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Abstract

Identifying parameter values in mathematical modélksellular processes is crucial to
ascertain if the hypotheses reflected in the mettatture is consistent with the available
experimental data. Due to the uncertainty in themeter values, partially attributed to the
necessary model abstraction of any cellular progessameters are pragmatically estimated by
varying their values to minimize a cost functioattrepresents the difference between the
simulated results and available experimental dateal searches for these parameter values
rarely result in an adequate fit of the model ® élxperimental data since the optimization gets
caught in a local minimum near the initial guesypically, larger regions of the parameter
space must be searched for acceptable parametesyval support model simulations that
replicate the experimental data. Most of thesealalgorithms use stochastic sampling of the
parameter space; however, these methods are npiutationally efficient and cannot guarantee
convergence. Alternatively, adaptive sparse griseldaoptimization samples the parameter space
in a more systematic manner and employs selectizleiaions of the cost function at support
nodes to build an error-controlled interpolatedragpmation of the cost function from basis
functions. The search for the global minimum i@@ned on the surrogate interpolant rather

than relying extensively on simulations of the nipttas tends to be more computationally

efficient for smooth, continuous models. Additibmesight is provided by the cost function



mapping on the parameter space, which can be usefevaluating and refining the model and
parameter identification problem. This chapter dbss the methods to create and use an
adaptive sparse grid and interpolant to find patamelues, including an example that
demonstrates that this method performs more a@yyapnsistently, and efficiently than the

genetic algorithm, a standard global stochasticrapation method.

Introduction

Increasingly, mathematical models are being usguideide insight into cellular
processes [1, 2]. The construction of these maddlampered by the sheer number of
participating chemical species, the uncertainty @rplexity of the interconnected signaling
networks, and the complicated regulation of theetjerevents within a living cell. Out of
necessity, the model structure must explicitly espnt only the dominant events and processes
for a specific application. Determining the donmihavents and processes a priori is usually not
trivial; hence, the first step of determining ieEtmodel structure is suitable for the specific
application typically depends on finding model paegers that produce simulations consistent
with available experimental data and observations.

Most model parameter values are not known accyratake to both experimental issues
and omission of non-essential process detailsdamtbdel. Experimentally, it is difficult to
measure the concentrations, rates, diffusionoételements within a living intact cell [3-5].
Enzyme-substrate association constants and kiméiséyarates can sometimes be determined in
a test tube, but there is no guarantee that tlad¢ss are the same when inside a crowded cellular
environment [6]. Furthermore, the inevitable adstion of the process being modeled causes

the majority of model parameters to incorporatenéeeffect of a multitude of events. As a



result, parameter values typically can be deterchordy through optimization that minimizes
the difference between the simulated model outpdtthe experimental data. This process is
straightforward for linear models through lineaogmamming. However, most optimization tools
are challenged by these models since they cangbéymonlinear.

In rare cases where very good estimates of parawvedtees are available, a local search
can be adequate to find parameter values that nzeithe differences between model
simulations and experimental data, which is questtifs the value of a cost function. A local
search starts from an initial point and finds tivection that allows the largest decrease in
model/data mismatch. The search ends at the near@istum in that direction, shown in Figure
1. As Figure 1 demonstrates, the result of thelleearch is dependent on the initial point. Two
of the three example points are caught in the seéyeal minimum, a consequence termed the
local minimum trap. If possible, a local searchl wibdify the parameter values from the initial
set to improve fitting; however it cannot move otithe local minimum trap to find a global
minimum. In contrast, global searches consideketitee parameter space when locating the

global minimum.
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Figure 1: This plot illustrates the concept of @alominimum trap for a one-dimensional parametacsp
A local search of this space is initialized at thdifferent points: A, B, and C. Searches staringoints
A and B will find a local minimum of the cost fuinmh, while a search starting at point C resultthm
global minimum.



Many global optimization methods can be used teestiie parameter identification
problem but these can also suffer from the localimum trap as well as from poor convergence
rates [7] and are computationally costly. For las&t of systems, the problem can be solved
using deterministic optimization methods that tfama the problem into a convex function or
the difference between convex functions [8]. Irstheystems, achieving the global minimum
can be guaranteed [7, 8]. As the applicabilitynafsie deterministic strategies is limited for
complex, nonlinear models, many researchers resgtbbal optimization techniques that
sample the parameter space in a stochastic mdexisting popular stochastic methods include
simulated annealing, genetic algorithms (GA) andtipie shooting strategies. The GA, for
example, uses evolution-based strategies to madiypulation of parameter sets, with a higher
probability of keeping sets with high fitness (loast function values) than those with low
fitness; the retained parameter sets become pseenthat are randomly combined to create
children sets for evaluation in the next iterati®h Due to the probabilistic nature of these
stochastic methods, the parameter set values aresponding cost function value can vary
considerably from run to run. In addition, thesechastic global optimization methods are
computationally expensive and do not necessarityege to a solution; hence, it can take a
long time to discover that no solution exists.

Alternatively, the entire parameter space can becked using a grid algorithm. Grid
algorithms divide the parameter space in a pattenm@&nner and evaluate the cost function at
each grid point, see Figure 2. Local or globatdess can be initiated from one or more of the
best grid points to find acceptable parameter egém As the dimension of the uncertain
parameter space increases, the number of modelatials required to cover the entire space

increases exponentially for optimization with aemly spaced (full) or pseudo-randomly spaced
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Figure 2: Examples of grids sampling a two dimenaigarameter space. A. latin hypercube sampling
B. full uniform grid C. Chebyshev sparse grid, gated with the Sparse Grid toolbox [10].

(latin hypercube sampling, LHS) grid [11]. Randorspaced samples are not recommended due
to inefficient clustering at some areas and inadegsampling at others. However, adaptive
sparse grid schemes avoid this exponential incriegsaints by selective positioning of support
nodes.

Adaptive sparse grid interpolation

Recently sparse grid interpolation approaches baee developed that support
deterministic global optimization for the minimiiat of functions with bounded mixed
derivatives [12]. These methods are currently dpegfined for efficiently solving large
dimension problems, more than 10 uncertain parasgt8]. Sparse grid interpolation
techniques were originally developed to reducectiraputational cost for multivariate integrals
[11, 14, 15]. A thorough review of sparse grid-lshsgerpolation and integration is given in
[16].

Adaptive sparse grid-based optimization utilizes ehror-controlled interpolant as a
surrogate of the cost function to search for theimium. The process for optimizing with sparse
grids requires model evaluations at selected gridtp (support nodes) strategically positioned
within the uncertain parameter space. An integgoldunction is created by combining basis
functions at the support nodes to approximate disé function evaluated over the entire

uncertain parameter space. The search for thephemmeter values is performed on the



interpolated function. Typically, a search alongofynomial-based interpolation function is
significantly faster than a search involving repéatumerical integrations of a model, see
Figure 3. Using sparse grid interpolation, the nendf actual model evaluations is limited to
just the number of support nodes. However, siheesparse grid technique relies on an
approximation, the best results are usually obthiha local search using the actual model is
performed starting from the optimal values ideatifby the interpolation function.

This adaptive sparse grid-based optimization ambread its computational efficiency
rely heavily upon the construction of the interpioig function and selection of the support

nodes. In brief, the construction of the interpiaig@function is based upon the tensor products

of a univariate interpolation of the functidnat the support nodes O y' forkD[l,d] , With a

basis functionz—,lXi :

(U D-0Ue)(f)= Y ¥ (a, O--Oa, )0 (X,...,x").

Xil[]/yil xid D){id

8]
=]

n

=]

20,

w
e

> o
o

Cost Function
o

Cost Function
S

Cost Function
=

-0 w,

—=o
[T
o o

20 g 20 20

0s 10 057
A Parameter Y 5 Parameter X B Parameter Y

10
00 Parameter X

Figure 3: Comparison of meshes created by actslfanction evaluations and from an interpolatest co
function for a two-parameter search of a MAPK mddé&]. A. This mapping of the cost function was
created from a 100x100 evenly spaced grid of patiemsets, for a total of 10000 model evaluations. A
local search on the best mapping point returnecd¢hgal parameter values, with an additional 18ehod
evaluations. B. The 53 adaptive sparse supportsnasied to create the interpolated function, geeérat
by the Sparse Grid Toolbox [10]. C. An evenly spht80x100 grid of parameter sets was created and

evaluated by the interpolated function, creatingdamtical mapping to A that only required the 58dal

evaluations used to create the support nodes.ca ggarch from the best support node took aniadelt
66 model evaluations to return the actual paranvetiees.
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In the sparse grid approach introduced by Smolyekinterpolating function is obtained by
summing a selected set of such tensor products.cdimputational efficiency of this method is a
result both of the fact that this selected sumiregla relatively small set of support nodes and
the fact that the sets of support nodes are nestéae interpolation depth increases. This
nesting property greatly reduces the number ofireqdunction evaluations by reusing the
support nodes upon increased sampling refinemeihieadrid for a higher interpolation depth.
The interpolation depth is the degree of the patyiad, k, which the univariate interpolation
function can exactly match.

It has been shown that the error of the interpadatunction strongly depends upon the

degree of the bounded mixed derivative (smoothreass)s a weak function of the dimension of

the problem,O(N‘k (Iog N)(kﬂ)(d_l)) , Wwhere N is the number of function evaluationsqrened

on the sparse grid at the support nodes [15]. elémese methods are considered nearly optimal

(up to a logarithmic factor) [15] and are signifitlg better than those of quasi-Monte Carlo

aIgorithms,O(N‘l(Iog N)d) [18]. A uniform sparse grid cannot avoid a logaritb dependence

of the error on dimension; however, adaptive spgrigks sample most along the dimension of
greatest importance as ascertained by the abflsgmples in that direction to decrease the
estimated interpolation error (Figure 4) [18]. §hproblem-adjusted refinement” [19] most
effectively reduces the computational costs forgpgmization on models whose roughness is
confined to a subset of the dimensions of the uarespace and it does no worse than the
uniform sparse grid methods. This adaptive spagrisebased optimization method is
deterministic so the numerical values of the idesttiparameter values and the quality of the

results will not differ from one run to the nex&urthermore, it is anticipated that the quality of
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Figure 4: Examples of two-dimensional adaptive @kbbv sparse grids, with increasing degree of
adaptivity from left to right, generated with thpe®se Grid toolbox [10]. This figure demonstratest t
the parameter along the x-axis is more importanetreasing interpolation error than the parameter
along the y-axis.

the results will improve with an increased samje since the error of the interpolant

approximation of the cost function mapping on theameter space decreases with large N.

Experimental Design

The method described in this chapter will determine relatively efficient manner, the
optimal parameter values to fit a model to all llde experimental data. A number of factors
must be considered to formulate the problem aganpeter identification experiment utilizing
sparse grid based interpolation. These factorslwevascertaining the dimension of the
uncertain parameter space, the size of the unogréaameter space, the form of the cost
function, and the selection of the basis functifmmghe interpolating function. Th#mension of
the uncertain parameter space must be determined; that is, the number of paranvetiues to be
found needs to be established. It is desirabke#p this dimension as small as possible; initially
assign the parameter values for which reasonablaass exist. For instance, total numbers of
molecules or concentrations of certain elements Ineagxperimentally established or obtained
from other published models. In cases where theréo® many parameters for which there is no
good estimate of their values, the dimension ofpitudlem can be reduced by conducting a local
or global sensitivity analysis [20] about someiaiistarting guess to ascertain which parameters

should be targeted for fitting the data (see Treslbboting) [21, 22]. The initial starting guess



values can be roughly estimated by back-of-the-depeecalculations or obtained from
published models of similar reactions or procesBasameters with the lowest sensitivity ranks
can be neglected and fixed at these initial gue$sseach remaining parameter, which will be
labeled as ‘uncertain,” an estimated initial seassige must be provided. The product of these
search ranges defind®e span of the uncertain parameter space. Our experience has found that
using a search range encompassing an order of tndgrbelow and above an initial guess will,
in most cases, be large enough. The search fqaiemtial parameter values should typically be
conducted on the log of the uncertain parametaresftamore equally spread out the support
nodes over the ranges, which vary in orders of nhage.

For parameter identification, the optimization gesb typically minimizes @ost
function that penalizes differences between the model stmukand the experimental data. The
most commonly used cost function, when quantitagieerimental data is available, is the
weighted least square error:

qa

F(p)=log(Q_ > wly;(p.t)- 9,1, (1)

=1 i=
whereq is the number of states with experimental dgtes, the number of experimental time

points for statgj, Y, ;is the data for stafeat timei, y,(p,t)is the simulated model output for
statej at timei for parameter s, andw;; is the weight for that point. For this construntiof
the cost function, it is important that the simathtata,y, (p,t;), be converted into the same
units as the experimental datg, , i.e. numbers of molecules, concentration, peroétdtal,

etc. The weights are used to normalize and/or parate confidence information in the data
points; the confidence in the experimental datgpgally taken into account by making the

weights the reciprocal of the standard deviatiothefexperimental data at each time point and



state, while the maximum value of the data or sanoihs for each state is typically used when
the values of the states differ significantly ingnaude. When quantitative data is not available,
a qualitative cost function can be constructed, thiata smooth scale, penalizes or rewards
attributes of the simulations. It is important tha cost function be continuous in order for the
interpolating function to approximate it accuratelyhout large numbers of support nodes..
Abrupt jumps due to, for instance, if-else statetmevill severely increase the interpolation

error, as the cost function is interpolated withtaauous basis functions. It is also recommended
to search over log space; taking the log of the ftoetion will increase its smoothness.

A wide variety of differenbasis functions can be used to support the construction of the
interpolation function on the sparse grid includmegcewise linear, Chebyshev polynomials,
polynomial chaos [23], and multi-wavelet formulatso[24]. Though the choice of basis function
changes the placement of the support nodes, ttetrachon of the interpolant is the same.
Barthelmann et al compared the two most populaslfasctions: piecewise linear and
Chebyshev polynomial interpolation [15]. They doled from theory and computation that if
the function to be approximated is three (or mtiregs differentiable, then polynomial basis
functions are better in the sense that the intatfwsl converges to the correct answer more
quickly as the number of support nodes increasdise lfunction to be interpolated is
discontinuous, then convergence is slow for batlgdneral, the authors recommend Chebyshev
polynomial interpolation [15]. Therefore, this cl@pis written from the assumption that

Chebyshev interpolation will be used.
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Materials

The materials needed to apply this adaptive sgaidébased optimization method for
model parameter identification from available expental data are described in Table 1. The
specific implementation discussed in this chapguires MATLAB® and the Sparse Grid

toolbox (ttp://www.ians.uni-stuttgart.de/spint¢fdi0]. However, this method can be

implemented with alternative coding packages, sixc@++. Therefore, the required materials
are described generically, with specifics provide@arentheses.

For the examples in this chapter, a published $tate, ordinary differential equation
(ODE) model [25] of the mitogen activated proteindse (MAPK) cascade was used. For these
illustrations, mock experimental data was generbteshodel simulation. The mock data

consisted of seven time points of the simulatiamdwo of the four states.

Table 1: Materials needed for optimization with itlge sparse grid interpolation

Implementation (with specifics provided in paresgis)

Hardware| Computer capable of running preferred msidaulation software (MATLAB®)

Software | Simulation software (MATLAB®)
Adaptive sparse grid algorithm (The Sparse Gridbtmo[10], installed, initialized,
and modified slightly to store the best grid pdortfuture use: the function
spcgsear ch was modified by inserting the code

pb = x;

cf _pb = fprev;

save pb pb cf_pb
at line 106, which is immediately after the lines:

% Determ ne optim zation start point

[x, fval] = spgetstartpoint(z, xbox, options);

fprev = fval; )
A local search algorithm such as the conjugateigradnethod f(m ncon)

Model Model and cost function files written in preferreaftware format (m-files). These

code files should output the cost function value for thedel evaluated at a given set of
uncertain parameter values.

Data Experimental data to fit uncertain model patars. A local and global sensitivity

analysis can help ascertain if the data availabsiificient to identify uncertain
model parameters [21, 22]. The data must be adiedsy the preferred software
(.mat file).
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Methods

The general method for parameter identificatiorhwparse grid-based optimization is
outlined below with example code provided in Figbnesing MATLAB® and the Sparse Grid
Toolbox [10].
General Procedure:

1. The objective of step 1 is to specify the ranger out@ich the search will be conducted
for the uncertain parameter value in each dimengioeate a matrix containing the
lower bound and upper bound for each uncertainnpeter (typically, an order of
magnitude lower and an order of magnitude highan the initial point, respectively).
Soecific: The matrix should have siz& 2 whered is the dimension, the number of
uncertain parameters.

2. The objective of step 2 is to select the basistfandype and establish the desired grid
size and type. As the support node locations &wection of the basis functions used to
create the interpolating function, the basis funttype must be indicated. To constrain
the computational time, we recommend setting theimmam number of grid points to
50-500 times the number of uncertain parametepering on how long the model
simulations take. One could instead specify a mimminterpolation error to achieve,
but this method could take a significant numbemofiel evaluations, which is unknown
a priori. We highly recommend enabling dimensioagiity since the computational
effort required is no worse than that for a unifagrid, but for some models it can be
significantly more efficient. The degree of adejtyi can be modified to ensure a
moderate coverage of the uncertain parameter spdesired. Specific: Usespset to

set these options.
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Flgure 5: Example code for implementing optimizatith adaptive sparse grid interpolation using the

% STEP 1: Create search range for parameter space

In this example, the
% 0.1 and 10 times the
load kp

kD = rand{0.1,10, 'unif’

% the dimension of the
dim=length(kx0);

initial point, kX0, is a random point between
actual parameter values, kp

1*RE;

space is the nomber of parameters

% the span of the search is 0.1 to 10 times the initial point

span=[.1, 10];

% the search is performed over the log of the parameter space

raoge = log(kO*span);

% STEP 2: set the options for the grld type and size and other cptions
optionsg = spset{ TeepruqctluﬂValucs 'en'; ... % Xeep function values at grid pointe for later ase

‘"ReepGrid’ ; 'on', ...

Keep grid points for later use

%
'GridType’', 'Chebyshev', ... % The Chebyshev grid type is nsed
&

'‘Dimensionfdaptive’, 'on',

The grid is set to 100% dimension adaptive

'Dimddaptbegree’, 1, ...
‘MaxPoints’, 1000); % The maximum number of pointe is aet

% STEP 3: Create the sparse grid using 'spvals’' The cost function is evaluated at each grid point
% the structure, z, stores the grid point locations and values and is used

% to evaluate the interpolated function

zespvals|Bcost_function, dim, rnge, options);

% Bort grid points by cost function value ('points sorted’') amd determine the number
% of unique points per parameter (['uniguepts')

for k=l:dim

points(: Ki=z.grid{Ll}(:,k);

T

uniguepts(kj=size(unique(peints(:, k)),1);

end

for k=l:length({points(:,1})
cikx)=spsurfun{points(k,l:dim},2);

end

[c_sorted 1 sorted]=sort(c);

points_sorted=zeros(length(c),dim);

for j=l:length{c)

points sorted(i,:)=exp(points(i sorted{i),l:dim});

end

%t STEPF 4: Search the interpolated function for the optimal parameter set,
% psgi, which has an interpolated cost function of cf_ pagi
[pi, cf_pi] = spcompsearch{z);

% STEP 5: From the returned optimal point, perform a local search on the actual
% cost function, returning the second optimal point with an actual cost

% function of cf psgi

[pil cf pil]=fmincon(€cost function,pi,(],[]1.0[1.0],2eros(l,dim));

t STEP 6: Load the previously-stored best grid point, psgb, in the data file
% pagb.mat, which has a cost function value of cf_psagb

load pb

% If the point x differs

from the point xopt perform a local search on the actual cost

% function from x, returning the third optimal point with an actual cost function

% of cf_psgh
pick pbl = 0;
if sum(pi-pb)-~=0

[pbl cf pbl]=fmincon(fcost function,pb,[],[1,0]1.0],2eros(l,dim));

if cf pbl<ef pil
pick pbl=l;
end
end

% STEP 7: Of pegi and psgb, pick the parameter set with the lowest cost
function value as the result

if pick pbl==0Q

display('Optimal parameter set found is')
il

Eféplay{'with a eost
exp(cf_pil)
else

fanection of')

display('Optimal parameter set found ia')
1

lisplay('With a cost
exp(ct pbl)
end

function of')

Sparse Grid toolbox [10].
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3. The objective of this step is to evaluate the émsttion value at each support node and
to use these values to create the interpolatingtiom This requires an iterative
solution to add and locate the support nodes irsplagse grid to continuously improve
the accuracy of the interpolating function to tlstdunction value until the maximum
number of grid points has been reached or minimelative or absolute error tolerance
has been achieved. In addition, sort the grid gdiytcost function value (low to high)
and determine the number of unique points per patemmThe sorted grid points and
number of unique points can be used for furthelyaisa Specific: Usespval s to
construct the grid and the interpolating functiooni the basis functions, and use the
sort function to sort the grid points.

4. The objective of step 4 is to use the interpolétedtion from the previous step to
estimate the ‘optimal’ parameter set. A searcterdgpmed on the interpolated function,
which serves as a surrogate for the cost functofind the optimal parameter values
that minimize the interpolated estimate of the ¢osttion.Specific. Use the appropriate
search function for the basis functions seleciedgsear ch for Chebyshev
polynomials. This algorithm will find the grid pdiwith lowest cost function and run a
local search on the interpolated function about ploént. The result of this search we

will denote ag,, which has an interpolated cost functiormfgf.

5. The objective of this step is to refine the spayse interpolated ‘optimal’ parameter set,

p., by searching for the nearest minimum of the daost function about the ‘optimal’

point found in step 4. A local search using thgioal cost function and model is

performed aboup. . This will result in a candidate parameter setwiledenote as, ,
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with a cost function aff ;. Specific: runf m nunc fromp,, calling the cost function

file.
. The objective of step 6 is to identify an altermatcandidate for the ‘optimal’ parameter
set by starting from the support node with the lsve®st function value, which we

denote ap,, which has a cost function df,, . Load the data file containing the best grid

point, and, if the point differs from the returnggtimal point, run a local search using

the original cost function abopf . This will result in a candidate parameter setwile
denote ag, with a cost function off ,, . Specific: load the data fileb. mat and run

f m nunc from the point,p,, calling the cost function file.

. The parameter set from these two local searchdsthgtlowest cost function value is

Cfpil < Cfpbl
Cfpbl < Cfpil

considered the optimal parameter get= { I::
|

Examine the resulting simulation for consistencg feasibility (i.e. both quantitative

and qualitative fit with experimental data). THgextive of this final step is to confirm

that minimizing the cost function resulted in acegmable fit to the experimental data. If

the fit is acceptable, the optimization processisiplete.

. The objective of step 9 is to search in other aoddlse cost function space with low

values, besides the one containing the best suppds, if step 8 is not successful.

Determine the distance between the sorted gridpaiith the lowest cost function

values (for instance, the lowest 1%), where distazan be defined as the sum of the

absolute percent change in each parameter ovear@ieters. Run local searches on the

cost function from the points with the farthestaise from the best support node. If one

of these searches results in an acceptable fipghimization process is complete.
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10. If step 9 is unsuccessful, consult the Troubleshgaection and consider increasing the

number of maximum grid points by two to ten times aeturn to step 2.

Data Acquisition, Anticipated Results and I nter pretation

The anticipated result of the method describedal®a parameter set that acceptably
fits the available experimental data. Whetherairthe returned parameter set is adequate, the
functionspval s of the Sparse Grid toolbox [10] returns a struettontaining a significant
amount of information that may be helpful for uratanding the returned ‘optimal’ set of
parameter values as well as information aboutdbst function values mapped onto the
uncertain parameter space. This information inetuithe number and locations of the grid
points, the cost function values at those poitis,mhinimum and maximum cost function values,
the degree of adaptivity, estimated errors, anattimeputational time. From this information, it
takes only a few extra steps to extract other lisefiormation, namely the sorted grid points and

unique points.

Sorted grid points

Grid points sorted from lowest to highest corregpog cost function value are returned
in step 3 of the Methods (see Figure 5). Reviewlsge points as a sorted list can provide some
insight. For instance, this method can revealati&si@, equally valid areas of the uncertain
parameter space, as shown in Figure 6. In thisiplegg three parameters of a MAPK model [17]
were fitted to an incomplete data set, consistinly of the MAPK data (red in Figure 6B). The

resulting three-dimensional grid of the cost fumetvalues on the parameter space indicated two
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Figure 6: An example of a three-dimensional seaf@MAPK model [17] that revealed two parameter
sets that fit the mock data equally well, but pcesti different dynamics for another model elemant.
Three-dimensional adaptive grid, generated withSparse Grid toolbox [10] and color-coded by cost
function (red: high, blue: low). The two, circleteas have similar cost functions when only the mock
MAPK data is fitted. B. Simulation results with pareter sets from each ‘optimal’ area (solid: center
area, dotted: right area). While three of the fetate simulations (red: MAPK, green: Raf, blackigRk
are similar, different MAPKK (blue) dynamics areegicted, suggesting that MAPKK data would be

required to distinguish between the two paramedey. s

disparate regions with equally low cost functiocisc{ed in Figure 6A). Simulations with a set
of parameter values from each space (Figure 6B¢ wearly identical for three of the four
states; however, the simulation of MAPKK (blue) wied a distinct difference in its peak. This
information suggests that in order to determineciwhif either, of the parameter sets are valid,
experimental data for the MAPKK, particularly aeth5-minute time point, is required. The
sorted grid points can be used to determine tleedithe parameter space that results in
acceptable dynamics, termed the acceptable spaoeh wan reveal properties of the model,
such as the amount of confidence that can be piaagb@ chosen parameter values [26, 27]. In
addition to the above example, as noted in Methstég, 9, in the event that the returned
parameters were not adequate, the sorted gridgpcamt provide alternative starting points for

additional local or global optimizations that cafime the solution.
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Unique points

With adaptive sparse grids, the number of uniquiatp is the number of distinct
locations of grid points along a parameter directibhis value can be obtained by applying the
MATLAB® uni que function to a parameter’s grid points (see Figurstep 3). For three or
fewer dimensions, the number of unique points easden by plotting the grid, as shown in
Figure 7. Unique points correlate with each parangtmportance to increasing the accuracy of
the interpolant. This information is valuable bes&it demonstrates which parameters required
the highest resolution for the interpolation. A @seunique points in aiding the optimization
process is described in Troubleshooting under ‘€gngblems’ and demonstrated in the

Application Notes.

Unstable points

In the process of creating the sparse grid, theradhm may return, or end with,

integration errors when the model is integratedh\particular parameter sets. In some cases, this

log(FParameter 2
™2 [¥+] oy o
£ £ £ /)

¥

Iog(F'arametgr ) 4 2 log(Parameter X)
Figure 7: This adaptive sparse grid (generated thighSparse Grid toolbox [10]) of a three-parameter
search of a MAPK model [17] demonstrates the canaepnique points. The parameter on the z axis has

three unique points, the y parameter has five th@d parameter has 513. The points are color-cbgled
cost function (black and red: high, blue: low).
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error may be due to improper range setting (seableshooting) for certain parameters. For
instance, a certain search range could allow apetex to be a value that results in a division by
zero. These unstable points should be carefulljuated as they often reveal weaknesses in the
model structure that may need revision to ensweertbdel is stable over the allowable

parameter ranges.

Inter pretation and Conclusions

As stated above, if the optimization process txsssful, one can conclude that the
parameter values found are adequate for fittingribdel to experimental data. However, one
cannot conclude that these values are physicathgcior even unique. If the process is
unsuccessful, one should examine the model steitbudetermine whether or not it is capable
of recreating experimental data. One method fomexeng model structure is a parameter
sensitivity analysis. Conducting a sensitivity gs& not only quantifies the sensitivity of the
output with regards to the model parameter valugslso provides information for directing
parameter fitting [21, 22]. The output of a sengiianalysis helps to identify dominant
processes or elements and recognize events/elethahtsan be considered negligible, including

parameters whose values have little impact omgtthe experimental data [21, 22].

Troubleshooting

For the cases where the methods described abovetdesult in a parameter set that
allows the model simulations to acceptably fit éx@erimental data, Table 2 lists some
suggested approaches to deal with common issuaddition to these general

recommendations, there are two special casesrhalso considered: small (less than or equal
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Table 2: Common issues with adaptive sparse grsgdbaptimization and suggested solutions

Issue

Suggestion(s)

Method takes too long

Decrease the number of maximguid points or the number of
evaluations allowed by the local search algorithm.

Method returns
integration errors

Examine parameter ranges: typically, certain patarae&annot be
zero. Have parameter values automatically recondezh integration
errors occur and then examine them to determiresarkinstability.
As appropriate, alter parameter ranges to avoisktlageas or modify
the model structure to eliminate the problem.

Do not artificially set the cost function to an iawdrily high value
when these points occur, as this will interferenviite adaptive
algorithm and with the interpolation.

Parameter sets with low
cost function values do
not result in a fit to the
data

Redesign the cost function to more accurately cetlee data.
Consider changing the weights of the LSE cost fonabr adding
gualitative goals to the cost function.

Method returns lower of
upper bounds for some
parameters

Expand the ranges of these parameters beyond threlaoes, if
possible.

Method does not

Increase maximum number of allowable support nodes.

produce an acceptable fi

'Decrease the problem dimension. Run a global seihs#énalysis,
such as extended FAST [28]. Fix the least sengitarameters at the
best guess and search for the remainder.

Consider an alternative model structure: the caisgacture may be
incapable of producing the desired dynamics.

to three uncertain parameters) and large (10 oemocertain parameters) problems, since

certain trouble-shooting

techniques are more hklpfuonly applicable, to problems with

specific dimensions of the uncertain parameterespac

Trouble-shooting special cases. small and large problems

Small problem: three or fewer parameters

1. The objective of this step is to make use of thétplo visually inspect the cost

function in the parameter space when the spacthhas or fewer dimensions. The cost

function itself can be visualized using a meshifay-dimensional problems and a plot
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for one-dimensional problems, and the grid canibealized for one to three
dimensional spaces using a scatter plot. Visualyrene the sparse grid (in the one,
two, or three dimension case) and the cost fungilon(in the one or two dimension
case):

a. Sparse grid: Evaluate the interpolated functioeaath of the grid points and then
plot the resultsSpecific: usescatter orscatt er 3, with the color of each
point corresponding to the cost function valuehatpoint.

b. Create a one or two —dimensional mapping of thé fomstion. Specific: use
pl ot ornmesh as appropriate.

2. The objective of this step is to analyze the plaim step 1 to determine whether or not
an appropriate search space was used. For instartbe,example of a two-parameter
search of a MAPK model [17] shown in Figure 8 AHG;an be seen that the optimal
point is beyond the lower bounds for both paransetoth the mesh and the grid
suggest that the ranges should be shifted dowthelmext search, the ranges were
corrected and the results are shown in Figure 8 DhE improvement in fit can be seen
in the simulation results (Figure 8D). Therefouw, this step, analyze the plots and
update the parameter ranges as needed. If notambeconcluded from the plots, refer

to the Troubleshooting table.

Large problem: 10 or more parameters

This Troubleshooting solution takes advantage efitformation contained in the number of

unique points per parameter, which is calculatetthéngeneral procedure (see step 3 of Methods
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Figure 8: An example of a small (two-dimensionajgmeter search of a MAPK model [17]. In this
example, the initial search range did not inclddedptimal parameter values to match the mock data
(blue and red stars). A. The fit for the returnadamneters (solid lines) compared to the mock ddtas)
over the initial search range. B. The mesh of tireesponding cost function. C. The adaptive spgurise
generated with the Sparse Grid toolbox [10] andreocbded by cost function (red: high, blue: lowhe
search range is shifted lower, based on the measiyrashfrom the original search (B and C). D. The f
for the returned parameters (solid lines) comp&wetle mock data (dots) with the shifted searclgean
E. The mesh of the corresponding cost functioHe. corresponding adaptive sparse grid, generated
with the Sparse Grid toolbox [10] and color-codgdbst function (red: high, blue: low).

and Figure 5). Typically, these extra steps udiegnumber of unique points are not necessary
for smaller-sized problems. Optimization issueswsinaller problems are more commonly due
to an issue described in Table 2. For a definiiod description of unique points see Data
Acquisition, Anticipated Results and Interpretatibmbrief, the number of unique points for a
parameter is the number of unique locations of paihts for that parameter and correlates with
the importance of the parameter to decrease thgpiwiaition error. Parameters with the lowest
number of unique points are the least importantéor easily be fit with low-dimensional basis
functions, such as cubic polynomials).

1. This step assumes that, at a minimum, steps 1tf$ed¥lethods have been completed

and not resulted in an acceptable fit of the madullations to the data. Therefore, for
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the parameters with lowest number of unique posestheir values to the
corresponding values of the best grid poipt, returned by step 6. With the Sparse Grid
toolbox [10], the lowest possible number of uniguants is three when using
Chebyshev polynomial basis functions, as the lowrstpolation depth allowed is

three.

2. Start a new, lower dimension adaptive grid seanctihfie remainder of the parameters,
centering the ranges on the corresponding valugsg @nd following the steps in
Methods. If the dimension of the new problem igéhor fewer parameters, then
examine the resulting grid for range appropriaterassin ‘Small problem’ (if necessary,
repeat the search with adjusted ranges). Savethmed best grid point, which we will

denote p:e”
3. Create a new initial point by replacing the appiatervalues ofp, with the appropriate

values ofp™", this new initial point we will denotg™" . Perform a local search on the

initial
b

cost function starting frorp™* , resulting in the parameter spj with a cost function

value ofcf,, .

4. If the fit is acceptable, the optimization is coeted. If not, try increasing the maximum

number of grid points by two to ten times and répeahe procedure.

Discussion and Commentary
High-dimensional nonlinear models are becomingroomin biomedical applications
because of their usefulness in understanding hicdbgrocesses, predicting behaviors, and

developing therapies. However, identifying appraf@imodel parameters is challenging. As
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parameters are typically unknown, they are mostinofitted to limited experimental data.
Parameter optimization is a well-researched fiaidi many algorithms exist, including local or
global and stochastic or deterministic. Local alldpons are of little use for nonlinear models
since their results are highly dependent on theisgalocation. Global algorithms are
computationally expensive and typically have norgatee of finding, or even converging to, the
global minimum [29]. Exceptions exist for smoothjde-differentiable functions that are
convex/concave or can be converted into convexéaproblems can be solved with global
deterministic approaches such as branch and bayr@. [However, it is highly unlikely for a
cost function based on numerical integration ajéahighly nonlinear models of cellular
processes to be of that form. Until recently, theraatives have been global, stochastic
algorithms such as the genetic algorithm, whichehaw guarantee of convergence, or LHS/full
grid initialization of local searches, which growpenentially with dimension.

The alternative presented in this chapter empdoyadaptive sparse grid-based search.
The adaptive sparse grid is designed map the gostibn onto the uncertain parameter space
using interpolation with basis functions (typicatlglynomials) at support nodes. The error
between the interpolating function and the costfiem decreases with increased numbers of
support nodes. This method has two benefits: gpidts are placed in the most important
locations (importance being defined by [30] as nen@ higher level polynomials to reduce the
error of the interpolating function) and a the iptdant serves as a surrogate cost function. The
former is like an informed LHS/full grid: entirerdensions can be mainly neglected if they are
easy to fit with low-dimension polynomials, slowitige increase in model evaluations needed
with dimension. The second allows searches withdditional model evaluations, which,

depending on the interpolation accuracy, can fimégtimal point very close to the global
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minimum. Like the stochastic and local methodspéda sparse grid optimization does not
guarantee finding the global minimum. However, kmlithose methods, it does return valuable
information about the uncertain parameter spacdessribed in Data Acquisition,
Interpretation, and Conclusions. For instanceutiigue points give an indication of parameter
importance and can be used to improve the adagpaese grid search. In addition, as shown in
Applications Notes, adaptive sparse grid-basedropétion can result in larger, more consistent
decreases in cost function values with increase@dbeus of model evaluations than the GA,
even when followed by a local search. One curiemtdtion of the Sparse Grid toolbox is that
the software does not allow extending previousated grids, which would be useful in cases
where the initial attempt did not result in an aateéle fit. Future work will create the necessary
code to allow an increase in interpolation deptlekiending the previously created grid without
having to completely start over with a larger masamnumber of support nodes.

Complicating factors in optimization searches idelyparameter correlations (where
changes in one parameter can compensate for chengesther) and low parameter sensitivities
(where changes in a parameter have little effe¢chermodel output or cost function). As a
result, some parameters may not be identifiable facset of experimental data [22]. The
recognition of these parameters can play a keyingbarameter identification as they should be
neglected, and fixed at some best guess valué furtbier information can be obtained.
Neglecting parameters decreases the dimensiore&etérch, thereby increasing the likelihood
of finding the global minimum in the fewest numloémodel evaluations. In the authors’
experience (data not shown), parameters with \@wyslensitivity coefficients (as determined by
extended FAST [28]) are more easily fit with lowndinsion polynomials; therefore, these

parameters will have fewer unique points. Howethes, correlation will not always be the case
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and is certainly not guaranteed for all problemguFe work will explore altering the adaptive
scheme for selecting sparse grid points to incafoay information on the parameter

sensitivities; this is expected to facilitate thielgem of parameter identification.

Applications Notes

The MAPK model published by Wolkenhauer et al [W&ls used as an example to
demonstrate the described methods. Mock data wesgied for two (MAPK and MAPKK) of
the four elements (the remaining are Raf and Rikyimulating the model with the published
parameter values and taking seven time pointsdon element from zero to 25 minutes. The
posed parameter identification problem attemptadeatify all 18 model parameters from this
mock data set. The results and computationalieffay of the adaptive sparse grid-based
optimization method is compared to that of the GAe sparse grid method, due to symmetry,
automatically evaluates the center point of thepeater space. Therefore, in order to avoid
biasing the sparse grid towards the actual pararnabees, a new center point was created by
selecting a random initialization point within arder of magnitude above and below the actual
values. The uncertain parameter search range torthe sparse grid and GA was assigned with
a lower limit set to an order of magnitude smatlem this initial point and the upper limit set to

an order of magnitude larger.

Comparison of adaptive sparse grid and GA based optimization

The resulting cost function value (the least sgdaarror or LSE) was calculated for the

adaptive sparse grid-based optimization methodf@@&A for increasing numbers of model
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Figure 9: For a MAPK model [17], a comparison af tlerformance, indicated by the least squared error
(LSE) between the model simulations and the motk sket, of the adaptive sparse grid-based
optimization (blue) and the GA (red). The adapsparse grid method consistently performed bettar th
the GA for larger numbers of model simulations.e T3A results are the average of at least five runs,
with the error bars representing the standard tewiaf the results. The adaptive sparse grid neetho
followed steps 1-7 of Methods while the GA was with an increasing number of allowed generations
and/or population sizes, followed by a local seamclthe result.

evaluations. The results are shown in Figure 9 tik®adaptive sparse grid method, steps 1-7 of
the Methods were followed to achieve the resultiost function value (LSE), with the total
number of model evaluations being the sum of thabmr of grid points and the number of
evaluations performed by the local search(es)tf®GA method, the GA was run at least five
times (because of its stochastic nature, each mégs different), each followed by a local
search. The number of model evaluations in this athe sum of the evaluations used by the
GA and the local searches. The results of the leeatches were averaged and the error bars in

Figure 9 represent the standard deviations ofdhelts.

To illustrate the differences between the GA ardatiaptive sparse grid performance, an
example where the maximum number of points for eaethod was limited to approximately
5000 is given. In addition, the use of the numidarmque points per parameter, as described

under ‘Large problem’ in the Troubleshooting settis demonstrated.
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Adaptive sparse grid-based optimization

An 18-dimensional, 2017-point grid was createdyltesy in an optimal point with a cost
function of 1.98E4. Eleven of the 18 parametersevieund to have three unique points each, the
remaining seven had five to nine each. The parasdtat had three unique points were set at
the returned values. A second, seven-dimensiomhhgth 2031 points was created to search
over the remaining parameters. The returned opfooit had a cost function of 1.48E4. The
values for the 11 parameters returned by thednistand the seven parameters returned by the
second grid were combined into an initial pointddocal search on the actual cost function.
This local search, using 532 model evaluationsirnetd an optimal point with a cost function of
1.20E4. The resulting simulations with this paranset are shown in Figure 10A, which shows
that the simulations are slightly shifted from theck data but otherwise are quite similar and
consistent with the observed trends in the mocl.datotal number of 4580 model evaluations
were used. In order to improve the fit, the negpswould be to increase the number of model

evaluations by five to ten times.

Genetic algorithm

The GA was run five times and a local search wadnam each returned point. With an
average of 5517 model evaluations (5000 due t&thand an average of 517 due to the local
search), this method returned an average costitumot 8.57E4, with a standard deviation of
1.33E4. The results are shown in Figure 10B. Fi@usaggest that the fitting could be improved
by increasing the number of model evaluations again, the GA would have to be run multiple

times in order to have a greater chance of sea@ingparoved fit.
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This 18-dimensional example demonstrates thatdbhpteve sparse grid-based
optimization improves the fit of the model simudaits to the experimental data set with
increasing numbers of model evaluations while tlefihess did improve on average but
required multiple runs to assure this progresse &mmple also demonstrates the utility of the
unique points identified by the adaptive sparsd ggproach; the parameters least sensitive to
reducing the error of the interpolant were temptyréixed while the most important parameters
were identified in a subsequent search. This spgnid process provided information to refine
the parameter identification problem to lead t@eaceptable solution while the GA failed to
identify a reasonable solution even with multipteeapts. This inability of the GA to find
acceptable parameter values may be inappropriguespreted as the modeled hypotheses are
inconsistent with the experimental data. Howewath the same number of total model
evaluations, the adaptive sparse grid-based otz was able to find parameter values that

supported the modeled hypotheses.
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Figure 10: Fitting the 18 parameters of a MAPK ni¢iié] to a mock data set (stars) using
approximately 5000 model evaluations. Red: MAPKJeBIMAPKK. A. Results of adaptive sparse grid-
based optimization B. Results of five independeftrGns followed by local searches. The inability of
the GA to find acceptable parameter values preratsuggests the modeled hypotheses may be

inconsistent with the experimental data.
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Summary Points
The adaptive sparse grid-based optimization apprdascribed herein has a number of
advantages over other stochastic global optimimagohniques.
= There can be a large variance in the resultingrpeter values employing multiple runs
of a stochastic optimization approach whereas daptave sparse grid-based
optimization approach will always return the saraeameter values when posed with the
same number of maximum model evaluations.
= With an increased number of model evaluations Withadaptive sparse grid-based
optimization, the error of the interpolant approaimon of the cost function mapping on
the parameter space decreases, so eventuallyrdmagiar values returned will minimize
the cost function value, while the probabilisticrgding of the parameter space by
stochastic optimization methods does not provideasmsurances of an improvement of
the solution with more supporting model evaluations
= The interpolant mapping of the cost function onuheertain parameter space and the
unique points generated during the adaptive sgaidesearch may provide insight to
refine and improve the identification process.
=  While the GA method can lead to incorrectly disaagda model hypothesis due to its
inability to find well-fitting model parameters, a@pkive sparse grid-based optimization
allows a more thorough examination of the paransgiace for a better evaluation of the

appropriateness of the model structure.
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Related sour ces and Supplementary Information

The Sparse Grid toolbox for MATLAB® used in thisaghter is available at:
http://www.ians.uni-stuttgart.de/spinterp/
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