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Abstract—Electrophysiological studies often seek to relate 

changes in ion current properties caused by a chemical modifier 
to changes in cellular properties.  Therefore, quantifying 
concentration-dependent effects of modifiers on ion currents is a 
topic of importance.  In this study, we sought a mathematical 
method for using ion current data to predict the effect of several 
theoretical ion current modifiers on cellular and tissue properties 
that is computationally efficient without compromising predictive 
power. We focused on the K  current I  as an example case due 
to its link to long QT syndrome and arrhythmias, but these 
methods should be generally applicable to other 
electrophysiological studies. We compared predictions using a 
Markov model with mass action binding of the modifiers to 
specific conformational states of the channel to predictions 
generated by two simplified models.  We investigated scaling I  
conductance, and found that although this method produced 
predictions that agreed qualitatively with the more complicated 
model, it did not generate quantitatively consistent predictions 
for all modifiers tested.  Our simulations showed that a more 
computationally efficient Hodgkin-Huxley model that 
incorporates the effect of modifiers through functional changes in 
the current produced quantitatively consistent predictions of 
concentration-dependent changes cell and tissue properties for 
all modifiers tested.
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I. INTRODUCTION 
ATHEMATICAL modeling and computational 
simulations have a long history of use in 

electrophysiology, dating back to the seminal work of 
Hodgkin and Huxley [1]. One of the primary questions that 
mathematical tools have been used to address is how ion 
currents that flow through a variety of types of ion channels 

control the membrane potential to generate the rich dynamics 
that are observed in cells [2]. For example, the electrical 
behaviors exhibited by cells can include oscillations in cardiac 
pacemaker cells [3] and neurons [4], bursting in pancreatic B-
cells [5], and excitability in cardiac ventricular cells [6] and 
Purkinje fibers [7]. The rapid increase and subsequent return 
to rest of the membrane potential in excitable and oscillatory 
cells is often called an action potential (AP).  
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Mathematical models have been used to explain cellular 
behaviors such as the AP in terms of the dynamics of the 
important ion currents in each cell type [8]. An important 
feature of many of these models is that the conductance of a 
particular ion channel can be time and voltage dependent 
[2].The change in conductance of an ion channel is often 
modeled as a set of nonlinear differential equations describing 
the opening and closing of one or more independent gates, 
following the formalism introduced by Hodgkin and Huxley 
[1].  An alternative description called a Markov gating model 
describes voltage-dependent transitions between discrete 
states that correspond to different physical conformations of 
the channel proteins [9].  

Often electrophysiologists are interested in studying the 
response of cellular electrical activity to a perturbation in the 
cellular environment.  For example, a researcher might wish to 
observe the response of a single (or multiple) ion current(s) to 
a chemical that modifies the properties of that current, and 
then to relate the changes in the current to changes in cellular 
behavior. Some particularly important electrophysiological 
modifiers include natural toxins [10], drugs designed to treat 
central nervous system disorders [11], cellular kinases that 
phosphorylate channels [12], and second messenger molecules 
such as Ca2+ ions [13] and cAMP [14] that are used to relay 
important cellular signals. In addition, some compounds that 
are designed to treat disorders from a wide range of 
therapeutic areas have been found to interrupt the normal 
activity of cardiac ion currents in potentially dangerous ways 
[15]. One ion current in particular, the delayed rectifier 
potassium current IK,r that results from expression of the 
HERG gene, appears to be an unwanted target of many 
compounds that have been shown to induce abnormal cardiac 
rhythms [16], including a dangerous and potentially fatal 
arrhythmia called Torsades de Pointes [15]. Quantifying the 
effects of ion current modifiers on the electrical properties of 
individual ion currents and on cellular properties could help 
electrophysiologists understand why certain compounds might 
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induce harmful, or helpful, changes in ion currents and 
cellular behaviors. 

Several experimental methods exist for measuring the effect 
of a modifier on an ion channel, including voltage clamp 
assays, binding assays, and fluorescence assays [17].  Voltage 
clamp assays involve measurements of current generated in 
response to voltage command protocols in isolated cells.  
Change in normalized peak current in response to voltage 
clamp stimulation using voltage step command protocols [18-
20] or AP command protocols [20-23] is often used to 
measure the effect of the modifier on the current.  

Ideally, the results of an experimental characterization of a 
modifier’s effect on an ion current could be used to predict 
likely changes in cellular and tissue electrophysiological 
properties. To predict changes in cellular or tissue properties 
based on ion current data, it is necessary to incorporate 
concentration-dependent effects of the modifier into an 
accurate model of the ion current.  Furthermore, it is desirable 
to minimize the complexity of the model so as to reduce the 
computational resources necessary to fit the model to data.   

A common method for modeling the effect of a modifier on 
an ion current is to fit the normalized peak current 
concentration-response data to a standard sigmoid curve. In 
this case, the half-maximal response parameter, the EC50 (or 
IC50 for ion current inhibitors) can be used to quantify the 
modifier’s effect on the ion current.  While this method has 
the advantage of simplicity, it has been shown that the 
measured value of this parameter can depend on the 
experiment that is used to measure the effect of the modifier 
on the current. For example, some compounds that inhibit IK,r 
have been shown to have different IC50 values when the IK,r 
current is measured under different stimulus patterns [24].  

Another more complicated method used to model the effect 
of a modifier involves constructing Markov state transition 
models of the binding of the modifying compound to the ion 
channel [25].  Models constructed according to this formalism 
attempt to reflect the physical interaction of the ion channel 
and the modifier under study. This method often uses prior 
knowledge of the binding properties of the modifier to reduce 
the number of unknown parameters.  Alternatively, modeling 
the effect a novel modifier with unknown binding properties 
requires the estimation of a large number (which can increase 
quickly depending on the complexity of the modifier/ion 
channel  interactions) of parameters.  Consequently, a method 
that is less computationally intensive but has equal predictive 
power would be highly advantageous. 

In this study, we sought an approach for mathematically 
modeling the effect of a modifier on an ion current that 
produces quantitative predictive agreement with a Markov 
model without requiring either prior knowledge of the 
physical properties of the modifier or extensive computation. 
Such a model could be used to predict changes in cellular and 
tissue properties as a function of modifier concentration for 
novel compounds based on experimentally collected ion 
current concentration-response data.  To evaluate models of 

the effect of the modifier in this study, we modeled binding of 
compounds that block IK,r. This ion current was chosen 
because it has been extensively studied due to its association 
with the lengthening of the QT interval of the 
electrocardiogram (ECG) and life-threatening cardiac 
arrhythmias such as Torsades de Pointes (TdP) [15].  
Although the exact mechanism by which an IK,r blocker may 
induce TdP remains unknown, the arrhythmogenic properties 
of such modifiers have been hypothesized to involve the 
amplification of intrinsic electrical heterogeneity in the 
ventricular tissue, caused by preferential prolongation of the 
midmyocardial (M) cell action potential duration (APD) 
relative to epicardial and endocardial cell APD [26]. Thus, IK,r 
represents an ideal current for use in developing a method for 
incorporating concentration-dependent effects of an ion 
current modifier. However, the method developed in this work 
is general and does not depend on the details of this particular 
current.   

Using a Markov model with direct binding of the modifier, 
we created three theoretical modifiers and generated synthetic 
ion current data and APD concentration-response predictions 
for each.  We then used these data to evaluate two alternate 
modeling methods for quantifying modifier-ion channel 
interactions, the commonly used method of scaling channel 
conductance as a function of concentration [19, 27] in a 
Markov model, and a novel method involving a Hodgkin-
Huxley (HH) formulation. Previous work has related Markov 
and HH models by incorporating knowledge of a modifier's 
binding properties [28], but the method described here 
requires no such prior knowledge. 

II. METHODS 
To study modifier-ion current interactions, we modeled the 

canine rapid inward delayed rectifier K+ current IK,r, and its 
interaction with three theoretical modifiers, using three 
different mathematical formulations.  First, we used a 
deterministic Markov model with mass action binding kinetics 
(MarkovMB) to simulate the effect of modifiers that bind to 
particular states of the channel. Next, we used the same 
Markov control model of IK,r and replaced mass action 
kinetics with scaling of channel conductance to model the 
effect of the modifier (MarkovGKr).  Lastly, we studied a 
method for using a Hodgkin-Huxley (HH) model with 
modifier dependence (HHMod) as a framework for determining 
the functional consequences of the modifier-ion current 
interaction, such as changes in conductance, or activation and 
inactivation kinetics. 

 
2.1.1 MarkovMB model topology 
The Markov model we studied follows the five state 

formulation given in Mazhari et al 2001 [9], with three closed 
states (C1, C2, and C3), one open state (O), and one inactive 
state (I). We examined the effect of three theoretical modifiers 
that preferentially bind a single conformational state of the IK,r 
channel (Figure 1; modifiers binding states C1 and C2 
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produced similar results to the modifier binding state C3 and 
are therefore not discussed in the text).  Mass-action kinetics 
was used to model binding and unbinding of a modifier to a 
given state of the Markov model, with each modifier assigned 
a binding rate, kon, and an unbinding rate, koff (see Section 
2.1.2).  Although this model is a simplification of the 
physiological reality, it still allows for interesting and non-
intuitive dynamics.  

produced similar results to the modifier binding state C

 This formulation assumes that when a modifier binds a 
given conformational state, the channel cannot transition to a 
different conformational state until the modifier unbinds.  That 
is, there are no transitions between bound states of the model 
(i.e. IBound -> OBound), only between bound and unbound states 
(i.e. IBound -> I -> O -> OBound).  This approximation is valid for 
preferential binding of a single state as long as kon(preferred 
state) >> kon(other states)  and koff(preferred state) >> 
koff(other states).  Additionally, this model assumes that no 
current flows through the open state O when bound by 
ModifierO.   

 This formulation assumes that when a modifier binds a 
given conformational state, the channel cannot transition to a 
different conformational state until the modifier unbinds.  That 
is, there are no transitions between bound states of the model 
(i.e. I

  
2.1.2 Choice of parameters 2.1.2 Choice of parameters 
To facilitate the study of the IK,r Markov model in computer 

simulations of canine ventricular APs, transition rate 
parameters in the Markov model were chosen to qualitatively 
reproduce canine IK,r recordings from previous experiments 
[29].  Transition rates for the control model are shown in 

Table 1.  APClamp command protocol morphologies are 
shown in Figure 2A, and representative control IK,r traces in 
Figure 2B. 

To facilitate the study of the I

 The kon and koff rates for each modifier were chosen such 
that when stimulated with the voltage step protocol described 
in Mazhari et al 2001 [9] (V = -80mV for 3 seconds, V = 
10mV for 3.5 seconds, V = -50mV for 4 seconds), the IC50 
(concentration at which peak IK,r is reduced by 50%) of the 
normalized peak IK,r concentration-response curve for each 
modifier was 100nM.    For each modifier, a sequence of ten 
increasing concentrations was chosen to produce IK,r block in 
increasing increments of 10%.  See Table 2 for kon, koff, and 
concentration values. 

 The k

  
2.1.3 Generation of synthetic data 2.1.3 Generation of synthetic data 
In this study, we aimed to reproduce modifier-dependent 

changes in IK,r during APs at various pacing rates.  Therefore, 
we measured the in silico concentration-response of IK,r when 

In this study, we aimed to reproduce modifier-dependent 
changes in I

3 and 
are therefore not discussed in the text).  Mass-action kinetics 
was used to model binding and unbinding of a modifier to a 
given state of the Markov model, with each modifier assigned 
a binding rate, kon, and an unbinding rate, koff (see Section 
2.1.2).  Although this model is a simplification of the 
physiological reality, it still allows for interesting and non-
intuitive dynamics.  

Bound -> OBound), only between bound and unbound states 
(i.e. IBound -> I -> O -> OBound).  This approximation is valid for 
preferential binding of a single state as long as kon(preferred 
state) >> kon(other states)  and koff(preferred state) >> 
koff(other states).  Additionally, this model assumes that no 
current flows through the open state O when bound by 
ModifierO.   

K,r Markov model in computer 
simulations of canine ventricular APs, transition rate 
parameters in the Markov model were chosen to qualitatively 
reproduce canine IK,r recordings from previous experiments 
[29].  Transition rates for the control model are shown in 

Table 1.  APClamp command protocol morphologies are 
shown in Figure 2A, and representative control IK,r traces in 
Figure 2B. 

on and koff rates for each modifier were chosen such 
that when stimulated with the voltage step protocol described 
in Mazhari et al 2001 [9] (V = -80mV for 3 seconds, V = 
10mV for 3.5 seconds, V = -50mV for 4 seconds), the IC50 
(concentration at which peak IK,r is reduced by 50%) of the 
normalized peak IK,r concentration-response curve for each 
modifier was 100nM.    For each modifier, a sequence of ten 
increasing concentrations was chosen to produce IK,r block in 
increasing increments of 10%.  See Table 2 for kon, koff, and 
concentration values. 

K,r during APs at various pacing rates.  Therefore, 
we measured the in silico concentration-response of IK,r when 

 
Fig. 2.   A, AP clamp command APs at 1000 msec (thick line), 500 msec (thin 
line), and 300 msec (dotted line). B, Control Markov IK,r during AP clamp 
stimulation at 1000 msec (thick line), 500 msec (thin line), and 300 msec 
(dotted line). 

 
 

Fig. 1.  State diagram of the IK,r Markov model with modifier binding.  C1, 
C2, and C3 are closed states, O is the open state, and I is the inactive state.  
Each Ybound state is a modifier-channel complex with the channel in state Y.  
Transitions from state to state are functions of voltage of the form 
A*exp(B*V), and modifier binding and unbinding  rates are voltage 
independent functions of modifier concentration and state occupancy.  IK,r is 
a function of the population of state O.   

 
TABLE I 

TRANSITION RATES FOR MARKOV MODEL OF IK,R  
C1 → C2 α0 = 0.00414573 × exp(0.09856 × V) 
C2 → C1 β0 = 0.00291266 × exp(-0.0315044 × V) 
C3 → O α1 = 0.000586909 × exp(0.0170419 × V) 
O → C3 β1 = 0.000232786 × exp(-0.0567021 × V) 
O → I αi = 0.927666 × exp(0.0186985 × V) 
I → O βi = 0.0138023 × exp(-0.0252146 × V) 
C3 → I αi3 = 0.00707894 × exp(3.49E-08 × V) 
I → C3 ψ = (β1×βi×αi3)/(α1×αi) 
C2 → C3 Kf = 0.0441566 
C3 → C2 Kb = 0.272749 

 

TABL
MODIFIER PARAMETERS 

 Mod
Kon 0.036
Koff 0.1 
Conc 1 – 0% IK,r block 0 
Conc 2 – 10% IK,r block 19.3 
Conc 3 – 20% IK,r block 34.2 
Conc 4 – 30% IK,r block 51.0 
Conc 5 – 40% IK,r block 72.0 
Conc 6 – 50% IK,r block 100 
Conc 7 – 60% IK,r block 141.2
Conc 8 – 70% IK,r block 208.8
Conc 9 – 80% IK,r block 342.7
Conc 10 – 90% IK,r block 742.5

Binding rate in nL·N·molecules-1·ms-  
concentrations in nM for ModifierC3, M
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FOR MARKOVMB MODEL  
ifierC3 ModifierO ModifierI

0257 0.00013021 5.70106 
0.1 0.1 
0 0 
11.0 11.0 
24.9 23.8 
42.7 41.7 
66.5 65.9 
100 100 

 150.3 151.4 
 234.5 237.6 
 403.3 410.5 
 912.6 931.9 

1, unbinding rate in nL·N·ms-1, and
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stimulated with an AP clamp protocol.  To simulate an AP 
clamp protocol, steady-state APs from the Hund-Rudy AP 
model [30] at cycle lengths of 1000, 500, and 300 msec were 
applied to the model as command potentials (see Appendix A 
Section A.1.1 for command AP morphologies).  Each AP was 
applied ten times to allow the modifier-IK,r model to reach 
steady state, and the IK,r trace in response to the final AP at 
each cycle length was examined. 

stimulated with an AP clamp protocol.  To simulate an AP 
clamp protocol, steady-state APs from the Hund-Rudy AP 
model [30] at cycle lengths of 1000, 500, and 300 msec were 
applied to the model as command potentials (see Appendix A 
Section A.1.1 for command AP morphologies).  Each AP was 
applied ten times to allow the modifier-I

  
2.2 Concentration-dependent scaling of Markov model 

conductance (MarkovGKr) 
2.2 Concentration-dependent scaling of Markov model 

conductance (Markov
In addition to the Markov model with mass action binding 

presented in Section 2.1.1, this study investigated an alternate 
method of modeling modifier interaction in a Markov model 
which involved scaling IK,r  conductance (GKr) as a function 
of concentration.  The same control Markov model of IK,r 
described in Section 2.1.1 was used, and GKr was varied with 
modifier concentration using the sigmoidal function given in 
Equation 1: 

In addition to the Markov model with mass action binding 
presented in Section 2.1.1, this study investigated an alternate 
method of modeling modifier interaction in a Markov model 
which involved scaling I

                                                                    

K,r model to reach 
steady state, and the IK,r trace in response to the final AP at 
each cycle length was examined. 

GKr) 

K,r  conductance (GKr) as a function 
of concentration.  The same control Markov model of IK,r 
described in Section 2.1.1 was used, and GKr was varied with 
modifier concentration using the sigmoidal function given in 
Equation 1: 
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where Q is any given concentration-dependent quantity, 

conc is the concentration of the modifier in nM, Q0 is the 
value of Q when concentration = 0, QInf is the value of Q as 
concentration approaches infinity, DQ,1/2 is the value of 
concentration at which the value of Q = (Q0 + QInf)/2, and hQ 
is the Hill Coefficient, determining the slope of the 
concentration-response for quantity Q.  The four parameters 
Q0, QInf, DQ,1/2, and hQ for a given quantity Q are collectively 

referred to as the modifier-effect parameters for that quantity. 
 The modifier-effect parameters for GKr in the MarkovGKr 

model were then fit to synthetic concentration-response AP 
clamp data generated by the MarkovMB model at the ten 
modifier concentrations described in Section 2.1.3 using the 
Levenberg-Marquardt local optimization algorithm [31]. 

 
2.3 Hodgkin-Huxley model with modifier effect (HHMod) 
We utilized a HH model of IK,r that follows the IK,r 

formulation given in Hua et al 2004 [29].  This model includes 
time dependence in both the activation gate (X) and the 
inactivation gate (Y).  The HH model parameters were fit to 
control AP clamp data generated using the Markov model 
from section 2.1.  The fit was performed using the Levenberg-
Marquardt local optimization algorithm [31].  The 
formulations and parameters for our modified IK,r model are as 
follows: 
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where X and Y are the time- and voltage-dependent open 
probabilities of activation and inactivation gates, GKr = 
0.0502 mS/uF is the conductance of IK,r, V is the membrane 
potential, Ek = -85.6 mV is the reversal potential of the IK,r 
channel, X ∞ and Y ∞  are the steady-state voltage-dependent 
open probabilities of the activation and inactivation gates, τx 
and τy are the voltage-dependent activation and inactivation 
time constants, RX and RY are the crossover voltages of the 
steady values for the X and Y gates, and SX and SY are scaling 
factors for the time constants of the X and Y gates.  In the 
control model, RX = -68.6 mV, RY = -34.1 mV, SX = 1, and SY 
= 1.  IK,r traces generated by the HH model and “target” 
synthetic data generated by the control Markov simulation in 
response to an AP clamp at CL = 1000 and 300 msec are 
shown in Figure 3.   

 To incorporate the effect of the modifier into the HH 
model, two alternate strategies were used.  First, the effect of 
the modifier was modeled by allowing channel conductance 
GKr to vary as a function of concentration according to 
Equation 1, as described in Section 2.2.  If this method was 
not able to satisfactorily reproduce the IK,r concentration-
response target data, several additional model parameters 

 
Fig. 3.  IK,r traces generated by HH control model (lines) and Markov control 
model (triangles) in response to an AP clamp.  A, CL = 1000 msec.  B, CL = 
300 msec.  
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which describe the functional characteristics of the IK,r channel 
were allowed to vary as a function of modifier concentration: 
the crossover voltages of the steady values for the X and Y 
gates (RX and RY) and scaling factors for the time constants of 
the X and Y gates (SX and SY).  We refer to these four 
parameters together with GKr as the HHMod quantities.  Each 
of these quantities was then varied as a function of modifier 
concentration according to the sigmoidal formulation in 
Equation 1.    

which describe the functional characteristics of the I

This HHMod model was then fit to synthetic concentration-
response AP clamp data generated by the MarkovMB model at 
the ten modifier concentrations described in Section 2.1.3.  To 
determine the values of the modifier-effect parameters for 
each HHMod quantity, a three step process was used.  First, the 
HHMod quantities themselves were optimized at each 
concentration, independent of model behavior at any other 
concentration.  The fitted values of a given HHMod quantity Q 
at each modifier concentration then form a concentration-
response curve for Q. Second, this concentration-response 
curve for each HHMod quantity Q was fit using Equation 1 to 
determine initial values of the modifier-effect parameters Q0, 
QInf, DQ,1/2, and hQ.  Third, the modifier-effect parameters for 
all of the HHMod quantities were optimized at the same time to 
data from all ten concentrations simultaneously.  All 
optimizations were done using the Levenberg-Marquardt 
optimization algorithm with least squares cost function.  The 
modifier effect parameter values which quantitatively 
reproduced the ModifierC3, ModifierI, and ModifierO 
concentration-response of AP clamp IK,r current are given in 
Table 3, and the averaged least squares costs and optimization 
times for each parameter set are given in Table 4. 

This HH

  
2.4 Whole-cell AP model 2.4 Whole-cell AP model 
 To generate predictions about the effect of the theoretical 

modifiers on APD, we used the most recent canine ventricular 
AP model that is available, the HRd model of the canine 
epicardial AP [30]. This model includes several important 
currents and processes that are absent from earlier canine 
models, including a formulation of the late sodium current 
which has been shown to play an important role in 
heterogeneity of cellular electrical properties [32]. The model 
is as published except for the following modifications: 

 To generate predictions about the effect of the theoretical 
modifiers on APD, we used the most recent canine ventricular 
AP model that is available, the HRd model of the canine 
epicardial AP [30]. This model includes several important 
currents and processes that are absent from earlier canine 
models, including a formulation of the late sodium current 
which has been shown to play an important role in 
heterogeneity of cellular electrical properties [32]. The model 
is as published except for the following modifications: 

[Na+]i,[K+]i, and [Cl-]i were fixed at their steady state values 
so as to reach steady state more quickly 

The original Hund-Rudy IK,r formulation was removed, and 
replaced with either the Markov model of IK,r described in 
section 5.1 or the HH model of IK,r described in section 5.2 

The original Hund-Rudy I

The model was stimulated with square pulses with duration 
1 msec and amplitude 80 mV. 

The model was stimulated with square pulses with duration 
1 msec and amplitude 80 mV. 

The APs generated by the modified HRd AP models were 
very similar to those from the original HRd model (Figure 
4A). 

The APs generated by the modified HRd AP models were 
very similar to those from the original HRd model (Figure 
4A). 

 The HRd model was modified to reproduce 
midmyocardial (M) ventricular cells (Figure 4B) in the 
following manner: 

 The HRd model was modified to reproduce 
midmyocardial (M) ventricular cells (Figure 4B) in the 
following manner: 

GKsM = 0.5 * GKsEpi as reported in Liu et al 1995 [40]  GKs
GNaLM = 1.47 * GNaLEpi as reported in Zygmunt et al [32] GNaL
It has been reported that there is a less than 10% difference 

between the sodium-calcium exchange current INaCa in M cells 
and epicardial cells [41].  Therefore the M cell model used the 
original INaCa current model.  We note that the results 
presented in this paper were duplicated using the ten Tusscher 
human AP model [33] (data not shown), and were found to be  
independent of the choice of AP model.   

It has been reported that there is a less than 10% difference 
between the sodium-calcium exchange current I

The existing IK,r component of HRd was replaced with 
either the MarkovMB IK,r model described in Section 2.1, the 
MarkovGKr IK,r model described in Section 2.2, or the HHMod 
IK,r model described in Section 2.3, and steady-state APD90 
was measured at various pacing cycle lengths.  In the absence 
of any modifier effects (concentration = 0), all of the 
substituted IK,r HRd models produce APs similar to the 
original HRd.  Each of the substituted IK,r HRd models was 
also modified to qualitatively reproduce the behavior of 
midmyocardial myocytes.   

The existing I

  
2.4 Simulation details 2.4 Simulation details 
 All simulations and optimizations were run on a Dell 

Inspiron 9100 computer using custom written C++ computer 
code.  Each ionic model as described above (either single 
channel or whole-cell) is represented by a set of differential 
equations of the form dx/dt = f(x,t,p), where x is a vector 
describing the current state of the system, t is time, and p is a 
vector of parameters.  For the models described, the 
corresponding differential equations are usually quite stiff in 
the sense that they have widely separated time scales:  some 
variables change rapidly under small perturbations while 
others change slowly.  To improve the accuracy of our 
simulations, we used the CVODES package from Lawrence 
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channel or whole-cell) is represented by a set of differential 
equations of the form dx/dt = f(x,t,p), where x is a vector 
describing the current state of the system, t is time, and p is a 
vector of parameters.  For the models described, the 
corresponding differential equations are usually quite stiff in 
the sense that they have widely separated time scales:  some 
variables change rapidly under small perturbations while 
others change slowly.  To improve the accuracy of our 
simulations, we used the CVODES package from Lawrence 

K,r channel 
were allowed to vary as a function of modifier concentration: 
the crossover voltages of the steady values for the X and Y 
gates (RX and RY) and scaling factors for the time constants of 
the X and Y gates (SX and SY).  We refer to these four 
parameters together with GKr as the HHMod quantities.  Each 
of these quantities was then varied as a function of modifier 
concentration according to the sigmoidal formulation in 
Equation 1.    

Mod model was then fit to synthetic concentration-
response AP clamp data generated by the MarkovMB model at 
the ten modifier concentrations described in Section 2.1.3.  To 
determine the values of the modifier-effect parameters for 
each HHMod quantity, a three step process was used.  First, the 
HHMod quantities themselves were optimized at each 
concentration, independent of model behavior at any other 
concentration.  The fitted values of a given HHMod quantity Q 
at each modifier concentration then form a concentration-
response curve for Q. Second, this concentration-response 
curve for each HHMod quantity Q was fit using Equation 1 to 
determine initial values of the modifier-effect parameters Q0, 
QInf, DQ,1/2, and hQ.  Third, the modifier-effect parameters for 
all of the HHMod quantities were optimized at the same time to 
data from all ten concentrations simultaneously.  All 
optimizations were done using the Levenberg-Marquardt 
optimization algorithm with least squares cost function.  The 
modifier effect parameter values which quantitatively 
reproduced the ModifierC3, ModifierI, and ModifierO 
concentration-response of AP clamp IK,r current are given in 
Table 3, and the averaged least squares costs and optimization 
times for each parameter set are given in Table 4. 

[Na+]i,[K+]i, and [Cl-]i were fixed at their steady state values 
so as to reach steady state more quickly 

K,r formulation was removed, and 
replaced with either the Markov model of IK,r described in 
section 5.1 or the HH model of IK,r described in section 5.2 

M = 0.5 * GKsEpi as reported in Liu et al 1995 [40]  
M = 1.47 * GNaLEpi as reported in Zygmunt et al [32] 

NaCa in M cells 
and epicardial cells [41].  Therefore the M cell model used the 
original INaCa current model.  We note that the results 
presented in this paper were duplicated using the ten Tusscher 
human AP model [33] (data not shown), and were found to be  
independent of the choice of AP model.   

K,r component of HRd was replaced with 
either the MarkovMB IK,r model described in Section 2.1, the 
MarkovGKr IK,r model described in Section 2.2, or the HHMod 
IK,r model described in Section 2.3, and steady-state APD90 
was measured at various pacing cycle lengths.  In the absence 
of any modifier effects (concentration = 0), all of the 
substituted IK,r HRd models produce APs similar to the 
original HRd.  Each of the substituted IK,r HRd models was 
also modified to qualitatively reproduce the behavior of 
midmyocardial myocytes.   

 

TABL
MODIFIER-EFFECT PARAM

 Q0 Qinf

ModifierI   
GKr 0.0502 5.493
ModifierC3   
GKr 0.0502 0.000
ModifierO   
GKr 0.09369 0.053
SX 2.22409 19.13
SY 0.609499 196.4
RX -72.3022 -37.3
RY -33.9829 48.02

TABLE IV 
OPTIMIZATION INFORMATION 

 Average least squares cost Computation time (sec) 
ModifierI 1.042e-5 1281 
ModifierC3 1.138e-5 1433 
ModifierO 5.605e-5 7756 

Average least squares costs and computation times for optimizations of 
HHMod model modifier-effect parameters 
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differentiation formula, which is designed for stiff systems.  
We also used automatic differentiation to calculate the 
jacobian derivative of the function f for use with the dense 
Newton based solver that is included as part of CVODES.   

differentiation formula, which is designed for stiff systems.  
We also used automatic differentiation to calculate the 
jacobian derivative of the function f for use with the dense 
Newton based solver that is included as part of CVODES.   

 For the optimization of models to data, we used the 
Levenberg-Marquardt local optimizer [31].  The cost for a 
particular simulation is based on a sum of squares calculation.  
At each time point for which there is experimental data, the 
difference between the simulation value and the experimental 
value is squared.  These squares are then summed over all the 
data points, and the sum represents the cost for that 
simulation.  The optimization problem consists of finding 
parameters to minimize the cost. 

 For the optimization of models to data, we used the 
Levenberg-Marquardt local optimizer [31].  The cost for a 
particular simulation is based on a sum of squares calculation.  
At each time point for which there is experimental data, the 
difference between the simulation value and the experimental 
value is squared.  These squares are then summed over all the 
data points, and the sum represents the cost for that 
simulation.  The optimization problem consists of finding 
parameters to minimize the cost. 

III. RESULTS III. RESULTS 
3.1 APD concentration-response predictions 3.1 APD concentration-response predictions 
To evaluate the simplifications involved in the MarkovGKr 

and HHMod models relative to the MarkovMB model, we 
examined predictions of APD concentration-response based 
on IK,r ion current data for theoretical modifiers binding the 
C3, O, and I states of the MarkovMB model.    To assess the 
ability of the models to accurately capture rate-dependent 
effects, three cycle lengths were studied (CL=1000, 500, and 
300 msec).  

To evaluate the simplifications involved in the Markov

As Figure 5 shows, all three methods produced 
quantitatively equivalent APD concentration-response 
predictions for ModifierI and ModifierC3 at a pacing interval of 
1000msec.  This result is consistent with those at pacing 
intervals of 500 msec and 300 msec (data not shown).   

As Figure 5 shows, all three methods produced 
quantitatively equivalent APD concentration-response 
predictions for Modifier

As Figure 6 shows, the APD concentration-response 
predictions for ModifierO at pacing intervals of 1000 msec and 

300 msec generated by the MarkovGKr method captured the 
qualitative trend in the MarkovMB predictions, but were not 
quantitatively equivalent, whereas the HHMod predictions were 
quantitatively equivalent to the MarkovMB model for 
ModifierO.  These results are consistent with those seen at a 
pacing interval of 500 msec (data not shown).  The agreement 
between HHMod and MarkovMB predictions across pacing cycle 
length indicate that the HHMod model was able to reproduce 
the rate-dependence of ModifierO seen in MarkovMB. 

As Figure 6 shows, the APD concentration-response 
predictions for Modifier

  
3.2 IK,r morphology concentration-response predictions 3.2 I
To explore the failure of MarkovGKr to quantitatively 

reproduce the MarkovMB APD concentration-response 
predictions for ModifierO, we examined the concentration-
dependent changes in IK,r morphology for ModifierO in each of 
the three models.  

To explore the failure of Markov

 As Figure 7A shows, the morphology of the MarkovMB 
IK,r current changes as a function of ModifierO concentration 
in a nontrivial manner.  As concentration increases, IK,r during 
repolarization decreases more quickly than IK,r during the AP 
plateau.  Additionally, IK,r during the upstroke and notch 
increases with concentration at shorter cycle lengths.  The 
HHMod model of the effect of the modifier displays these 
concentration-dependent behaviors in IK,r morphology (Figure 
7B).  In contrast, the MarkovGKr model cannot capture 
morphological changes in IK,r (Figure 7C) because the  
MarkovGKr model is limited to scaling the amplitude of the IK,r 
current.  A comparison of the IK,r traces of the three models at 
a high concentration of ModifierO (Figure 7D) clearly 
demonstrates these morphological differences. 

 As Figure 7A shows, the morphology of the Markov

The changes in IK,r morphology caused by a modifier that 
binds the open state of the channel have a significant effect on 
APD (Figure 6).  This result is of particular interest given that 

The changes in I

GKr 
and HHMod models relative to the MarkovMB model, we 
examined predictions of APD concentration-response based 
on IK,r ion current data for theoretical modifiers binding the 
C3, O, and I states of the MarkovMB model.    To assess the 
ability of the models to accurately capture rate-dependent 
effects, three cycle lengths were studied (CL=1000, 500, and 
300 msec).  

I and ModifierC3 at a pacing interval of 
1000msec.  This result is consistent with those at pacing 
intervals of 500 msec and 300 msec (data not shown).   

O at pacing intervals of 1000 msec and 

300 msec generated by the MarkovGKr method captured the 
qualitative trend in the MarkovMB predictions, but were not 
quantitatively equivalent, whereas the HHMod predictions were 
quantitatively equivalent to the MarkovMB model for 
ModifierO.  These results are consistent with those seen at a 
pacing interval of 500 msec (data not shown).  The agreement 
between HHMod and MarkovMB predictions across pacing cycle 
length indicate that the HHMod model was able to reproduce 
the rate-dependence of ModifierO seen in MarkovMB. 

 
Fig. 4.  A, Simulated APs at 1000 msec generated using original HRd model 
(triangles) and MarkovMB substituted IK,r HRd model (solid line). B, 
Simulated epicardial (solid line) and midmyocardial (dotted line) APs at 
1000 msec generated using the control HHMod IK,r model in the HRd AP 
model.

 

 
Fig. 5.  APD prolongation concentration-response predictions generated by 
MarkovMB (triangles), MarkovGKr (dotted lines), and HHMod (solid lines), 
paced at CL = 1000 msec.  A, ModifierC3. B, ModifierI. 
 

K,r morphology concentration-response predictions 
GKr to quantitatively 

reproduce the MarkovMB APD concentration-response 
predictions for ModifierO, we examined the concentration-
dependent changes in IK,r morphology for ModifierO in each of 
the three models.  

MB 
IK,r current changes as a function of ModifierO concentration 
in a nontrivial manner.  As concentration increases, IK,r during 
repolarization decreases more quickly than IK,r during the AP 
plateau.  Additionally, IK,r during the upstroke and notch 
increases with concentration at shorter cycle lengths.  The 
HHMod model of the effect of the modifier displays these 
concentration-dependent behaviors in IK,r morphology (Figure 
7B).  In contrast, the MarkovGKr model cannot capture 
morphological changes in IK,r (Figure 7C) because the  
MarkovGKr model is limited to scaling the amplitude of the IK,r 
current.  A comparison of the IK,r traces of the three models at 
a high concentration of ModifierO (Figure 7D) clearly 
demonstrates these morphological differences. 

K,r morphology caused by a modifier that 
binds the open state of the channel have a significant effect on 
APD (Figure 6).  This result is of particular interest given that 
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 (Q0 ≠ QInf for all HHMod quantities) as well as 
ration-dependent reduction of the IK,r amplitude.  The 
 of ModifierO resulted in an increase in the activation 
ctivation time constants, and positive shifts in the 
tate crossover voltages of both activation and 
tion gates.  Conversely, reducing IK,r amplitude 
 affecting channel kinetics was sufficient to reproduce 
ncentration-response behaviors of ModifierC3 and 
rI.  The difference in GKr D1/2,Q values between 
rC3 and ModifierI indicates that although both 
rs had a similar qualitative effect on IK,r, and both had 
e IC50 of 100nM in response to stimulation with a 

 step protocol, the two modifiers had significantly 
t effective IC50 values in the AP model.  This 
ncy is due to differences in state occupancy dynamics 
stimulation with a voltage step protocol versus 

unclamped AP pacing, as described below.   

ination of the simulation results and of the parameters 
HH

Examination of MarkovMB state occupancy probability 
densities can help elucidate the mechanisms of these 
functional differences in the effect of the modifier.  At rest, 
the probability density on state C1 is larger than that of any 
other state (probability density is localized on C1).  When 
membrane voltage is increased, either during AP upstroke or 
voltage step from -80mV to 10mV, the probability density 
shifts from localization on C1 to I, transitioning mainly via C3 
to I inactivation, producing only slight O occupancy and 
therefore little IK,r current.  When membrane voltage is then 
decreased, either during repolarization or voltage step to -
50mV, probability density shifts from I back to C1, via both 
the I to O transition and the I to C3 transition, producing 
significant transient O state occupancy and IK,r current.   

Examination of Markov

In the presence of ModifierC3, modifier binding occurs 
when probability density is localized on state C3, largely 

In the presence of Modifier

K,r channel.    
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Mod model allows one to connect the physical 
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cing the concentration-response behavior of ModifierO 
 concentration-dependent changes in IK,r channel 
 (Q0 ≠ QInf for all HHMod quantities) as well as 
ration-dependent reduction of the IK,r amplitude.  The 
 of ModifierO resulted in an increase in the activation 
ctivation time constants, and positive shifts in the 
tate crossover voltages of both activation and 
tion gates.  Conversely, reducing IK,r amplitude 
 affecting channel kinetics was sufficient to reproduce 
ncentration-response behaviors of ModifierC3 and 
rI.  The difference in GKr D1/2,Q values between 
rC3 and ModifierI indicates that although both 
rs had a similar qualitative effect on IK,r, and both had 
e IC50 of 100nM in response to stimulation with a 

 step protocol, the two modifiers had significantly 
t effective IC50 values in the AP model.  This 
ncy is due to differences in state occupancy dynamics 
stimulation with a voltage step protocol versus 

unclamped AP pacing, as described below.   

 
Fig. 7.  IK,r in response to AP clamp stimulation paced al CL = 300 msec, 
with ModifierO = 0 nM (thick solid lines), 25 nM (thick dotted lines), 67 nM 
(thin solid lines), 150 nM (thin dotted lines), 403 nM (pluses). A, MarkovMB.  
B, HHMod.  C, MarkovGKr.  D, Comparison of MarkovMB (triangles), 
MarkovGKr (dotted lines), and HHMod (solid lines) at ModifierO = 234 nM. 
 

MB state occupancy probability 
densities can help elucidate the mechanisms of these 
functional differences in the effect of the modifier.  At rest, 
the probability density on state C1 is larger than that of any 
other state (probability density is localized on C1).  When 
membrane voltage is increased, either during AP upstroke or 
voltage step from -80mV to 10mV, the probability density 
shifts from localization on C1 to I, transitioning mainly via C3 
to I inactivation, producing only slight O occupancy and 
therefore little IK,r current.  When membrane voltage is then 
decreased, either during repolarization or voltage step to -
50mV, probability density shifts from I back to C1, via both 
the I to O transition and the I to C3 transition, producing 
significant transient O state occupancy and IK,r current.   

C3, modifier binding occurs 
when probability density is localized on state C3, largely 
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 A, MarkovMB IK,r in response to AP clamp CL = 300 msec. State

ncy probability densities of state O (control, thin solid line; ModifierO

nM, thin dotted line) and OBound (ModifierO = 200 nM, thick solid
, HHMod IK,r in response to AP clamp CL = 300 msec.  Open

ilities for activation gate X (control, thin dotted line; ModifierO =
M, thick dotted line) and inactivation gate Y (control, thin solid line;
erO = 1000 nM, thick solid line). 
e in IK,r during the upstroke and early plateau. The 
hanges in activation kinetics result in a decrease in 
probability, and therefore less current, during 
ization (Figure 9B, dotted lines). These effects, 
ed with a decrease in GKr, result in the biphasic IK,r 
erO concentration-response exhibited by MarkovBD. 
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 The simulations also suggest a mechanism for 
preferential prolongation of M cell APD.  In the absence of 
any modifier, the AP plateau voltage is higher in M cells than 
in epicardial cells, due to less IK,s outward current and more 
INa,L inward current.  The higher voltage causes an 
approximately 10% larger driving force (V - Ek) at the time of 
peak IK,r, and results in an approximately 10% larger peak IK,r 
current in M cells than in epicardial cells.  Therefore, 
decreasing IK,r in M cells has a more significant prolonging 
effect on APD than in EPI cells.   

 The simulations also suggest a mechanism for 
preferential prolongation of M cell APD.  In the absence of 
any modifier, the AP plateau voltage is higher in M cells than 
in epicardial cells, due to less I

  
3.5 APD concentration-response predictions in the 

presence of Gaussian noise  
3.5 APD concentration-response predictions in the 

presence of Gaussian noise  
To evaluate the effectiveness of the HHMod model and the 

optimization strategy described in Section 2.4 for reproducing 
experimental data, Gaussian noise was added to the synthetic 
data for ModifierO. The mean of the noise was set to 0 and the 
standard deviation was estimated to be to 0.046 pA/pF from 
experimental IK,r recordings [29].  Four sets of APD 
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Fig. 11.  A, Untransformed control MarkovMB IK,r trace (black line) and the 
same trace with one replicate of Gaussian noise added.  B, ModifierO APD 
concentration-response predictions at CL = 1000 msec generated by 
MarkovMB (triangles), HHMod without noise (thick line), and four replicates 
of HHMod with added noise (thin lines). 
 

 
Fig. 10.  (APDM-APDEpi) concentration-response for ModifierO at a cycle 
length of 1000 msec generated by HRd  cell model using MarkovMB 
(triangles), MarkovGKr (dashed line), and HHMod (solid line). 
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estimated.  However, for applications where both 
computational efficiency and quantitative accuracy are 
necessary, neither of the above approaches is adequate.  

 We have shown that a Hodgkin-Huxley model of IK,r  in 
which important kinetic parameters are defined as 
concentration-dependent can quantitatively reproduce the 
cellular APD concentration-response predictions for several 
theoretical modifiers generated by a Markov model of IK,r with 
mass action binding.  By fitting the ion current time series 
generated in response to an AP clamp at three cycle lengths, 
the HHMod model was able to reproduce the MarkovMB 
concentration-response predictions of IK,r morphology, APD, 
and heterogeneity. The HHMod method presented here has 
computational advantages over Markov models with mass 
action binding.  The HHMod method requires no prior 
knowledge about the modifier’s mechanism of action and 
binding kinetics.  Clearly, this is of great importance when 
studying novel modifiers.  The HHMod method requires the 
estimation of 21 parameters, which is a more tractable 
optimization problem than that offered by the MarkovMB 
model, particularly when approached in the three-stage 
manner described in Section 2.3.   

 Such a model of modifier effect on IK,r could aid 
researchers in predicting the effect of novel ion current 
modifiers on cellular and tissue properties.  Experimental 
concentration-response data describing the effect of a novel 
modifier on IK,r could be collected, and then the HH modifier-
effect model optimized to reproduce the experimental data, as 
described in Section 2.3.  This optimized model could then be 
incorporated into a whole cell AP model, as described in 
Section 2.4, and used to generate predictions about the effect 
of the modifier on cellular properties such as action potential 
duration.  Furthermore, the new AP model could then be 
integrated into a multi-cell, tissue level model to generate 
predictions about the effect of the modifier on tissue level 
properties, such as wave propagation and arrhythmogenesis. 

 These results suggest promising directions for future 
experimental work. A logical extension of this study would 
involve experimental validation of the approach presented 
here. Experimental data for modifiers binding IK,r could be fit 
using the HHMod method, and the model predictions for APD 
concentration-response checked against experimental results, 
allowing assessment of the reliability of this method of 
modeling modifier effect.  In addition, the simulation results 
suggest that voltage step protocols are not ideal for measuring 
the effect of the modifier on IK,r during APs, and that 
development of a more predictive command protocol would 
be desirable. These efforts will likely benefit from an 
approach that uses computational methods similar to those 
presented in this study to help guide experimental design and 
interpret results.  

Although the method presented here reproduced the APD 
concentration-response data generated using a Markov model 
with mass action binding, there were several limitations to our 
study.  First, this study only examined modeling of modifier 

interaction with IKr and did not address the development of the 
control model of the current.  However, preliminary tests 
indicate that the results do not depend sensitively on the 
control model parameters; several different low cost control 
Hodgkin-Huxley parameter sets produced very similar results.  
Secondly, several simplifying assumptions were used to 
model modifier binding in the Markov model, such as 
ignoring explicit voltage-dependence of binding and the 
spatial distribution of modifier molecules. In addition, it is 
known that drugs such as cisapride bind more than one state 
of the HERG channel[39], and this study did not thoroughly 
explore modifiers that bind multiple states of the channel. 
However, the HHMod model was able to quantitatively 
replicate MarkovMB APD concentration-response predictions 
for several theoretical compounds that bind more than one 
conformational state (data not shown), including non-
monotonic concentration-dependent changes in peak IK,r and 
APD. In addition, this method could be used in conjunction 
with a Markov model to develop a thorough understanding of 
a modifier’s mechanism of action and the connection between 
its binding properties and their functional consequences. 

In conclusion, we have proposed a Hodgkin-Huxley based 
modeling method that is as predictive as a more complex 
Markov formulation and reveals the functional effect of 
modifier-ion current interactions, but that requires no prior 
knowledge of binding dynamics and fewer computational 
resources.  This method could allow researchers to more 
easily generate predictions about the effect of novel ion 
current modifiers on cellular and tissue properties.  Such a 
computational approach could be a powerful tool to help 
researchers connect the molecular effects of signaling 
pathways and channel blockers to changes in cellular and 
tissue behaviors. 

ACKNOWLEDGMENT 
We thank Dr. Robert F. Gilmour Jr. for insightful 

comments and suggestions, as well as our colleagues at Gene 
Network Sciences for their invaluable contributions, in 
particular Moses Wilks for assistance with simulations and 
Robert Miller and Basudev Chaudhuri for help with Visual 
Cell software. 

REFERENCES 
[1] A. L. Hodgkin and A. F. Huxley, "A quantitative description of 

membrane current and its application to conduction and excitation 
in nerve," J Physiol, vol. 117, pp. 500-544, 1952. 

[2] B. Hille, Ionic Channels of Excitable Membranes. Sunderland, 
Mass.: Sinauer Associates, Inc., 1992. 

[3] Y. Kurata, I. Hisatome, S. Imanishi, and T. Shibamoto, "Roles of 
L-type Ca2+ and delayed-rectifier K+ currents in sinoatrial node 
pacemaking: insights from stability and bifurcation analyses of a 
mathematical model.," Am J Physiol Heart Circ Physiol, vol. 285, 
pp. 2804-2819, 2003. 

[4] G. B. Ermentrout and C. C. Chow, "Modeling neural oscillations," 
Physiol Behav, vol. 77, pp. 629-633, 2002. 

[5] J. Jo, H. Kang, M. Y. Choi, and D. S. Koh, " How noise and 
coupling induce bursting action potentials in pancreatic {beta}-
cells," Biophys J., vol. 89, pp. 1534-1542, 2005. 

 
 
Copyright (c) 2007 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from 
the IEEE by sending an email to pubs-permissions@ieee.org . 



TBME-00620-2006 
 

11

[6] C. H. Luo and Y. Rudy, "A model of the ventricular cardiac action 
potential. Depolarization, repolarization, and their interaction," 
Circ Res, vol. 68, pp. 1501-26, Jun 1991. 

[7] D. DiFrancesco and D. Noble, "A model of cardiac electrical 
activity incorporating ionic pumps and concentration changes," 
Philos Trans R Soc Lond B Biol Sci, vol. 307, pp. 353-98, Jan 10 
1985. 

[8] J. P. Keener and J. Sneyd, Mathematical Physiology. New York: 
Springer, 1998. 

[9] R. Mazhari, J. L. Greenstein, R. L. Winslow, E. Marban, and H. B. 
Nuss, "Molecular interactions between two long-QT syndrome 
gene products, HERG and KCNE2, rationalized by in vitro and in 
silico analysis," Circ Res, vol. 89, pp. 33-8, Jul 6 2001. 

[10] E. X. Albuquerque, J. W. Daly, and J. E. Warnick, 
"Macromolecular sites for specific neurotoxins and drugs on 
chemosensitive synapses and electrical excitation in biological 
membranes," Ion Channels, vol. 1, pp. 95-162, 1988. 

[11] R. Malek, K. K. Borowicz, Z. Kimber-Trojnar, G. Sobieszek, B. 
Piskorska, and S. J. Czuczwar, "Remacemide--a novel potential 
antiepileptic drug," Pol J Pharmacol, vol. 55, pp. 691-698, 2003. 

[12] T. J. Kamp and J. W. Hell, "Regulation of cardiac L-type calcium 
channels by protein kinase A and protein kinase C," Circ Res, vol. 
87, pp. 1095-102, Dec 8 2000. 

[13] H. L. Tan, S. Kupershmidt, R. Zhang, S. Stepanovic, D. M. Roden, 
A. A. M. Wilde, M. E. Anderson, and J. R. Balser, "A calcium 
sensor in the sodium channel modulates cardiac excitability," 
Nature, vol. 415, pp. 442-447, JAN 24 2002. 

[14] J. Cui, Y. Melman, E. Palma, G. I. Fishman, and T. V. McDonald, 
"Cyclic AMP regulates the HERG K+ channel by dual pathways," 
Curr Biol, vol. 10, pp. 671-4, Jun 1 2000. 

[15] W. Haverkamp, G. Breithardt, A. J. Camm, M. J. Janse, M. R. 
Rosen, C. Antzelevitch, D. Escande, M. Franz, M. Malik, A. Moss, 
and R. Shah, "The potential for QT prolongation and pro-
arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory 
implications. Report on a Policy Conference of the European 
Society of Cardiology," Cardiovasc Res, vol. 47, pp. 219-33, Aug 
2000. 

[16] J. S. Mitcheson, J. Chen, M. Lin, C. Culberson, and M. C. 
Sanguinetti, "A structural basis for drug-induced long QT 
syndrome," Proc Natl Acad Sci U S A, vol. 97, pp. 12329-33, Oct 
24 2000. 

[17] B. Fermini and A. A. Fossa, "The impact of drug-induced QT 
interval prolongation on drug discovery and development," Nat 
Rev Drug Discov, vol. 2, pp. 439-47, Jun 2003. 

[18] C. Antzelevitch, L. Belardinelli, A. C. Zygmunt, A. Burashnikov, 
J. M. Di Diego, J. M. Fish, J. M. Cordeiro, and G. Thomas, 
"Electrophysiological effects of ranolazine, a novel antianginal 
agent with antiarrhythmic properties," Circulation, vol. 110, pp. 
904-10, Aug 24 2004. 

[19] D. Bottino, R. C. Penland, A. Stamps, M. Traebert, B. Dumotier, 
A. Georgieva, G. Helmlinger, and G. S. Lett, "Preclinical cardiac 
safety assessment of pharmaceutical compounds using an 
integrated systems-based computer model of the heart.," Progress 
in Biophysics & Molecular Biology, vol. 90, pp. 414-443, July 7 
2005. 

[20] J. M. Ridley, J. T. Milnes, Y. H. Zhang, H. J. Witchel, and H. J.C., 
"Inhibition of HERG K+ current and prolongation of the guinea-
pig ventricular action potential by 4-aminopyridine.," The Journal 
of Physiology, vol. 549, pp. 667-672, June 15 2003. 

[21] A. Zaza, M. Micheletti, A. Brioschi, and M. Rocchetti, "Ionic 
currents during sustained pacemaker activity in rabbit sino-atrial 
myocytes.," The Journal of Physiology, vol. 505, pp. 677-88, Dec 
15 1997. 

[22] G. J. Amos, I. Jacobson, G. Duker, and L. Carlsson, "Block of 
HERG-carried K+ currents by the new repolarization delaying 
agent H 345/52.," Journal of Cardiovascular Electrophysiology, 
vol. 14, pp. 651-658, June 2003. 

[23] T. Doerr, R. Denger, and W. Trautwein, "Calcium currents in 
single SA nodal cells of the rabbit heart studied with action 
potential clamp.," Pflugers Archiv : European journal of 
physiology., vol. 413, pp. 599-603, April 1989. 

[24] G. E. Kirsch, E. S. Trepakova, J. C. Brimecombe, S. S. Sidach, H. 
D. Erickson, M. C. Kochan, L. M. Shyjka, A. E. Lacerda, and A. 
M. Brown, "Variability in the measurement of hERG potassium 
channel inhibition: effects of temperature and stimulus pattern," J 
Pharmacol Toxicol Methods, vol. 50, pp. 93-101, Sep-Oct 2004. 

[25] L. A. Irvine, M. S. Jafri, and R. L. Winslow, "Cardiac sodium 
channel Markov model with temperature dependence and recovery 
from inactivation," Biophys J, vol. 76, pp. 1868-85, Apr 1999. 

[26] J. M. Di Diego, L. Belardinelli, and C. Antzelevitch, "Cisapride-
induced transmural dispersion of repolarization and torsade de 
pointes in the canine left ventricular wedge preparation during 
epicardial stimulation," Circulation, vol. 108, pp. 1027-33, Aug 26 
2003. 

[27] C. F. Starmer, A. Grant, and H. C. Strauss, "Mechanisms of use-
dependent block of sodium channels in excitable membranes by 
local anesthetics.," Biophysical Journal, vol. 46, pp. 15-17, July 
1984. 

[28] F. R. Gilliam, C. F. Starmer, and A. O. Grant, "Blockade of rabbit 
atrial sodium channels by lidocaine. Characterization of continuous 
and frequency-dependent blocking.," Circ Res, vol. 65, pp. 723-39, 
Sep 1989. 

[29] F. Hua and R. F. Gilmour, Jr., "Contribution of IKr to rate-
dependent action potential dynamics in canine endocardium," Circ 
Res, vol. 94, pp. 810-9, Apr 2 2004. 

[30] T. J. Hund and Y. Rudy, "Rate dependence and regulation of 
action potential and calcium transient in a canine cardiac 
ventricular cell model," Circulation, vol. 110, pp. 3168-74, Nov 16 
2004. 

[31] D. Marquardt, "An Algorithm for Least-Squares Estimation of 
Nonlinear Parameters.," Siam Journal on Applied Mathematics, 
vol. 11, pp. 431-441, 1963. 

[32] A. C. Zygmunt, G. T. Eddlestone, G. P. Thomas, V. V. Nesterenko, 
and C. Antzelevitch, "Larger late sodium conductance in M cells 
contributes to electrical heterogeneity in canine ventricle," Am J 
Physiol, vol. 281, pp. H689-97, Aug 2001. 

[33] K. H. ten Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, "A 
model for human ventricular tissue," Am J Physiol Heart Circ 
Physiol, vol. 286, pp. H1573-89, Apr 2004. 

[34] S. D. Cohen and A. C. Hindmarsh, "CVODE User Guide," LLNL 
Report, vol. UCRL-MA-118618, October 1994. 

[35] P. S. Spector, M. E. Curran, M. T. Keating, and M. C. Sanguinetti, 
"Class III antiarrhythmic drugs block HERG, a human cardiac 
delayed rectifier K+ channel. Open-channel block by 
methanesulfonanilides," Circ Res, vol. 78, pp. 499-503, Mar 1996. 

[36] E. Carmeliet, "Use-dependent block and use-dependent unblock of 
the delayed rectifier K+ current by almokalant in rabbit ventricular 
myocytes.," Circ Res, vol. 73, pp. 857-868, 1993. 

[37] T. Yang, M. S. Wathen, A. Felipe, M. M. Tamkun, D. Snyders, and 
D. Roden, "K+ currents and K+ channel mRNA in cultured atrial 
cardiac myocytes (AT-1 cells)." Circ Res, vol. 75, pp. 870-878, 
1994. 

[38] E. Carmeliet, "Voltage- and time-dependent block of the delayed 
rectifier K+ current in cardiac myocytes by dofetilide.," J 
Pharmacol Exp Ther, vol. 262, pp. 809-817, 1992. 

[39] B. D. Walker, C. B. Singleton, J. A. Bursill, K. R. Wyse, S. M. 
Valenzuela, M. R. Qiu, S. N. Breit, and T. J. Campbell, "Inhibition 
of the human ether-a-go-go-related gene (HERG) potassium 
channel by cisapride: affinity for open and inactivated states," Br J 
Pharmacol, vol. 128, pp. 444-50, Sep 1999. 

[40] D. W. Liu and C. Antzelevitch, "Characteristics of the delayed 
rectifier current (IKr and IKs) in canine ventricular epicardial, 
midmyocardial, and endocardial myocytes. A weaker IKs 
contributes to the longer action potential of the M cell," Circ Res, 
vol. 76, pp. 351-65, Mar 1995. 

[41] A. C. Zygmunt, R. J. Goodrow, and C. Antzelevitch, "INaCa 
contributes to electrical heterogeneity within the canine ventricle," 
Am J Physiol, vol. 278, pp. H1671-8, May 2000. 

 
 
Copyright (c) 2007 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from 
the IEEE by sending an email to pubs-permissions@ieee.org . 


	INTRODUCTION
	Methods
	Results
	Discussion

