the mass conservation
equations as in Section 6. Recall, with the elimination of the Csk-CD45 feedback, r is a
constant value (=R). Hence the 2™ order model is fully characterized by these two equations.

Although the responses obtained from the reduced model differs from that of the
original model in the scaling of the time axis, some general features are preserved: this includes
the damped response in the case of large o values and the self-sustained oscillation with
smaller o values (compare insets of Fig. 8a and b with correspondent curves in Fig. 3a and Fig.

7, respectively). In order to understand the observed dynamics, the stability of the 2" order
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system was analyzed by linearizing it around the equilibrium points and computing the
associated eigenvalues to determine their stability. These equilibrium points were identified
by the intersection of the nullclines for (7) and (8) as shown in Fig. 8aand b. With varying Ko
values, the m; nullcline will shift and intersect with the y; nullcline at different equilibrium
points. Among those, the unstable equilibrium points are computed and indicated by the
dashed portion of the y; nullcline.

The presence of this unstable branch leads to the two distinct time course responses of
the model with different o values as seen previously. For large values of a, the phase plane
trajectory corresponding to the inset time course shows it stabilizes at one of the 3 equilibrium
points, giving rise to the damped response (Fig. 8a). The computed unstable region coincides
with the dashed branch in Fig. 5, suggesting the observed switches in the full model behavior
happens at the bifurcation points that separates stable from unstable equilibrium states. For
smaller o, sustained oscillation occurs as the trajectory is attracted to a stable limit cycle
surrounding the only unstable equilibrium point (Fig. 8b). When the changes in Ko value
causes the intersection between the two nullclines to enter the stable region, a switch between
oscillatory and non-oscillatory responses will happen as previously seen in Fig. 7 with the full

model.
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Fig. 8. Results with the reduced 2" order model. kjo=15e-10 (cell/(#-s)) (K;0=3.75e-6 cell/#), ki1 =Ken=0.
Other parameters are the same as in Table 3 unless specified. Nullclines are specified by the grey lines and
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equilibrium points with parameter values stated above. The insets of the figures show the corresponding time
course responses of Zap70 phosphorylated at Y319. (a) a=1; (b) a=3; (c) Comparison between slow
(dotted black lines) and fast (dashed-dotted black lines) downregulation rates with o=1. (With fast

downregulation rate, both ko and ko, are 100 times the values in Table 3 which corresponds to slow
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Consistent with the observations on the full order model to fit the experimental data,
analysis of the second order model indicates the necessity of a slow signal downregulation rate
as compared to signal propagation for appropriate model dynamics. This conclusion was
drawn from the observations that the stability of the system and phase plane of the responses is
sensitive to the rate of signal downregulation as characterized by kjor. When increasing the
rate of downregulation while keeping Ko fixed, the nullclines of the system remain the same
but the stability of the equilibrium points change. With o = 1, the unstable region (dashed
portion) completely stabilizes when the rate is increased by 100 fold that gives rise to the

transition from an oscillatory to a sustained response as shown in Fig. 8c.

9. Discussion

In this study a detailed kinetic model was developed for the early events in T-cell
antigen receptor signaling. This model was explored to extract quantitative information from
available experimental data to improve the understanding of the regulatory mechanisms
embedded within the pathway. The model was capable of generating damped responses of
Zap70 phosphorylation to sustained receptor phosphorylation as consistent with experimental
data. To generate this response, the model required an initial rapid cascade of phosphorylation
events followed by a comparatively slow downregulation regulated by the negative feedback
loops. While the rapid kinetics of kinases renders the ability to overcome the inhibitory effect
and produce an overshoot in the response, the slow progression of the negative signal
eventually adapt the system to the quiescent state. This difference in the time scales, essential

for model reduction as described, has been previously discussed by Grossman and Paul in their
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tunable activation threshold theory [20]. Consistent with the finding here, the authors
proposed that a rapid, cooperative “excitation”’combined with a slow “de-excitation” in the
general process of T cell activation gives rise to “excitability”, in other word, significant
overshooting of the responses.

Current opinion on T-cell activation hypothesizes that it requires the binding duration
of the TCR to its ligand be sufficiently long, known as the kinetic proofreading theory [34]. In
this work, it is assumed that this binding duration controls the degree of receptor
phosphorylation, the model input signal. The developed model predicts that the system
responds efficiently only when the input signal is above a certain threshold. Below this level,
the system is essentially insensitive to any stimulus. Thus, the thresholding effect enhances
TCR specificity and provides sub-threshold noise filtering of the signaling pathway to ensure
proper cell response. The importance of such a signaling threshold for T-cell activation may
play a role in mediating autoimmune diseases that are characterized by the generation of
inappropriate immune responses to self antigens. A decrease in the activation threshold may
deteriorate the TCR’s ability to differentiate self from foreign antigens, possibly leading to
autoimmunity [39].  The importance of the early T-cell signaling events in autoimmune
diseases has been implicated in Lck disregulation in T-cells from patients with systemic lupus
erythematosus (SLE) [23]. Supporting the importance of thresholding effects in the immune
system response, B-cell activation also seems to require a minimum affinity of engaged
antibody receptors [35].

As demonstrated, the model exhibits a switch-like behavior and hysteresis with

changes in the negative feedback strength. Nonlinear analyses verify the observed effect
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arises from the bistable nature of the model as a result of the positive feedback regulation loop
residing in the early phase of TCR signaling. Bistability is a common mechanism present in
cell signaling systems to achieve ultrasensitivity. This behavior has been most studied within
the MAPK (Mitogen-Activated Protein Kinase) signaling pathway. Ferrel and Machleder
demonstrated the MAPK pathway in oocytes operates as an on-or-off switch [15] and the
detailed MAPK model developed by Bhalla and Iyenger exhibited bistability in the presence of
positive feedback loops [5].

Since the positive feedback strength is partially dictated by the relative activity of
phospho-Zap70 bound to free active SFK in phosphorylating Zap70, this ratio (¢) becomes a
critical parameter of the system that determines the type of responses obtainable from the
model. While large as give rise to bistability, smaller ais may produce stable oscillations.
Although damped responses are typical for T-cell signaling as the cell has to eventually return
to its basal state after the activation, oscillatory behavior may exist as well for short time
periods. Existing examples of oscillatory signaling pathway responses include Ca** signaling
[46], cell cycle progression [51], circadian rhythms [30, 50], and possibly the MAPK pathway
as shown with some theoretical work [24]. Such oscillatory behaviors not only cause the cell
to alternate between different states as in the case of cell cycle progression or circadian rhythms,
but also may contribute to frequency modulated signaling processes such as nerve cell
Ca**/calmodulin-dependent kinase II activity [4]. As the current model focuses on the early
T-cell signaling events, it is possible that the predicted oscillations may only occur until
downstream events exert additional regulations. Some of our experimental results indicate a

second rising phase of the ZAP70 phosphorylation, which may progress into an oscillation (Fig.
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2). In fact, the observed oscillation type dynamics can be fit well with the full model for a
different set of parameter values of which the physiological relevance is under investigation
and will need further experimentation to validate. Verification of the ZAP70 phosphorylation
oscillations and the associated fitted model parameters will require additional experimental
measurements for extended time periods (beyond 120 minutes) with the ability to block all
possible effects from downstream signaling pathways (currently a MEK inhibitor is used to
block any potential ERK feedback to Lck [49]).

To the best of our knowledge, the current model is the first one that has investigated the
role of three known regulatory mechanisms in the early TCR signaling phase in detail: the
signal downregulation by SHP-1 activation and CD45 translocation, and signal augmentation
through enhanced SFK activity when associated with Zapp. Theoretical analyses in this paper
suggest that the interaction of these positive and negative feedback loops leads to interesting
system properties such as thresholding and bistability. According to Grossman and Paul’s
tunable activation threshold theory, the competition between positive and negative feedback
loops allows dynamic modulation and adaptation of T cell’s responses to hierarchy of ligands
[20]. This theory was previously interpreted through the experimental evidence that a positive
feedback regulation from the downstream effector Erk that suppresses SHP-1 activity
contributes to the differentiation between agonist and antagonist peptide ligands [36, 49].
Here our findings demonstrate that even the top module of the signaling pathway alone
encompasses the capability of ligand discrimination through the cooperative and counteracting
activities of membrane-proximal protein tyrosine kinases and phosphatases. The importance

of such kinase-phosphatase balance in T cell signaling has been supported by experimental
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evidence [44].

The presence of multiple feedback regulation loops enabled the model to exhibit a large
variety of dynamics with relatively small changes in the parameter values (within an order of
magnitude). The feasible set of dynamics include sustained responses, damped responses,
stable self-repeating cycles, and others not shown. This diversity of dynamics is not
unexpected given the variability found in all biological systems. In E. coli, more than 50%
cell-cell variation can be found in the gene expression under the lac promoter due to intrinsic
noise in biochemical processes [13]. Since the presented experiment results were obtained
with populations of T-cells, the variations of individual cell responses were eliminated by
averaging. However, the population average and single cell results can differ widely as
evidenced by a study of individual oocytes [15]. Although optical interrogation of individual
T-cells is feasible for some signaling components such as Ca™, conducting biochemistry
experiments to quantify the response of an individual cell is not yet feasible. Hence the
presence of such variability in T-cell signaling needs further experimental confirmation, ideally
though single-cell measurements.

The model and approaches presented in this paper can be utilized as a framework to study
the contributions of other possible regulatory mechanisms such as protein degradation induced
by Cbl [33, 38]. Furthermore, extended models that incorporate downstream as well as
costimulatory signaling pathways can be constructed to investigate the cellular control scheme
implemented through feedforward and feedback regulations to and from downstream signaling
pathways, and signal modulation by pathway crosstalk. Notice that as the scale of the system

grows, the simple nonlinear analysis method employed in this paper becomes inefficient and
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the usage of professional software such as AUTO is inevitable. When integrated with and
validated by available experimental data, these models and analyses will eventually become
reliable prediction tools that potentially can be used to design treatments for diseases arising

from defects in T-cell signaling pathways.
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Appendix
This appendix uses conditions V;=0,=Vg=V7=Vg=V9=D10=V11=0, -V3=V4=V5 and the mass
conservation equations in (3) to specify all the rest state variables in the model as functions of
the ‘basic’ variables (y3, m; and r) and derives the equations (4), (5) and (6) in the paper.
As the different species of SFK (x;, i=0,1,2,3) must satisfy the conservation of mass,
Xo+X1+X2+X3=Xy, it is possible to write them as fractions of the total (X;) from V,=0, —03=V4=Vs.

This specifies X, X1, X2 and X3 in terms of y3, m;, and r:

0
X,=—X =X ,m,,r
0 1+0+0+6 t o(Y3 1 )
X :71 X =X (y m r)
Yoltg+e+e b T )
o .
X,=—X, =X ,m,,r
2 1+0+0+0 t 2(Y3 1)
(0] N
X,=—X =X ,m,,r
3 140+0+0 t 3(}’3 1)
_ k3,fk4,r +k4,fk5,fY3 +k5,fk3,f
q)_ 1 1 /,,, \ 1 1 < v 1 1 /,,, \
Kspks ANy JT Ky (Ks Yy 7Ky Ky AL )
o=y k;, (ml)k4,f +k, ks, ys Hkg ks
in which: ’ Kseks, (ml )+ k, ks, y;+k, ks, (ml) .
k
e — 2,r
k, 1
ks, (m1 ) =mKk,,, +k;,

Conditions V6=v7=0 and the mass conservation of all Csk and Cbp species (zg+z+v =2,

vo+v1=V;) define the dependence of wy on y3, m;, and r (when v is replaced with wo/r,):
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[%—l]woz +(Zl +V, +L]w0 —-1Z,V, =0 (22)
K, K4 (y;,m,r) r K,

Ko X, (ys.my,0)+Kep, kg,
k6,r kr,7

where KG(y3,m,,r)=

Assume the solution to (2a) gives: w, = W,(y,,m,,r).

The relationship of all the forms of Zap70 (y;, i=0,1,2,3) can be written in terms of y3, my,
and r by simultaneously satisfying v;=0, Vg=0, Vy=0 and the conservation of mass
(Yot+y1+y2+y3+x3=Y). From vg=0, y, can be written in terms of yj, y3, mj, and r, utilizing the

relationships in (1a) as:

(k X, ke, X )y %
8,f172 8273771 Kg(xzax3,m1)Y1:KS(Y3’m1’r)Y1 (3a)
mk,  +k

178.rl

Y. =

8.r2
To satisfy v1=0, yy is specified in terms of y;:

kl,ryl

k., =0 (4a)

o, +(2u-Y,)y, -

Utilizing the conservation of mass (yo+yi+y2+ys3+x3=Y,) and (3a), y; can be expressed as a
function of yy, y3, m;, and r to yield:

_ Y —Yo— Vs _§3(Y3am1,1’)

\2 = (5a)
Kx(Ys’ml’r)"'l
Substituting (5a) into (4a) provides a quadratic equation of y, for any fixed y3;, m; and r:
k k, (Y —-y,—X ,m,,r
yoz H2u-Y, 4= Lr Vo — l,r(~[ ys3 3(}’3 1 )) -0 (6a)
(KS(y3’ml’r)+1)kl,f (KS(Y3’ml’r)+1)kl,f

As the amounts of these chemical species must be non-negative, the quadratic equation has
only one solution of relevance: its positive root. With the solution of (6a) for yg in terms of
y3, m; and r, (5a) and (3a) specify y; and y, as functions of y3, m; and r as well. Let the

resultant expression of yo, y; and y, be ¥,(y;,m,r), ¥,(y;,m,r), y,(y,,m,1),
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respectively. To derive for a relationship between y;, m; and r, substitute y, with

¥,(y,;,m,,r) in the constraint imposed by condition v9=0. This yields:

. . Kopr o Kops o .
(}H +Y2(Y3’m1’r)+X3(Y3’ml’r)+ = Xz(Yz’ml’r)+£X3(Y3’ml’r) Y2(Y3sm|’r)
9,f1 o.f1
(7a)
_ (mlk‘),rl +ko,, )Y3 -0
Ko )

(8a) defines the first relationship between the values of y3;, m; and r at equilibrium.
Two additional equations on y3, m;, and r come from the conditions v;o=0 and v;;=0, and
the mass conservation of SHP-1 (m;) and CD45 (w;). Derived from v,9=0 and myp+m;=M,, (8a)

specifies a relationship between y3, m; and r:

m
1
M, —m, = ~ , where Kjo=kio /kior (8a)
K%, (y;,m,,r)

Since the solution to (2a) yields wy as a function of y3, m;, andr: w, = \i/o(y3, m,, r) , V11=0 and

wo+w =W, sets the third constraint on y3, m; and r:

W, —\X/O(y3,m,,r)

Wo(y3,ml,r): , where K=k ¢k (9a)

K, %,(y,,m,,r)

(7a), (8a), and (9a) correspond to equations (4), (5) and (6) which define all possible
values of y3, m; and r at equilibrium. Using these three values, the equilibrium values for x;s
can be derived from (1a), y;s from (3a), (5a), and (6a) and wy is determined from (2a), with

which v; is computed from rxwy. From the above values, the equilibrium state of zy can be

solved using v7;=0 and zp+z;+v,=7Z; as 7, = Z,~Vi  and those for the rest of the variables (vo, mo,
1+K,

w1 and z;) are found by direct application of the conservation of mass relationships. Hereby

the equilibrium states of the model are fully specified.
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