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Abstract 

Identifying parameter values in mathematical models of cellular processes is crucial to 

ascertain if the hypotheses reflected in the model structure is consistent with the available 

experimental data.  Due to the uncertainty in the parameter values, partially attributed to the 

necessary model abstraction of any cellular process, parameters are pragmatically estimated by 

varying their values to minimize a cost function that represents the difference between the 

simulated results and available experimental data. Local searches for these parameter values 

rarely result in an adequate fit of the model to the experimental data since the optimization gets 

caught in a local minimum near the initial guess.  Typically, larger regions of the parameter 

space must be searched for acceptable parameter values to support model simulations that 

replicate the experimental data.  Most of these global algorithms use stochastic sampling of the 

parameter space; however, these methods are not computationally efficient and cannot guarantee 

convergence. Alternatively, adaptive sparse grid-based optimization samples the parameter space 

in a more systematic manner and employs selective evaluations of the cost function at support 

nodes to build an error-controlled interpolated approximation of the cost function from basis 

functions. The search for the global minimum is performed on the surrogate interpolant rather 

than relying extensively on simulations of the model; this tends to be more computationally 

efficient for smooth, continuous models.  Additional insight is provided by the cost function 
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mapping on the parameter space, which can be useful for evaluating and refining the model and 

parameter identification problem. This chapter describes the methods to create and use an 

adaptive sparse grid and interpolant to find parameter values, including an example that 

demonstrates that this method performs more accurately, consistently, and efficiently than the 

genetic algorithm, a standard global stochastic optimization method. 

 

Introduction 

Increasingly, mathematical models are being used to provide insight into cellular 

processes [1, 2].  The construction of these models is hampered by the sheer number of 

participating chemical species, the uncertainty and complexity of the interconnected signaling 

networks, and the complicated regulation of the genetic events within a living cell. Out of 

necessity, the model structure must explicitly represent only the dominant events and processes 

for a specific application.  Determining the dominant events and processes a priori is usually not 

trivial; hence, the first step of determining if the model structure is suitable for the specific 

application typically depends on finding model parameters that produce simulations consistent 

with available experimental data and observations.   

Most model parameter values are not known accurately, due to both experimental issues 

and omission of non-essential process details in the model. Experimentally, it is difficult to 

measure the concentrations, rates, diffusion, etc. of elements within a living intact cell [3-5]. 

Enzyme-substrate association constants and kinase activity rates can sometimes be determined in 

a test tube, but there is no guarantee that these rates are the same when inside a crowded cellular 

environment [6].  Furthermore, the inevitable abstraction of the process being modeled causes 

the majority of model parameters to incorporate the net effect of a multitude of events. As a 
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result, parameter values typically can be determined only through optimization that minimizes 

the difference between the simulated model output and the experimental data. This process is 

straightforward for linear models through linear programming. However, most optimization tools 

are challenged by these models since they can be highly nonlinear. 

In rare cases where very good estimates of parameter values are available, a local search 

can be adequate to find parameter values that minimize the differences between model 

simulations and experimental data, which is quantified as the value of a cost function. A local 

search starts from an initial point and finds the direction that allows the largest decrease in 

model/data mismatch. The search ends at the nearest minimum in that direction, shown in Figure 

1. As Figure 1 demonstrates, the result of the local search is dependent on the initial point. Two 

of the three example points are caught in the nearest local minimum, a consequence termed the 

local minimum trap. If possible, a local search will modify the parameter values from the initial 

set to improve fitting; however it cannot move out of the local minimum trap to find a global 

minimum. In contrast, global searches consider the entire parameter space when locating the 

global minimum.   

 

 
Figure 1: This plot illustrates the concept of a local minimum trap for a one-dimensional parameter space. 
A local search of this space is initialized at three different points: A, B, and C. Searches starting at points 
A and B will find a local minimum of the cost function, while a search starting at point C results in the 

global minimum. 
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Many global optimization methods can be used to solve the parameter identification 

problem but these can also suffer from the local minimum trap as well as from poor convergence 

rates [7] and are computationally costly.  For a subset of systems, the problem can be solved 

using deterministic optimization methods that transform the problem into a convex function or 

the difference between convex functions [8]. In these systems, achieving the global minimum 

can be guaranteed [7, 8]. As the applicability of these deterministic strategies is limited for 

complex, nonlinear models, many researchers resort to global optimization techniques that 

sample the parameter space in a stochastic manner. Existing popular stochastic methods include 

simulated annealing, genetic algorithms (GA) and multiple shooting strategies. The GA, for 

example, uses evolution-based strategies to modify a population of parameter sets, with a higher 

probability of keeping sets with high fitness (low cost function values) than those with low 

fitness; the retained parameter sets become parent sets that are randomly combined to create 

children sets for evaluation in the next iteration [9].  Due to the probabilistic nature of these 

stochastic methods, the parameter set values and corresponding cost function value can vary 

considerably from run to run. In addition, these stochastic global optimization methods are 

computationally expensive and do not necessarily converge to a solution; hence, it can take a 

long time to discover that no solution exists. 

Alternatively, the entire parameter space can be searched using a grid algorithm. Grid 

algorithms divide the parameter space in a patterned manner and evaluate the cost function at 

each grid point, see Figure 2.  Local or global searches can be initiated from one or more of the 

best grid points to find acceptable parameter estimates. As the dimension of the uncertain 

parameter space increases, the number of model evaluations required to cover the entire space 

increases exponentially for optimization with an evenly spaced (full) or pseudo-randomly spaced  
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A. B. C.  
Figure 2: Examples of grids sampling a two dimensional parameter space.  A. latin hypercube sampling 

B. full uniform grid C. Chebyshev sparse grid, generated with the Sparse Grid toolbox [10]. 
 
 

(latin hypercube sampling, LHS) grid [11]. Randomly spaced samples are not recommended due 

to inefficient clustering at some areas and inadequate sampling at others. However, adaptive 

sparse grid schemes avoid this exponential increase in points by selective positioning of support 

nodes. 

Adaptive sparse grid interpolation  

Recently sparse grid interpolation approaches have been developed that support 

deterministic global optimization for the minimization of functions with bounded mixed 

derivatives [12].  These methods are currently being refined for efficiently solving large 

dimension problems, more than 10 uncertain parameters [13]. Sparse grid interpolation 

techniques were originally developed to reduce the computational cost for multivariate integrals 

[11, 14, 15]. A thorough review of sparse grid-based interpolation and integration is given in 

[16].  

Adaptive sparse grid-based optimization utilizes the error-controlled interpolant as a 

surrogate of the cost function to search for the minimum.  The process for optimizing with sparse 

grids requires model evaluations at selected grid points (support nodes) strategically positioned 

within the uncertain parameter space.  An interpolated function is created by combining basis 

functions at the support nodes to approximate the cost function evaluated over the entire 

uncertain parameter space.  The search for the best parameter values is performed on the 
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interpolated function. Typically, a search along a polynomial-based interpolation function is 

significantly faster than a search involving repeated numerical integrations of a model, see 

Figure 3. Using sparse grid interpolation, the number of actual model evaluations is limited to 

just the number of support nodes.  However, since the sparse grid technique relies on an 

approximation, the best results are usually obtained if a local search using the actual model is 

performed starting from the optimal values identified by the interpolation function. 

This adaptive sparse grid-based optimization approach and its computational efficiency 

rely heavily upon the construction of the interpolating function and selection of the support 

nodes.  In brief, the construction of the interpolating function is based upon the tensor products 

of a univariate interpolation of the function, f, at the support nodes, k ki ix χ∈ for [ ]1,k d∈ , with a 

basis function, ix
a : 
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A.  B.  C.  
Figure 3: Comparison of meshes created by actual cost function evaluations and from an interpolated cost 

function for a two-parameter search of a MAPK model [17]. A. This mapping of the cost function was 
created from a 100x100 evenly spaced grid of parameter sets, for a total of 10000 model evaluations. A 
local search on the best mapping point returned the actual parameter values, with an additional 18 model 
evaluations. B. The 53 adaptive sparse support nodes used to create the interpolated function, generated 
by the Sparse Grid Toolbox [10]. C. An evenly spaced 100x100 grid of parameter sets was created and 

evaluated by the interpolated function, creating an identical mapping to A that only required the 53 model 
evaluations used to create the support nodes.  A local search from the best support node took an additional 

66 model evaluations to return the actual parameter values. 
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In the sparse grid approach introduced by Smolyak, the interpolating function is obtained by 

summing a selected set of such tensor products.  The computational efficiency of this method is a 

result both of the fact that this selected sum requires a relatively small set of support nodes and 

the fact that the sets of support nodes are nested as the interpolation depth increases.  This 

nesting property greatly reduces the number of required function evaluations by reusing the 

support nodes upon increased sampling refinement of the grid for a higher interpolation depth. 

The interpolation depth is the degree of the polynomial, k, which the univariate interpolation 

function can exactly match.   

It has been shown that the error of the interpolating function strongly depends upon the 

degree of the bounded mixed derivative (smoothness) and is a weak function of the dimension of 

the problem, ( )( )( )( )1 1
log

k dkO N N
+ −− , where N is the number of function evaluations performed 

on the sparse grid at the support nodes [15].  Hence these methods are considered nearly optimal 

(up to a logarithmic factor) [15] and are significantly better than those of quasi-Monte Carlo 

algorithms, ( )( )1 log
d

O N N− [18]. A uniform sparse grid cannot avoid a logarithmic dependence 

of the error on dimension; however, adaptive sparse grids sample most along the dimension of 

greatest importance as ascertained by the ability of samples in that direction to decrease the 

estimated interpolation error (Figure 4) [18].  This “problem-adjusted refinement” [19] most 

effectively reduces the computational costs for the optimization on models whose roughness is 

confined to a subset of the dimensions of the uncertain space and it does no worse than the 

uniform sparse grid methods.  This adaptive sparse grid-based optimization method is 

deterministic so the numerical values of the identified parameter values and the quality of the 

results will not differ from one run to the next.  Furthermore, it is anticipated that the quality of  
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Figure 4: Examples of two-dimensional adaptive Chebyshev sparse grids, with increasing degree of 

adaptivity from left to right, generated with the Sparse Grid toolbox [10]. This figure demonstrates that 
the parameter along the x-axis is more important to decreasing interpolation error than the parameter 

along the y-axis. 
 

the results will improve with an increased sample size since the error of the interpolant 

approximation of the cost function mapping on the parameter space decreases with large N. 

 

Experimental Design 

The method described in this chapter will determine, in a relatively efficient manner, the 

optimal parameter values to fit a model to all available experimental data. A number of factors 

must be considered to formulate the problem as a parameter identification experiment utilizing 

sparse grid based interpolation.  These factors involve ascertaining the dimension of the 

uncertain parameter space, the size of the uncertain parameter space, the form of the cost 

function, and the selection of the basis functions for the interpolating function.  The dimension of 

the uncertain parameter space must be determined; that is, the number of parameter values to be 

found needs to be established.  It is desirable to keep this dimension as small as possible; initially 

assign the parameter values for which reasonable estimates exist. For instance, total numbers of 

molecules or concentrations of certain elements may be experimentally established or obtained 

from other published models. In cases where there are too many parameters for which there is no 

good estimate of their values, the dimension of the problem can be reduced by conducting a local 

or global sensitivity analysis [20] about some initial starting guess to ascertain which parameters 

should be targeted for fitting the data (see Troubleshooting) [21, 22]. The initial starting guess 
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values can be roughly estimated by back-of-the-envelope calculations or obtained from 

published models of similar reactions or processes. Parameters with the lowest sensitivity ranks 

can be neglected and fixed at these initial guesses. For each remaining parameter, which will be 

labeled as ‘uncertain,’ an estimated initial search range must be provided.  The product of these 

search ranges defines the span of the uncertain parameter space. Our experience has found that 

using a search range encompassing an order of magnitude below and above an initial guess will, 

in most cases, be large enough.  The search for the potential parameter values should typically be 

conducted on the log of the uncertain parameter space to more equally spread out the support 

nodes over the ranges, which vary in orders of magnitude.   

For parameter identification, the optimization problem typically minimizes a cost 

function that penalizes differences between the model simulations and the experimental data. The 

most commonly used cost function, when quantitative experimental data is available, is the 

weighted least square error: 

2
,

1 1

ˆ( ) log( [ ( , ) ] ),
jnq

ij j i j i
j i

F p w y p t y
= =

= −∑∑     (1) 

where q is the number of  states with experimental data, nj is the number of experimental time 

points for state  j, ,ˆ j iy is the data for state j at time i, ( , )j iy p t is the simulated model output for 

state j at time i for parameter set p, and wij is the weight for that point. For this construction of 

the cost function, it is important that the simulated data, ( , )j iy p t , be converted into the same 

units as the experimental data, ,ˆ j iy , i.e. numbers of molecules, concentration, percent of total, 

etc. The weights are used to normalize and/or incorporate confidence information in the data 

points; the confidence in the experimental data is typically taken into account by making the 

weights the reciprocal of the standard deviation of the experimental data at each time point and 
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state, while the maximum value of the data or simulations for each state is typically used when 

the values of the states differ significantly in magnitude. When quantitative data is not available, 

a qualitative cost function can be constructed that, on a smooth scale, penalizes or rewards 

attributes of the simulations. It is important that the cost function be continuous in order for the 

interpolating function to approximate it accurately without large numbers of support nodes.. 

Abrupt jumps due to, for instance, if-else statements will severely increase the interpolation 

error, as the cost function is interpolated with continuous basis functions. It is also recommended 

to search over log space; taking the log of the cost function will increase its smoothness. 

 A wide variety of different basis functions can be used to support the construction of the 

interpolation function on the sparse grid including piecewise linear, Chebyshev polynomials, 

polynomial chaos [23], and multi-wavelet formulations [24]. Though the choice of basis function 

changes the placement of the support nodes, the construction of the interpolant is the same. 

Barthelmann et al compared the two most popular basis functions: piecewise linear and 

Chebyshev polynomial interpolation [15].  They concluded from theory and computation that if 

the function to be approximated is three (or more) times differentiable, then polynomial basis 

functions are better in the sense that the interpolation converges to the correct answer more 

quickly as the number of support nodes increases. If the function to be interpolated is 

discontinuous, then convergence is slow for both. In general, the authors recommend Chebyshev 

polynomial interpolation [15]. Therefore, this chapter is written from the assumption that 

Chebyshev interpolation will be used.   
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Materials 

 The materials needed to apply this adaptive sparse grid-based optimization method for 

model parameter identification from available experimental data are described in Table 1. The 

specific implementation discussed in this chapter requires MATLAB® and the Sparse Grid 

toolbox (http://www.ians.uni-stuttgart.de/spinterp) [10]. However, this method can be 

implemented with alternative coding packages, such as C++. Therefore, the required materials 

are described generically, with specifics provided in parentheses.  

For the examples in this chapter, a published four state, ordinary differential equation 

(ODE) model [25] of the mitogen activated protein kinase (MAPK) cascade was used. For these 

illustrations, mock experimental data was generated by model simulation.  The mock data 

consisted of seven time points of the simulations for two of the four states.  

 

Table 1: Materials needed for optimization with adaptive sparse grid interpolation 
 Implementation (with specifics provided in parenthesis) 
Hardware Computer capable of running preferred model simulation software (MATLAB®) 
Software Simulation software (MATLAB®) 

Adaptive sparse grid algorithm (The Sparse Grid toolbox [10], installed, initialized, 
and modified slightly to store the best grid point for future use:  the function 
spcgsearch was modified by inserting the code 

pb = x; 
cf_pb = fprev; 
save pb pb cf_pb 

at line 106, which is immediately after the lines: 
% Determine optimization start point 
[x, fval] = spgetstartpoint(z, xbox, options); 
fprev = fval; ) 

A local search algorithm such as the conjugate gradient method (fmincon) 
Model 
code 

Model and cost function files written in preferred software format (m-files).  These 
files should output the cost function value for the model evaluated at a given set of 
uncertain parameter values.    

Data Experimental data to fit uncertain model parameters. A local and global sensitivity 
analysis can help ascertain if the data available is sufficient to identify uncertain 
model parameters [21, 22]. The data must be accessible by the preferred software 
(.mat file).   
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Methods 

 The general method for parameter identification with sparse grid-based optimization is 

outlined below with example code provided in Figure 5 using MATLAB® and the Sparse Grid 

Toolbox [10].  

General Procedure: 

1. The objective of step 1 is to specify the range over which the search will be conducted 

for the uncertain parameter value in each dimension. Create a matrix containing the 

lower bound and upper bound for each uncertain parameter (typically, an order of 

magnitude lower and an order of magnitude higher than the initial point, respectively).  

Specific: The matrix should have size 2d ´  where d  is the dimension, the number of 

uncertain parameters. 

2. The objective of step 2 is to select the basis function type and establish the desired grid 

size and type. As the support node locations are a function of the basis functions used to 

create the interpolating function, the basis function type must be indicated.  To constrain 

the computational time, we recommend setting the maximum number of grid points to 

50-500 times the number of uncertain parameters, depending on how long the model 

simulations take. One could instead specify a minimum interpolation error to achieve, 

but this method could take a significant number of model evaluations, which is unknown 

a priori. We highly recommend enabling dimension adaptivity since the computational 

effort required is no worse than that for a uniform grid, but for some models it can be 

significantly more efficient.  The degree of adaptivity can be modified to ensure a 

moderate coverage of the uncertain parameter space if desired.  Specific: Use spset to 

set these options.  
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Figure 5: Example code for implementing optimization with adaptive sparse grid interpolation using the 

Sparse Grid toolbox [10]. 
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3. The objective of this step is to evaluate the cost function value at each support node and 

to use these values to create the interpolating function.  This requires an iterative 

solution to add and locate the support nodes in the sparse grid to continuously improve 

the accuracy of the interpolating function to the cost function value until the maximum 

number of grid points has been reached or minimum relative or absolute error tolerance 

has been achieved. In addition, sort the grid points by cost function value (low to high) 

and determine the number of unique points per parameter. The sorted grid points and 

number of unique points can be used for further analysis. Specific: Use spvals to 

construct the grid and the interpolating function from the basis functions, and use the 

sort function to sort the grid points.  

4. The objective of step 4 is to use the interpolated function from the previous step to 

estimate the ‘optimal’ parameter set. A search is performed on the interpolated function, 

which serves as a surrogate for the cost function, to find the optimal parameter values 

that minimize the interpolated estimate of the cost function. Specific: Use the appropriate 

search function for the basis functions selected: spcgsearch for Chebyshev 

polynomials. This algorithm will find the grid point with lowest cost function and run a 

local search on the interpolated function about that point. The result of this search we 

will denote as ip , which has an interpolated cost function ofpicf . 

5. The objective of this step is to refine the sparse grid interpolated ‘optimal’ parameter set, 

ip , by searching for the nearest minimum of the actual cost function about the ‘optimal’ 

point found in step 4. A local search using the original cost function and model is 

performed about ip . This will result in a candidate parameter set we will denote as ilp , 
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with a cost function of pilcf .  Specific: run fminunc from ip , calling the cost function 

file. 

6. The objective of step 6 is to identify an alternative candidate for the ‘optimal’ parameter 

set by starting from the support node with the lowest cost function value, which we 

denote as bp , which has a cost function ofpbcf . Load the data file containing the best grid 

point, and, if the point differs from the returned optimal point, run a local search using 

the original cost function aboutbp . This will result in a candidate parameter set we will 

denote asblp  with a cost function of pblcf .  Specific: load the data file pb.mat and run 

fminunc from the point, bp , calling the cost function file. 

7. The parameter set from these two local searches with the lowest cost function value is 

considered the optimal parameter set:* il pil pbl

bl pbl pil

p cf cf
p

p cf cf

<
=  <

.   

8. Examine the resulting simulation for consistency and feasibility (i.e. both quantitative 

and qualitative fit with experimental data).  The objective of this final step is to confirm 

that minimizing the cost function resulted in an acceptable fit to the experimental data. If 

the fit is acceptable, the optimization process is complete.  

9. The objective of step 9 is to search in other areas of the cost function space with low 

values, besides the one containing the best support node, if step 8 is not successful. 

Determine the distance between the sorted grid points with the lowest cost function 

values (for instance, the lowest 1%), where distance can be defined as the sum of the 

absolute percent change in each parameter over all parameters. Run local searches on the 

cost function from the points with the farthest distance from the best support node. If one 

of these searches results in an acceptable fit, the optimization process is complete. 
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10. If step 9 is unsuccessful, consult the Troubleshooting section and consider increasing the 

number of maximum grid points by two to ten times and return to step 2. 

 
Data Acquisition, Anticipated Results and Interpretation 

 The anticipated result of the method described above is a parameter set that acceptably 

fits the available experimental data.  Whether or not the returned parameter set is adequate, the 

function spvals of the Sparse Grid toolbox [10] returns a structure containing a significant 

amount of information that may be helpful for understanding  the returned ‘optimal’ set of 

parameter values as well as  information about the  cost function values mapped onto the 

uncertain parameter space.  This information includes the number and locations of the grid 

points, the cost function values at those points, the minimum and maximum cost function values, 

the degree of adaptivity, estimated errors, and the computational time. From this information, it 

takes only a few extra steps to extract other useful information, namely the sorted grid points and 

unique points. 

 
Sorted grid points 

Grid points sorted from lowest to highest corresponding cost function value are returned 

in step 3 of the Methods (see Figure 5).  Reviewing these points as a sorted list can provide some 

insight.  For instance, this method can reveal disparate, equally valid areas of the uncertain 

parameter space, as shown in Figure 6.  In this example, three parameters of a MAPK model [17] 

were fitted to an incomplete data set, consisting only of the MAPK data (red in Figure 6B). The 

resulting three-dimensional grid of the cost function values on the parameter space indicated two  



 17

A. B.  
Figure 6: An example of a three-dimensional search of a MAPK model [17] that revealed two parameter 
sets that fit the mock data equally well, but predicted different dynamics for another model element. A. 
Three-dimensional adaptive grid, generated with the Sparse Grid toolbox [10] and color-coded by cost 
function (red: high, blue: low). The two, circled areas have similar cost functions when only the mock 
MAPK data is fitted. B. Simulation results with parameter sets from each ‘optimal’ area (solid: center 

area, dotted: right area). While three of the four state simulations (red: MAPK, green: Raf, black: Rkip) 
are similar, different MAPKK (blue) dynamics are predicted, suggesting that MAPKK data would be 

required to distinguish between the two parameter sets. 
 
 

disparate regions with equally low cost functions (circled in Figure 6A). Simulations with a set 

of parameter values from each space (Figure 6B) were nearly identical for three of the four 

states; however, the simulation of MAPKK (blue) showed a distinct difference in its peak. This 

information suggests that in order to determine which, if either, of the parameter sets are valid, 

experimental data for the MAPKK, particularly at the 15-minute time point, is required. The 

sorted grid points can be used to determine the size of the parameter space that results in 

acceptable dynamics, termed the acceptable space, which can reveal properties of the model, 

such as the amount of confidence that can be placed in the chosen parameter values [26, 27]. In 

addition to the above example, as noted in Methods, step 9, in the event that the returned 

parameters were not adequate, the sorted grid points can provide alternative starting points for 

additional local or global optimizations that can refine the solution. 
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Unique points 

 With adaptive sparse grids, the number of unique points is the number of distinct 

locations of grid points along a parameter direction. This value can be obtained by applying the 

MATLAB® unique function to a parameter’s grid points (see Figure 5, step 3). For three or 

fewer dimensions, the number of unique points can be seen by plotting the grid, as shown in 

Figure 7. Unique points correlate with each parameter’s importance to increasing the accuracy of 

the interpolant. This information is valuable because it demonstrates which parameters required 

the highest resolution for the interpolation. A use for unique points in aiding the optimization 

process is described in Troubleshooting under ‘Large problems’ and demonstrated in the 

Application Notes. 

 

Unstable points 

 In the process of creating the sparse grid, the algorithm may return, or end with, 

integration errors when the model is integrated with particular parameter sets. In some cases, this 

 
Figure 7: This adaptive sparse grid (generated with the Sparse Grid toolbox [10]) of a three-parameter 

search of a MAPK model [17] demonstrates the concept of unique points. The parameter on the z axis has 
three unique points, the y parameter has five, and the x parameter has 513. The points are color-coded by 

cost function (black and red: high, blue: low). 
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error may be due to improper range setting (see Troubleshooting) for certain parameters. For 

instance, a certain search range could allow a parameter to be a value that results in a division by 

zero. These unstable points should be carefully evaluated as they often reveal weaknesses in the 

model structure that may need revision to ensure the model is stable over the allowable 

parameter ranges.  

 

Interpretation and Conclusions 

 As stated above, if the optimization process is successful, one can conclude that the 

parameter values found are adequate for fitting the model to experimental data. However, one 

cannot conclude that these values are physically correct or even unique. If the process is 

unsuccessful, one should examine the model structure to determine whether or not it is capable 

of recreating experimental data. One method for examining model structure is a parameter 

sensitivity analysis. Conducting a sensitivity analysis not only quantifies the sensitivity of the 

output with regards to the model parameter values but also provides information for directing 

parameter fitting [21, 22]. The output of a sensitivity analysis helps to identify dominant 

processes or elements and recognize events/elements that can be considered negligible, including 

parameters whose values have little impact on fitting the experimental data [21, 22]. 

 

Troubleshooting 

For the cases where the methods described above do not result in a parameter set that 

allows the model simulations to acceptably fit the experimental data, Table 2 lists some 

suggested approaches to deal with common issues. In addition to these general 

recommendations, there are two special cases that are also considered:  small (less than or equal  
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Table 2: Common issues with adaptive sparse grid-based optimization and suggested solutions 
Issue Suggestion(s) 
Method takes too long Decrease the number of maximum grid points or the number of 

evaluations allowed by the local search algorithm. 
Method returns 
integration errors 

Examine parameter ranges: typically, certain parameters cannot be 
zero. Have parameter values automatically recorded when integration 
errors occur and then examine them to determine areas of instability. 
As appropriate, alter parameter ranges to avoid these areas or modify 
the model structure to eliminate the problem. 
Do not artificially set the cost function to an arbitrarily high value 
when these points occur, as this will interfere with the adaptive 
algorithm and with the interpolation. 

Parameter sets with low 
cost function values do 
not result in a fit to the 
data 

Redesign the cost function to more accurately reflect the data. 
Consider changing the weights of the LSE cost function or adding 
qualitative goals to the cost function. 

Method returns lower or 
upper bounds for some 
parameters 

Expand the ranges of these parameters beyond the boundaries, if 
possible. 

Method does not 
produce an acceptable fit 

Increase maximum number of allowable support nodes. 

Decrease the problem dimension. Run a global sensitivity analysis, 
such as extended FAST [28]. Fix the least sensitive parameters at the 
best guess and search for the remainder. 
Consider an alternative model structure: the current structure may be 
incapable of producing the desired dynamics. 

 
 

to three uncertain parameters) and large (10 or more uncertain parameters) problems, since 

certain trouble-shooting techniques are more helpful, or only applicable, to problems with 

specific dimensions of the uncertain parameter space. 

 

Trouble-shooting special cases: small and large problems 

Small problem: three or fewer parameters 

1. The objective of this step is to make use of the ability to visually inspect the cost 

function in the parameter space when the space has three or fewer dimensions. The cost 

function itself can be visualized using a mesh for two-dimensional problems and a plot 
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for one-dimensional problems, and the grid can be visualized for one to three 

dimensional spaces using a scatter plot. Visually examine the sparse grid (in the one, 

two, or three dimension case) and the cost function plot (in the one or two dimension 

case): 

a. Sparse grid: Evaluate the interpolated function at each of the grid points and then 

plot the results. Specific:  use scatter or scatter3, with the color of each 

point corresponding to the cost function value at the point. 

b. Create a one or two –dimensional mapping of the cost function. Specific: use 

plot or mesh as appropriate. 

2. The objective of this step is to analyze the plots from step 1 to determine whether or not 

an appropriate search space was used. For instance, in the example of a two-parameter 

search of a MAPK model [17] shown in Figure 8 A-C, it can be seen that the optimal 

point is beyond the lower bounds for both parameters. Both the mesh and the grid 

suggest that the ranges should be shifted down. In the next search, the ranges were 

corrected and the results are shown in Figure 8 D-F. The improvement in fit can be seen 

in the simulation results (Figure 8D). Therefore, for this step, analyze the plots and 

update the parameter ranges as needed. If nothing can be concluded from the plots, refer 

to the Troubleshooting table. 

 

Large problem: 10 or more parameters 

This Troubleshooting solution takes advantage of the information contained in the number of 

unique points per parameter, which is calculated in the general procedure (see step 3 of Methods  
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A.   B.  C.  
 

D.   E.   F.  
 

Figure 8: An example of a small (two-dimensional) parameter search of a MAPK model [17]. In this 
example, the initial search range did not include the optimal parameter values to match the mock data 

(blue and red stars). A. The fit for the returned parameters (solid lines) compared to the mock data (stars) 
over the initial search range. B. The mesh of the corresponding cost function. C. The adaptive sparse grid, 
generated with the Sparse Grid toolbox [10] and color-coded by cost function (red: high, blue: low).  The 
search range is shifted lower, based on the mesh and grid from the original search (B and C). D. The fit 
for the returned parameters (solid lines) compared to the mock data (dots) with the shifted search range. 
E. The mesh of the corresponding cost function. F. The corresponding adaptive sparse grid, generated 

with the Sparse Grid toolbox [10] and color-coded by cost function (red: high, blue: low). 
 

and Figure 5). Typically, these extra steps using the number of unique points are not necessary 

for smaller-sized problems. Optimization issues with smaller problems are more commonly due 

to an issue described in Table 2. For a definition and description of unique points see Data 

Acquisition, Anticipated Results and Interpretation. In brief, the number of unique points for a 

parameter is the number of unique locations of grid points for that parameter and correlates with 

the importance of the parameter to decrease the interpolation error. Parameters with the lowest 

number of unique points are the least important (or can easily be fit with low-dimensional basis 

functions, such as cubic polynomials).  

1. This step assumes that, at a minimum, steps 1-9 of the Methods have been completed 

and not resulted in an acceptable fit of the model simulations to the data. Therefore, for 

log(x) 

log(x) 

log(y) 

log(y) 
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the parameters with lowest number of unique points, set their values to the 

corresponding values of the best grid point, bp , returned by step 6. With the Sparse Grid 

toolbox [10], the lowest possible number of unique points is three when using 

Chebyshev polynomial basis functions, as the lowest interpolation depth allowed is 

three.  

2. Start a new, lower dimension adaptive grid search for the remainder of the parameters, 

centering the ranges on the corresponding values of bp  and following the steps in 

Methods. If the dimension of the new problem is three or fewer parameters, then 

examine the resulting grid for range appropriateness as in ‘Small problem’ (if necessary, 

repeat the search with adjusted ranges). Save the returned best grid point, which we will 

denote 
b

newp  

3. Create a new initial point by replacing the appropriate values of bp  with the appropriate 

values of
b

newp , this new initial point we will denote
b

initialp . Perform a local search on the 

cost function starting from
b

initialp , resulting in the parameter set blp  with a cost function 

value of blcf . 

4. If the fit is acceptable, the optimization is completed. If not, try increasing the maximum 

number of grid points by two to ten times and repeating the procedure.  

 

Discussion and Commentary 

 High-dimensional nonlinear models are becoming common in biomedical applications 

because of their usefulness in understanding biological processes, predicting behaviors, and 

developing therapies. However, identifying appropriate model parameters is challenging. As 
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parameters are typically unknown, they are most often fitted to limited experimental data. 

Parameter optimization is a well-researched field, and many algorithms exist, including local or 

global and stochastic or deterministic. Local algorithms are of little use for nonlinear models 

since their results are highly dependent on the starting location. Global algorithms are 

computationally expensive and typically have no guarantee of finding, or even converging to, the 

global minimum [29]. Exceptions exist for smooth, twice-differentiable functions that are 

convex/concave or can be converted into convex/concave problems can be solved with global 

deterministic approaches such as branch and bound [7, 8]. However, it is highly unlikely for a 

cost function based on numerical integration of large, highly nonlinear models of cellular 

processes to be of that form. Until recently, the alternatives have been global, stochastic 

algorithms such as the genetic algorithm, which have no guarantee of convergence, or LHS/full 

grid initialization of local searches, which grow exponentially with dimension. 

 The alternative presented in this chapter employs an adaptive sparse grid-based search. 

The adaptive sparse grid is designed map the cost function onto the uncertain parameter space 

using interpolation with basis functions (typically polynomials) at support nodes. The error 

between the interpolating function and the cost function decreases with increased numbers of 

support nodes.  This method has two benefits: grid points are placed in the most important 

locations (importance being defined by [30] as requiring higher level polynomials to reduce the 

error of the interpolating function) and a the interpolant serves as a surrogate cost function. The 

former is like an informed LHS/full grid: entire dimensions can be mainly neglected if they are 

easy to fit with low-dimension polynomials, slowing the increase in model evaluations needed 

with dimension. The second allows searches without additional model evaluations, which, 

depending on the interpolation accuracy, can find an optimal point very close to the global 
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minimum. Like the stochastic and local methods, adaptive sparse grid optimization does not 

guarantee finding the global minimum. However, unlike, those methods, it does return valuable 

information about the uncertain parameter space, as described in Data Acquisition, 

Interpretation, and Conclusions. For instance, the unique points give an indication of parameter 

importance and can be used to improve the adaptive sparse grid search. In addition, as shown in 

Applications Notes, adaptive sparse grid-based optimization can result in larger, more consistent 

decreases in cost function values with increased numbers of model evaluations than the GA, 

even when followed by a local search. One current limitation of the Sparse Grid toolbox is that 

the software does not allow extending previously created grids, which would be useful in cases 

where the initial attempt did not result in an acceptable fit. Future work will create the necessary 

code to allow an increase in interpolation depth by extending the previously created grid without 

having to completely start over with a larger maximum number of support nodes. 

Complicating factors in optimization searches include parameter correlations (where 

changes in one parameter can compensate for changes in another) and low parameter sensitivities 

(where changes in a parameter have little effect on the model output or cost function). As a 

result, some parameters may not be identifiable from a set of experimental data [22]. The 

recognition of these parameters can play a key role in parameter identification as they should be 

neglected, and fixed at some best guess value, until further information can be obtained. 

Neglecting parameters decreases the dimension of the search, thereby increasing the likelihood 

of finding the global minimum in the fewest number of model evaluations. In the authors’ 

experience (data not shown), parameters with very low sensitivity coefficients (as determined by 

extended FAST [28]) are more easily fit with low dimension polynomials; therefore, these 

parameters will have fewer unique points. However, this correlation will not always be the case 
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and is certainly not guaranteed for all problems. Future work will explore altering the adaptive 

scheme for selecting sparse grid points to incorporating information on the parameter 

sensitivities; this is expected to facilitate the problem of parameter identification. 

 

Applications Notes 

The MAPK model published by Wolkenhauer et al [17] was used as an example to 

demonstrate the described methods. Mock data was generated for two (MAPK and MAPKK) of 

the four elements (the remaining are Raf and Rkip) by simulating the model with the published 

parameter values and taking seven time points for each element from zero to 25 minutes. The 

posed parameter identification problem attempted to identify all 18 model parameters from this 

mock data set.  The results and computational efficiency of the adaptive sparse grid-based 

optimization method is compared to that of the GA. The sparse grid method, due to symmetry, 

automatically evaluates the center point of the parameter space. Therefore, in order to avoid 

biasing the sparse grid towards the actual parameter values, a new center point was created by 

selecting a random initialization point within an order of magnitude above and below  the actual 

values. The uncertain parameter search range for both the sparse grid and GA was assigned with 

a lower limit set to an order of magnitude smaller than this initial point and the upper limit set to 

an order of magnitude larger. 

 

Comparison of adaptive sparse grid and GA based optimization 

 The resulting cost function value (the least squared error or LSE) was calculated for the 

adaptive sparse grid-based optimization method and the GA for increasing numbers of model  
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Figure 9: For a MAPK model [17], a comparison of the performance, indicated by the least squared error 

(LSE) between the model simulations and the mock data set, of the adaptive sparse grid-based 
optimization (blue) and the GA (red). The adaptive sparse grid method consistently performed better than 

the GA for larger numbers of model simulations.  The GA results are the average of at least five runs, 
with the error bars representing the standard deviation of the results. The adaptive sparse grid method 

followed steps 1-7 of Methods while the GA was run with an increasing number of allowed generations 
and/or population sizes, followed by a local search on the result. 

 

evaluations. The results are shown in Figure 9. For the adaptive sparse grid method, steps 1-7 of 

the Methods were followed to achieve the resulting cost function value (LSE), with the total 

number of model evaluations being the sum of the number of grid points and the number of 

evaluations performed by the local search(es). For the GA method, the GA was run at least five 

times (because of its stochastic nature, each outcome is different), each followed by a local 

search. The number of model evaluations in this case is the sum of the evaluations used by the 

GA and the local searches. The results of the local searches were averaged and the error bars in 

Figure 9 represent the standard deviations of the results. 

 
To illustrate the differences between the GA and the adaptive sparse grid performance, an 

example where the maximum number of points for each method was limited to approximately 

5000 is given. In addition, the use of the number of unique points per parameter, as described 

under ‘Large problem’ in the Troubleshooting section, is demonstrated. 
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Adaptive sparse grid-based optimization 

An 18-dimensional, 2017-point grid was created, resulting in an optimal point with a cost 

function of 1.98E4. Eleven of the 18 parameters were found to have three unique points each, the 

remaining seven had five to nine each. The parameters that had three unique points were set at 

the returned values. A second, seven-dimensional grid with 2031 points was created to search 

over the remaining parameters. The returned optimal point had a cost function of 1.48E4. The 

values for the 11 parameters returned by the first grid and the seven parameters returned by the 

second grid were combined into an initial point for a local search on the actual cost function. 

This local search, using 532 model evaluations, returned an optimal point with a cost function of 

1.20E4. The resulting simulations with this parameter set are shown in Figure 10A, which shows 

that the simulations are slightly shifted from the mock data but otherwise are quite similar and 

consistent with the observed trends in the mock data. A total number of 4580 model evaluations 

were used. In order to improve the fit, the next step would be to increase the number of model 

evaluations by five to ten times.  

 

Genetic algorithm 

The GA was run five times and a local search was run from each returned point. With an 

average of 5517 model evaluations (5000 due to the GA and an average of 517 due to the local 

search), this method returned an average cost function of 8.57E4, with a standard deviation of 

1.33E4. The results are shown in Figure 10B. Figure 9 suggest that the fitting could be improved 

by increasing the number of model evaluations, but again, the GA would have to be run multiple 

times in order to have a greater chance of seeing an improved fit.  
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This 18-dimensional example demonstrates that the adaptive sparse grid-based 

optimization improves the fit of the model simulations to the experimental data set with 

increasing numbers of model evaluations while the GA fitness did improve on average but 

required multiple runs to assure this progress.  The example also demonstrates the utility of the 

unique points identified by the adaptive sparse grid approach; the parameters least sensitive to 

reducing the error of the interpolant were temporarily fixed while the most important parameters 

were identified in a subsequent search.  This sparse grid process provided information to refine 

the parameter identification problem to lead to an acceptable solution while the GA failed to 

identify a reasonable solution even with multiple attempts.  This inability of the GA to find 

acceptable parameter values may be inappropriately interpreted as the modeled hypotheses are 

inconsistent with the experimental data.  However, with the same number of total model 

evaluations, the adaptive sparse grid-based optimization was able to find parameter values that 

supported the modeled hypotheses. 

 

 A. B.  
Figure 10: Fitting the 18 parameters of a MAPK model [17] to a mock data set (stars) using 

approximately 5000 model evaluations. Red: MAPK, Blue: MAPKK. A. Results of adaptive sparse grid-
based optimization B. Results of five independent GA runs followed by local searches. The inability of 

the GA to find acceptable parameter values prematurely suggests the modeled hypotheses may be 
inconsistent with the experimental data. 
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Summary Points 

The adaptive sparse grid-based optimization approach described herein has a number of 

advantages over other stochastic global optimization techniques.   

� There can be a large variance in the resulting parameter values employing multiple runs 

of a stochastic optimization approach whereas the adaptive sparse grid-based 

optimization approach will always return the same parameter values when posed with the 

same number of maximum model evaluations.  

� With an increased number of model evaluations with the adaptive sparse grid-based 

optimization, the error of the interpolant approximation of the cost function mapping on 

the parameter space decreases, so eventually the parameter values returned will minimize 

the cost function value, while the probabilistic sampling of the parameter space by 

stochastic optimization methods does not provide any assurances of an improvement of 

the solution with more supporting model evaluations.   

� The interpolant mapping of the cost function on the uncertain parameter space and the 

unique points generated during the adaptive sparse grid search may provide insight to 

refine and improve the identification process. 

� While the GA method can lead to incorrectly discarding a model hypothesis due to its 

inability to find well-fitting model parameters, adaptive sparse grid-based optimization 

allows a more thorough examination of the parameter space for a better evaluation of the 

appropriateness of the model structure. 
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 Related sources and Supplementary Information 
 
The Sparse Grid toolbox for MATLAB® used in this chapter is available at: 
http://www.ians.uni-stuttgart.de/spinterp/ 


