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Abstract. Sparse-grid interpolation provides good approximations to
smooth functions in high dimensions based on relatively few function
evaluations, but in standard form is expressed in Lagrange polynomials
and requires function values at all points of a sparse grid. Here we give a
block-diagonal factorization of the matrix for changing basis from a La-
grange polynomial formulation of a sparse-grid interpolant to a tensored
orthogonal polynomial (or gPC) representation. For fixed maximum de-
gree of interpolation, the resulting change of basis algorithm is linear in
the number of points of evaluation as dimension increases. Additionally,
we use this factorization with `1 and minimum Sobolev norm (MSN) reg-
ularization to provide good interpolants even when function values are
not available at a significant fraction of points of the sparse grid or are
subject to measurment error.

Keywords: Sparse grid, polynomial interpolation, stochastic colloca-
tion, polynomial chaos, sparsity, `1 minimization.

1. Introduction

A common problem in many areas of computational mathematics is to
approximate a given function based on a small number of functional evalu-
ations or observations. This problem arises in numerical methods for PDE
[29, 33], sensitivity analysis [28, 19, 9], uncertainty quantification [33], many
areas of modeling [20, 26], and other settings. As a result, there are a large
number of approaches to this problem, and the literature is large and grow-
ing quickly. In settings in which the points of evaluation may be chosen at
will, two common approaches are generalized polynomial chaos (gPC) using
cubature, and sparse grid collocation. In other settings in which the points of
evaluation are given, common approaches include RS-HDMR, cut-HDMR,
ANOVA decomposition, kriging, and moving least squares,

Sparse grid collocation has been used widely in recent years as a means
of providing a reasonable approximation to a smooth function, f , defined
on a hypercube in Rn, based on relatively few function evaluations [33].
This method produces a polynomial interpolant using Lagrange interpolat-
ing polynomials based on function values at points in a union of product
grids of small dimension [3, 30]. Using barycentric interpolation to evalu-
ate the resulting polynomial [5], this method is a viable alternative to an
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expansion of f in terms of a sum of products of one-dimensional orthogonal
polynomials. This latter approach is known as generalized polynomial chaos
(gPC) or spectral decomposition, and is obtained via standard weighted L2

techniques. However, the orthogonality implicit in the gPC representation
often provides many advantages over the Lagrange representation, partic-
ularly in applications to differential equations, in which the gPC represen-
tation is closely related to spectral methods. Other advantages of the gPC
representation include the ability to estimate convergence as more points are
added to the sparse grid, and the ability to estimate variance-based sensitiv-
ity coefficients quickly and accurately [19]. A common approach to obtain
the gPC coefficients is to use numerical integration by applying a cubature
rule. However, cubature rules to integrate the product of two polynomials
up to the degree in the sparse grid interpolant typically require either more
or different points than found in the grid itself.

In this paper we provide an efficient algorithm for converting from the
Lagrange interpolating polynomial to an equivalent gPC polynomial using
only the function values at the sparse grid points. The foundation of this
algorithm is a matrix factorization based on the fact that the sparse grid is
a union of small product grids. More precisely, let Φ be the matrix obtained
by evaluating each of the gPC basis functions (one per column) at each
of the sparse grid points (one per row). This matrix produces the gPC
coefficients, c, from the function values, f , by solving Φc = f for c. We
show below that Φ−1 factors into a product of block diagonal matrices in
which each block corresponds to one of the small product grids composing
the full sparse grid. We show also how to adapt this factorization to apply
ideas of `1 minimization and minimum Sobolev norm (MSN) to approximate
these coefficients when a significant fraction of function values are missing
or when the function values are corrupted by noise.

Methods for changing basis between sets of orthogonal polynomials are
described in many places, including [1], [6], and [22]. Most of these results
focus on the case of polynomials of one variable. As will be seen below,
tensored versions of some of these methods could be applied in place of
the matrix multiplication method described in section 4. However, as seen
below, the use of such methods does not change the basic result on linear
running time for fixed accuracy, and in practice they are not likely to provide
a significant computational advantage over the basic methods described in
Section 4 or Section 5. For further background, Boyd [8], Chapter 5 discusses
the Matrix Multiplication Transform for converting between Lagrange and
spectral representations, while Chapter 10 discusses the special case of the
Chebyshev polynomial expansion using the FFT. A recent result of Carley
[15] provides a method for interpolating a function on an arbitrary set of
points using a specially constructed basis of orthogonal polynomials and
for differentiating the resulting interpolating polynomial. However, little is
known about the convergence of this method as a function of the number of
points.
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Contributions and organization: The primary contributions of this
paper are (i) the block-diagonal factorization of the basis-change matrix
Φ−1, (ii) the resulting change-of-basis algorithm (which, for a fixed order
of polynomial accuracy and increasing dimension, has run-time linear in
the number of points), and (iii) the resulting algorithm for `1 and MSN
regularization (which, under appropriate assumptions, has run-time linear in
the total number of basis polynomials), using either exact interpolation or `2-
approximation of function values when these values have a noise component.

Additionally, we note that numerical results show that the running time
per point of evaluation is essentially constant up to a sparse grid depth
(closely related to polynomial degree of accuracy) of about 8, that this algo-
rithm may be applied to any set of orthogonal polynomials, including those
whose interval of orthogonality is infinite or semi-infinite. Finally, the code
developed here for evaluating the resulting gPC representation is typically
a factor of 5 or more faster than the widely available spinterp package [25].

In Section 2, we provide some background into Smolyak’s algorithm for
sparse grid interpolation and then give the factorization of Φ−1 in Section 3.
In section 4 we describe the algorithm to produce the gPC representation
based on function values at the sparse grid points only and give an upper
bound on the complexity of the algorithm. In section 5, we discuss variations
of the basic algorithm in which `1 minimization and MSN regularization are
used to produce reasonable interpolations even when not all function values
are available. In section 6, we give numerical results on running time and
accuracy of the algorithm.

This research is partially supported under NSF grant DMS-0900277. I
am grateful to Brad Lucier and Dongbin Xiu for many helpful discussions.

2. Sparse grid interpolation

In this section we provide some background on Smolyak’s algorithm for
sparse grid interpolation. The discussion here is based on [3]. The foun-
dation for sparse grid interpolation is interpolation in one dimension using
Lagrange interpolation:

(1) U i(f) =
mi∑
j=1

f(xi
j)L

i
j ,

where i ∈ N, xi
j ∈ [−1, 1], and Li

j is the Lagrange polynomial satisfying
Li

j(x
i
k) = δjk. A common choice for sparse grid interpolation is to use

the Chebyshev-Gauss-Lobatto (CGL) points, in which case mi = 2i−1 +
1 and xi

j = − cos((j − 1)π/2i−1) for i > 1, since this choice provides a
nesting property that is vital for efficient interpolation in higher dimensions.
Moreover, m1 = 1 and x1

1 = 0 for this choice. Other choices, including
Gauss-Patterson nodes and nodes on a (semi)-infinte interval as in [7], are
also possible; the methods below apply unchanged for these choices. These
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one dimensional formulas may be tensored in dimension d > 1 to yield

(2) U i(f) = (U i1 ⊗ · · · ⊗ U id)(f) =
∑

1≤j≤mi

f(xi
j)L

i
j,

where i and j are multi-indices with componentwise partial order, 1 is the
multi-index of all 1s, xi

j = (xi1
j1

, . . . , xid
jd

), and Li
j(x) = Li1

j1
(x1) · · ·Lid

jd
(xd).

This formula requires mi1 · · ·mid function values sampled on a product grid.
Note however, that when some of the ik are 1, then this grid is of dimension
less than d (since m1 = 1).

Linear combinations of these formulas produce the Smolyak formulas. Let
U0 = 0 and ∆i = U i − U i−1 for i ∈ N, and define |i| = i1 + · · · + id. Then
for q ≥ d we have

(3) A(q, d) =
∑

d≤|i|≤q

∆i,

where ∆i is the tensor product of the ∆ik . A multinomial expansion and
q = d + k produces

(4) A(d + k, d) =
∑

k+1≤|i|≤d+k

(−1)d+k−|i|
(

d− 1
|i| − k − 1

)
U i.

When d > k, as is common for large d, we may replace k +1 ≤ |i| by d ≤ |i|.
An anisotropic version of this formula is described in [24]. The formula for
this version is largely the same as (3) with the index set d ≤ |i| ≤ q replaced
by a more general index set I, characterized by the property that if i ∈ I
and ik > 1, then i − ek ∈ I, where ek has 1 in the kth position and zeros
elsewhere.

Important results from [3] include that A(d + k, d)(P ) = P for all poly-
nomials of degree at most k, and that if f is in Cm, then

(5) ‖f −A(q, d)(f)‖∞ ≤
cd,m

nm
(log n)(m+2)(d−1)+1‖f‖∞,

where n = n(q, d) is the number of points in the sparse grid, X(q, d), for
A(q, d). There is a similar error estimate for a weighted L2 norm of the
Chebyshev expansion of f − A(q, d)(f). They note also that n(d + k, d) is
asymptotic to 2kdk/k! as d tends to ∞, in the sense that the ratio tends to
1.

3. Change of basis matrix and factorization

In this section we describe the matrix factorization that is central to the
efficient change to a gPC basis.

Let Pj , j ≥ 0 be a set of polynomials, each of degree j, orthogonal on the
interval [−1, 1] using inner product

∫ 1
−1 fg wdx, where w is a nonnegative

weight function that is positive in the interior of the interval (straightforward
modifications allow for unbounded intervals, but for clarity we restrict to the
finite interval).
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The expansion in (4) together with (1) gives a decomposition of A(q, d)
into a sum of products of Lagrange polynomials, with each U i corresponding
to a full product grid, Xi (although usually Xi is less than d-dimensional
since each entry of i that is 1 produces only a single point for the corre-
sponding dimension). On this grid, each nontrivial coordinate direction k
has i = ik > 1, and the number of points in this direction is mi = 2i−1 + 1.
Hence the degree of each Li

j is mi − 1, so we write each Li
j as a linear com-

bination of P0, . . . , Pmi−1. Suppressing for the moment the dependence on
i, we have

(6) Lj =
mi−1∑
m=0

Cj,mPm.

Taking tensor products as in (1), we obtain a basis in terms of tensor prod-
ucts of Pn for interpolation on the product grid Xi. Taking a union over
the Xi that appear in (4), we obtain a basis for interpolation on the entire
sparse grid. The problem then is to determine the (gPC) coefficients in this
basis for specified function values, f , at the sparse grid nodes.

Conceptually, the simplest approach to finding the gPC coefficients starts
by evaluating each basis function, P , at each point in X = X(q, d). These
values form a matrix, Φ, with each basis function corresponding to one
column and each point in X corresponding to one row.

Definition 3.1. Let Pj , j = 1, . . . , n be the gPC basis polynomials for the
sparse grid, X, having points x1, . . . , xn. Then the matrix Φ is the matrix
with entries Φi,j = Pj(xi).

With this definition, and a gPC coefficient vector, c, the product Φc gives
the value at each point in X of the polynomial determined by the coefficients
in c. Hence one can solve the interpolation problem by solving Φc = f for
c. Of course, simply constructing this matrix takes O(n2) operations, while
solving the system in this form using elimination takes O(n3) operations.

The alternative presented here is to give a factorization of Φ−1 based on
(4).

Theorem 3.2. The change-of-basis matrix Φ−1 has a factorization

Φ−1 = πT D̂wΦ̂−1π,

where Φ̂ is block-diagonal, with each block corresponding to a sub-grid, Xi;
D̂w is diagonal; and π is a matrix that includes Rn into RN for some N > n.

Proof. To start, we order the columns of Φ so that for each multi-index, i,
the set of column indices of basis functions for interpolation on Xi from (6)
are the same as the set of row indices for points in Xi. Let n be the number
of points in X and ni be the number in Xi. Let πi be the projection from
Rn to Rni obtained by restricting to the indices corresponding to Xi. In
this case, Φi = πiΦπT

i is the matrix obtained by evaluating basis functions
at points, with the basis functions and points restricted to those associated
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with Xi. Hence, given f = f(X), we can interpolate f on Xi by solving
Φici = πif for ci.

Since U i(f) in (1) also interpolates f on Xi, we have

(7) U i(f)(Xi) = Φici = πiΦπT
i ci.

Since the gPC basis functions associated with Xi were obtained by changing
basis from the Lagrange representation of U i, we see that U i(f) and the
polynomial with gPC coefficients πT

i ci are the same polynomial. Hence we
may extend the equality in (7) to all of X by replacing Xi by X on the left
and dropping πi on the right to obtain

(8) U i(f)(X) = ΦπT
i ci.

Let wi denote the weight for U i in (4). Using (8) with (4), we have

f = A(f)(X) =
∑
i∈I

wiU
i(f)(X)

=
∑

i

wiΦπT
i ci

= Φ

(∑
i

wiπ
T
i ci

)
.

Recalling that ci = Φ−1
i πif , we have

(9) Φ−1f =
∑
i∈I

wiπ
T
i Φ−1

i πif .

Let i1, . . . , im be an enumeration of the indices in I, let π be the matrix
obtained by vertical concatenation of πi1 , . . . , πim , let Φ̂ be the block diagonal
matrix with Φi1 , . . . ,Φim as blocks, and let D̂w be the diagonal matrix with
diagonal entries wi1 , . . . , wim , each repeated according to the size of the
corresponding block. Then (9) gives the factorization

(10) Φ−1 = πT D̂wΦ̂−1π.

�

4. Algorithm and complexity

Based on the previous section, the algorithm to find the coefficient vec-
tor, c, to represent the sparse-grid interpolating polynomial in gPC basis is
simply to use (10) to find c = Φ−1f . We avoid the matrix inverse by defining
f̂ = πf , solving Φ̂ĉ = f̂ for ĉ, and then using c = πT D̂w ĉ.

In this section we show that for fixed k in (4) and large dimension, d, the
complexity of this algorithm is linear in the number of points of evaluation.
We frame this result as a corollary to the following proposition, which gives a
bound on the total number of operations needed to compute on each subgrid,
Xi, in turn, as needed to solve Φ̂ĉ = f̂ for ĉ.
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In both of the following results, n(d + k, d) is the number of points in the
sparse grid associated with A(d + k, d).

Proposition 4.1. Let m ≥ 1 and k ≥ 1. Then there is ck,m > 0 so that for
all d > k ∑

d≤|i|≤d+k

|Xi|m ≤ ck,mn(d + k, d).

In this proposition, we use the fact mentioned above that when d > k,
then the sparse grid X is a union of Xi over i as indicated in the sum given
here. Given this result, the following theorem is nearly immediate.

Theorem 4.2. For fixed k, there is ck > 0 so that for d > k, the coeffi-
cients in the gPC expansion of A(d + k, d)(f) may be found using (10) with
computation time bounded by ckn(d+k, d). That is, for fixed k, the running
time is linear in the number of grid points.

We have not attempted to calculate the best possible cm,kk in the proof
of this result. In fact, numerical results given below show that in some
cases, the coefficient ck actually decreases as k increases due to the spread
of fixed overhead costs over a small number of points when k and d are small.
Additionally, the numerical results show that the time per point evaluated
is roughly constant through k = 8.

Note that this algorithm computes the gPC coefficients of the interpo-
lating polynomial rather than the original function itself. However, for a
Cm function, f , with m ≥ 1, the error estimate from (5) implies that the
interpolating function converges uniformly to f as the depth, k, increases.
Since the gPC coefficients are obtained by weighted integration of f against
the orthogonal polynomials, the gPC coefficients for the interpolating poly-
nomials converge to the gPC coefficients for f , and (5) provides a means
to estimate the error in these coefficients based on the set of orthogonal
polynomials and their corresponding weights.

Proof of Proposition 4.1. Given |i| = d+κ between d and d+k, consider the
number of points in the corresponding grid Xi. Let r = r(i) be the number
of nontrivial entries in i (that is, entries larger than 1). Suppose without
loss that the first r entries of i are nontrivial with entries ij = κj + 1 ≥ 2.
Then the number of points in this grid is

∏r
j=1(2

κj + 1). If κ1 is the only
entry larger than 1, then κ1 = κ − (r − 1), so the number of points is
exactly 3r−1(2κ−r+1 + 1). A simple counting argument implies that any
other distribution of nontrivial entries produces no more grid points, so

|Xi| ≤ 3r−12κ−r+2.

To construct i with |i| = d + κ and r nontrivial entries, we select r out
of d nontrivial entries, then distribute κ elements to these entries, so that
each entry gets at least one element. There are

(
d
r

)(
κ−1
r−1

)
ways to do this.
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Summing from r = 1 to κ, and using some crude upper bounds, we have∑
|i|=d+κ

|Xi|m ≤
κ∑

r=1

(
d

r

)(
κ− 1
r − 1

)
(3m)r−1(2m)κ−r+2

≤ (2m)κ+1d

κ−1∑
q=0

(
κ− 1

q

)
(3m)qdq

(2m)qq!
.

The summation on the right hand side is the Laguerre polynomial of degree
κ − 1 evaluated at −(3m)d/(2m). For κ and m fixed, this is asymptotic to
(3md/2m)κ−1/(κ− 1)! as d increases. Using this in place of the summation
above, summing over κ, and again bounding the resulting polynomial by the
highest degree term gives

(11)
k∑

κ=1

(2m)2d
(3md)κ−1

(κ− 1)!
≤ c

(3m)k−1

(k − 1)!
dk =

ck

2

(
3m

2

)k−1 2kdk

k!
,

for fixed k and large d. Note that n(d + k, d) is asymptotically equal to
2kdk/k! for large d. Hence, increasing c to account for the asymptotic ap-
proximation of the Laguerre polynomial and of the number of points in the
sparse grid, we obtain the desired result. �

Proof of Theorem 4.2. Given the sparse grid, X, associated with A(d+k, k)
and the vector of values, f , we need first to form the matrices π, D̂w, and Φ̂
as in (9). From the construction of π, it has exactly one nonzero entry per
row and is n×N , where n = n(d, k) is asymptotic to 2kdk/k! as d increases
[3], and N =

∑
d≤|i|≤d+k |Xi|. Hence π and the diagonal matrix, D̂w may

be constructed and applied in time O(N).
A given block of Φ̂ is obtained by evaluating products of 1-dimensional

polynomials on the points of a product grid, Xi. For a nontrivial entry
ij = 1 + κj , the polynomials in xj have degree at most 2κj . Using a three-
term recurrence, these polynomials may be evaluated at a given point in
O(2κj ). Since the projection of Xi to the xj coordinate has 2κj + 1 points,
these polynomials are evaluated in time O(2κj+1). This is repeated for each
nontrivial κj for a total of O(k2κj+1), which is (very crudely) O(k|Xi|).
Then for each point in Xi, we multiply at most k polynomials, which is
again O(k|Xi|). Hence Φ̂ may be constructed in time O(kN).

As noted above, to find the gPC coefficients, c, we define f̂ = πf , solve
Φ̂ĉ = f̂ for ĉ, and then use c = πT D̂w ĉ. Since Φ̂ has blocks of size |Xi|×|Xi|,
we may solve each block in time at most O(|Xi|3). Combining this with
Proposition 4.1 and the estimates O(N) and O(kN) above, we obtain the
theorem. �

A practical point is that many of the blocks in Φ̂ are identical up to a
permutation of the rows. Hence for each of these blocks, we may use a
single LU decomposition and appropriate permutations of the entries in f to
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reduce the total running time (although not, of course, the linear dependence
described in the theorem).

We note also that the algorithm given here is compatible with the anisotropic
adaptive sparse grids of [24]. The analysis given here shows that the time
per point depends only on the maximum size of a block in the factorization
of Φ−1, and this size is bounded by the maximum depth, k, in both the
isotropic and the anisotropic cases.

5. Regularization

A limitation of the standard sparse grid method is that function values
must be available at all points at a given level of refinement in order to
construct a useful interpolant. This problem is overcome to some extent in
anisotropic sparse grids [24], although even in this case all points must be
available at each of the full product subgrids. On the other hand, much
recent work in compressed sensing focuses on the fact that in the case of a
sparse or nearly sparse signal, the signal may be recovered (up to some given
frequency) with far fewer than the classically expected number of samples
[13, 10, 12, 21].

The idea of near sparsity is relevant here when the function, f , to be
interpolated is smooth, in which case the coefficients in the gPC expansion
of f decay fairly rapidly. The rate of decay of these coefficients is quantified
in the periodic case by inclusion in a Sobolev space. That is, if g has a
representation g(x) =

∑
k ck exp(2πik · x) with k a d-dimensional multi-

index and x ∈ Rd, then g is in W 2
s exactly when

∑
k |ck|2(1+ |k|2)s is finite.

Of course, larger s corresponds to smoother g and faster decay of |ck|. By
minimizing this sum over all functions g which interpolate f on a given set
of points, we obtain a minimum sobolev norm (MSN) interpolant for f on
this set of points.

A generalized version of this problem and various convergence results
are discussed in [18]. In particular, Theorems 2.1 and 2.2 of that paper
address the existence and convergence of the resulting minimizing function.
In that paper, the authors use a random set of points for interpolation and
a basis of functions, Hd

N consisting of functions g(x) as above, where the
sum is over ‖k‖1 < N and N is chosen based on the set of interpolation
points. Taking ĝ(k) = ck they define g(s) to be the function with Fourier
coefficients (1+‖k‖2

2)
s/2ck. Then (roughly) for p ≥ 1 and s > d, there exists

c > 0 so that given f ∈ W p
s , and a fixed set, Y , of interpolation points, the

problem of finding P ∗ in Hd
N to minimize ‖P (s)‖p subject to P (Y ) = f(Y )

has a solution, P ∗ that satisfies ‖P ∗‖W p
s

< c‖f‖W p
s
. Additionally, there is a

uniform bound on |P ∗ − f | in any subset in which Y is sufficiently dense.
The application of this method to polynomial interpolation is illustrated

in [16]. In this approach, a polynomial is represented in terms of a gPC
expansion using a basis of tensored Chebyshev polynomials of the first kind,
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Tm, normalized to be orthonormal with respect to the standard weight func-
tion. We continue to write Tm for the normalized polynomial. Then

(12) P (x) =
∑
k∈K

ckTk(x),

where K is a finite index set and Tk(x) = Tk1(x1) · · ·Tkd
(xd). The functions

Tm satisfy Tm(cos x) = cos(mx), so that (12) gives a Fourier cosine expan-
sion of P (cos θ1, . . . cos θd). The square of the norm of this periodic function
in the Sobolev space W 2

s is
∑

k∈K |ck|2(1 + |k|2)s.
To avoid overly cumbersome notation, we identify P as in (12) with the

corresponding periodic function P (cos θ1, . . . , cos θ2), with a correspond-
ing identification for P̂ , P (s), and P̂ (s). Hence P̂ (k) = ck, P (s)(x) =∑

k∈K ck(1 + |k|2)s/2Tk(x), and P̂ (s)(k) = ck(1 + |k|2)s/2.
Applying the MSN framework to the current setting produces the follow-

ing minimization problem.

MSN `2: Given a fixed sparse grid, X, on Id with corresponding tensored
Chebyshev polynomial basis {Tk : k ∈ K}, a function f ∈ W 2

s (Id) for some
s > 0, a subset ξ ⊂ X, and function values fξ = f(ξ), minimize

‖P (s)‖2
2 =

∑
k∈K

|ck|2(1 + |k|2)s

subject to P (x) = f(x) for all x ∈ ξ.

Note that ‖P (s)‖2
2 = ‖P̂ (s)‖2

2. Hence, as noted in [18], the minimization
problem above is nothing but a weighted `2 minimization on coefficients of
P . The weights (1 + |k|2)s serve to penalize high degree (frequency) terms
more than low degree terms, with the penalty increasing with s. In one sense,
this is an a priori assumption about the size of coefficients as a function of
degree and in another sense is an assumption about the smoothness class
of the given function. This kind of weighting is similar in spirit to the idea
of reweighting in `1 minimization [14]. In that setting, basis elements are
weighted more heavily (penalized) based on the results of an unweighted
`1 minimization; this often produces much better recovery than unweighted
minimization alone.

Given the fact that weighted `1 minimization is an effective method for
recovering a sparse signal and that the MSN approach provides a weighting
to enforce sparseness (decay) based on smoothness, we propose the following
minimization problem for interpolation of smooth functions.

MSN `1: With the same setting as MSN `2, minimize

‖P̂ (s)‖1 =
∑
k∈K

|ck|(1 + |k|2)s/2

subject to P (x) = f(x) for all x ∈ ξ.
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For a discussion of a similar weighted derivative penalty approach in the
context of multivariate splines, see Section 3.4 of [31].

Note that for large s, the weights (1 + |k|2)s may be very large, which
can make the the MSN `1 and `2 problems ill-conditioned. An approach
to minimize the ill-conditioning is discussed in [17]. In the current paper,
we restrict to moderate s to avoid such technical difficulties. Note that
the power of s in MSN `2 versus s/2 in MSN `1 implies that the range of
reasonable s for `2 is smaller than for `2.

Convergence: As a special case of more general results, the authors of
[18] prove the following convergence result for MSN `2 on arbitrary sets of
interpolation points. First, given s sufficiently large, f in W 2

s , and increasing
interpolation sets, ξj , (with basis Kj increasing accordingly), find Pj . If
xj ∈ ξj with xj converging to x0, then Pj(x0) converges to f(x0). Using
fairly straightforward estimates on derivatives, one can prove the same result
for the solutions of MSN `1. In [18] there are also bounds on the rate of
convergence for these solutions; we do not attempt to address this issue for
MSN `1.

MSN via factorization: Each of the two versions of MSN problems
given above may be reformulated in terms of the factorization given earlier.
The original form of each problem is

(13) min ‖Dsc‖p subject to Φc = f ,

where Φ is the matrix given in section 3 using as basis the tensored Cheby-
shev polynomials of the first kind, p is 1 or 2, and Ds is a diagonal matrix
giving the weights (1+|ck|2)s/2. When Φ and f are obtained by using all the
points in a sparse grid, then Φc = f is fully determined, and the minimiza-
tion problem is trivial. However, when not all function values are available
or if we replace the condition Φc = f by ‖Φc− f‖2 < σ for σ > 0, then (13)
is a nontrivial problem.

We may reframe this problem in terms of the factorization of section 3 as

(14) min ‖Dsπ
T D̂w ĉ‖p subject to Φ̂ĉ = f̂ ,

where D̂w, ĉ, Φ̂, and f̂ are all as in that section, except Φ̂ and f̂ may be
obtained by using less than the full set of sparse grid points. There are two
potential problems with this formulation. In the case in which some function
values are missing, the solution to (14) may not interpolate the given points.
The reason for this is that the missing values may appear more than once
in the full vector f̂ . That is, a given point in X may appear in more than
one subgrid Xi. In order to ensure that the solution to (14) interpolates the
given point, we need to impose a consistency condition on the coefficients ĉ:
for each missing point that appears in more than one subgrid Xi, the values
at that point obtained by each possible Φici must all agree. This may be
enforced by constructing a matrix, Ẑ, in which each row of Ẑ is obtained
from Φ̂ on the full set of points by taking one row of Φ̂ and subtracting
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another row of Φ̂ corresponding to the same point in a different subgrid.
This leads to

min ‖Dsπ
T D̂w ĉ‖p subject to Φ̂ĉ = f̂ , Ẑĉ = 0.

Another problem with this formulation is that for large s, the matrix
Ds produces large differences in the sensitivity of the objective function
to the various entries in ĉ. While this ill-conditioning cannot be removed
entirely, the routine we use for solving this problem (NESTA [4]) converges
more quickly when we change variables to move the scaling to the equality
constraint.

Based on the structure of π, with a single 1 in each row with all other
entries 0, there is a diagonal matrix D̂s so that Dsπ

T = πT D̂s. Let v̂ =
D̂sD̂w ĉ, Φ̂sw = Φ̂D̂−1

s D̂−1
w , and Ẑsw = ẐD̂−1

s D̂−1
w . This gives

(15) min ‖πT v̂‖p subject to Φ̂swv̂ = f̂ , Ẑswv̂ = 0.

When p = 2, this problem is a standard constrained quadratic program-
ming problem, although the fact that πT is many-to-one means that many
standard techniques are not applicable. When p = 1, this is an `1-analysis
problem in the terminology of [4], which describes the algorithm NESTA for
solving such problems. NESTA is based on Nesterov’s method [27], which
is a fast, first-order method for finding the approximate solution to the
minimizer of a nonsmooth convex function by using an appropriate smooth
function in its place. NESTA extends this idea by using continuation in
the smoothing parameter. This algorithm provides an efficient solution to
problems of the form

min ‖DT x‖1 subject to Ax = b.

The convergence rate of Nesterov’s method as applied by NESTA is propor-
tional to the operator norm of the matrix D. This provides the motivation,
mentioned above, for moving the scaling due to Ds from the objective func-
tion into the constraint.

An important caveat is that this algorithm (or at least the efficiency of
this algorithm) relies on the assumption that A is an orthogonal projector:
AT A = I. In practice, this requirement may be met by factoring AT = QR
and replacing Ax = b by QT x = (RT )−1b.

In the case of (15), this means that we must find the QR factorization
of the matrix [Φ̂T

sw ẐT
sw]. Since s introduces a row scaling in this matrix,

and since the QR factorization is not stable under extreme row scaling, this
limits the range of possible s. Additionally, since ẐT

sw is not block diagonal,
this means that the run time, in general, is no longer linear in the number
of points. However, in the case that none of the missing points appears in
more than one subgrid, then the matrix Z is redundant, so we may eliminate
it and retain the block diagonal structure in the QR decomposition and the
linear run time. In terms of the structure of a sparse grid, this means that
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only the highest level, or terminal, subgrids may have points missing. In
this case, the block diagonal structure and Proposition 4.1 imply that the
QR factorization is again linear in the number of points in the sparse grid.
While the more general case is not prohibitive, in the numerical examples
given below, we restrict to the case of empty Z.

Noisy case: When there is error in the function values, we have the
formulation

(16) min ‖πT v̂‖p subject to ‖Φ̂swv̂ − f̂‖2 < σ, Ẑswv̂ = 0.

In this case, the inequality constraint implies that the matrix Z must include
all points that appear more than once in the full vector f̂ , even if only
terminal points are missing. Although NESTA can solve problems of the
form

(17) min ‖DT x‖1 subject to ‖Ax− b‖2 ≤ σ

when A is not an orthogonal projector it requires the singular value decom-
position of A. Since [Φ̂T

sw ẐT
sw] is not block diagonal, this can be very ex-

pensive. In addition, the combination of equality and inequality constraints
introduces additional numerical difficulties.

Instead, we reformulate once again to combine the `1 and `2 constraints:

(18) min ‖πT v̂‖p + λ‖Φ̂swv̂ − f̂‖2 subject to Ẑswv̂ = 0.

For the correct choice of λ, this is equivalent to the previous formulation,
although in general there is no direct method for determining λ from σ
(see e.g., [32]). Here we do not focus on the most efficient methods for
determining λ from σ but use a simple line search method to determine λ.
In order to use this formulation, we need a smooth version of ‖ · ‖2 that fits
the framework required for Nesterov’s algorithm. Such a smooth version is
given in [2], which gives another algorithm for solving problems of the form
considered here. We note also that in this case, the matrix Ẑsw guarantees
consistency across multiple entries in f̂ , so we may eliminate multiple entries
(rows) from Φ̂sw and f̂ . This implies that the same value of σ may be used
to give the `2 penalty using the original points in f or the remaining points
in f̂ .

6. Numerical results

In this section we provide results of numerical experiments using the re-
vised algorithm described in the previous section. All computations were
performed in Matlab 7.7.0 on a Dell Precision PWS690 with an Intel Xeon
running at 3GHz with 3GB of RAM.
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Efficiency: To evaluate the running time of the conversion algorithm,
we used the test function labeled Oscillatory in [3],

f1(x) = cos

(
2πw1 +

d∑
i=1

cixi

)
,

where ci and w1 are chosen at random as indicated in [23]. The domain
of definition is [0, 1]. The sparse grid for a given dimension and depth was
created using the Matlab package spinterp, version 5.1.1 [25]. The resulting
functional values were then used as input to the revised conversion algorithm
using the Legendre polynomials as basis.

In Figure 1, we plot the running time of the conversion algorithm for
fixed order of accuracy, k, and increasing dimension. The plot on the left
clearly shows the linear dependence on the number of points evaluated.
The plot on the right shows the same data as a function of the number of
dimensions. Here the nonlinear increase for k bigger than 1 is due to the
nonlinear dependence of the number of points of evaluation on dimension.
Nevertheless, for k = 2, the algorithm is reasonably fast even up to 100
dimensions.
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Figure 1. Time for conversion to Legendre basis as a func-
tion of number of points and number of dimensions. Each
trace corresponds to a fixed order of accuracy (or depth, k)
with the number of dimensions increasing. Left: Time versus
number of points showing linear dependence on the number
of points evaluated. Right: The same data as a function of
number of dimensions (except k = 1 is truncated for scaling
reasons). Given the linear relationship on the right, this is
essentially a scaled plot of the number of points as a function
of the number of dimensions.

In Figure 2, we plot the running time of the conversion algorithm for
fixed dimension and increasing order of accuracy, k. Here the (relatively
crude) bound in (11) implies that the running time is bounded by c1c

k
2 per

point for some constants c1 and c2. However, the plot on the left shows that
the deviation from nonlinear is relatively small for small k. This is made
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more precise in the plot on the right, which shows the time per point as
a function of k. Perfect linear dependence would imply that the traces for
different dimensions would coincide. While this is essentially true for k ≥ 5
in the data presented, there are significant deviations for small k and d.
This is due to fixed overhead time that must averaged over fewer points in
these cases, which gives rise to the decrease in time per point as dimension
increases when k ≤ 4. Somewhat more surprisingly, the time per point (after
discounting the fixed overhead) is essentially constant up to k = 8.
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Figure 2. Time for conversion to Legendre basis as a func-
tion of number of points and order of accuracy (or depth, k).
Each trace corresponds to a fixed number of dimensions with
the depth increasing. Left: Time versus number of points
showing nonlinear dependence on k, particularly in dimen-
sions 3 and 6, for which the maximum depth is 10 and 9,
respectively. Right: The same data scaled to give time per
point of evaluation and shown as a function of k. Perfect
linear scaling of time with number of points would imply
that the time per point is the same for a given value of k,
independent of dimension. Apart from fixed overhead costs
that skew the results for small k, the time per point is nearly
constant over a large range of feasible values of k.

We note that the interpolant in gPC form using our algorithm agrees with
the Lagrange interpolant from the spinterp package up to a maximum dif-
ference of 10−10 at randomly selected points in the examples we’ve studied.
Moreover, our implementation of the gPC interpolant is significantly faster
per point than the interpolation in spinterp. In Figure 3, we plot the time
for interpolation per point for dimension 5 with k = 6 and dimension 30
with k = 3. Not counting the time for conversion, our method is at least 10
times faster per point than spinterp. With conversion, our method is faster
in these examples (and many others) when interpolating more than about
100 points. For both methods, the precise timing depends heavily on the
implementation, and we do not claim that the interpolation in gPC form is
intrinsically faster than barycentric interpolation. However, for applications
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involving many interpolations, our method has a clear advantage over the
spinterp implementation.
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Figure 3. Time for interpolation per point as a function of
number of points to interpolate. Left: Dimension 5, k = 6.
Right: Dimension 30, k = 3. In both cases, interpolation
per point (after conversion) in gPC form is much faster than
interpolation using spinterp.

Regularization: To evaluate the effectiveness of the MSN `1 regulariza-
tion approach, we used the test function Oscillatory as above, and also the
function labeled Product Peak in [3],

f2(x) = Πd
i=1(c

−2
i + (xi − wi)2)−1,

using the selection of random parameters c and w as given in [23]. However,
to make comparison of error more meaningful across dimensions, we used a
linear scaling of both of these functions to produce a sample mean of 0 and
sample variance of 1.

We show plots of the error between these test functions and interpolating
polynomials obtained by various choices of dimension, adaptive versus non-
adaptive sparse grids, Sobolev exponent s, and noise. In each case, we fix
a test function and dimension and plot an estimate of the L∞ norm of the
difference between the test function and an interpolating (or approximating)
function, as a function of the number of points interpolated. For the method
presented here, we need also to specify a sparse grid and specify a subset of
points in this sparse grid for sampling. In the plots shown, we first select a
set of points for evaluation, construct an interpolant, and then add points
and repeat the process. Since the results depend on the points chosen, we
repeat this process 8 times and plot the mean, maximum, and minimum
errors. The original sparse grid may be either isotropic or anisotropic, but
in either case, as noted above, we focus here on the case in which the missing
points are terminal points (appear in only one subgrid).

In Figure 4, we show the (estimated) L∞ error between interpolating
polynomials and the function Oscillatory. Both plots show the expected
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decrease in error as more points are sampled, using either the nonadaptive
(isotropic) grid or the adaptive (anisotropic) grids of [25]. For the figure
on the left, the isotropric grid of maximum depth (k = 4) was used to
determine the basis polynomials and the allowable points for sampling in
the MSN `1 problem. Points were removed at random from this grid and
the MSN `1 interpolating polynomial determined as described above. This
procedure was repeated 8 times with different choices of missing points. The
plot shows the mean, max, and min L∞ errors over these 8 trials. The plot
on the right was constructed in the same way, using the adaptive grid to
determine the basis polynomials and the allowable points for sampling.
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Figure 4. Estimated L∞ error between interpolating poly-
nomial and the function Oscillatory in dimension 10. Each
plot shows the error obtained from the standard nonadaptive
grid and from the adaptive grid as well as error from the so-
lution to MSN `1 with s = 8. Left: Nonadaptive grid with
k = 4 used to determine the basis and set of points for MSN.
Right: Adapative grid used to determine basis and points.

The importance of the Sobolev exponent, s, is shown in Figure 5. The
plot on the left shows the same procedure as that applied to obtain the plot
on the left in Figure 4, only now s = 0, so that no penalty is applied to
high degree/frequency terms. In this case, the error is much greater than
that in the case of s = 8. This is consistent with the fact that this test
function is analytic and hence the coefficients in the gPC expansion should
decay rapidly with increasing degree. To display the robustness of these
results with increasing dimension, we show on the right the same procedure
in dimension 50, with k = 2 and s = 8. Again the MSN `1 procedure
performs very well, in this case even better than the adaptive grid, even
though the points for the MSN grid were taken from the nonadaptive grid.

As with any numerical method, this one does not perform equally well
with all functions. In Figure 6, we show plots analogous to those in Figure 4,
only now using the function Product Peak. In this case, the errors using
the MSN procedure decrease more slowly than might be expected from the
previous case.
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Figure 5. Estimated L∞ error between interpolating poly-
nomial and the function Oscillatory. Left: Nonadaptive grid
in dimension 10 with k = 4 and s = 0. Right: Nonadaptive
grid in dimension 50 with k = 2 and s = 8.
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Figure 6. Estimated L∞ error between interpolating poly-
nomial and the function Product Peak. Left: Nonadaptive
grid in dimension 10 with k = 4 and s = 8. Right: Adaptive
grid in dimension 10 with k = 4 and s = 8.

D-Restricted Isometry Property: The paper [11] considers the prob-
lem in (17) in the case when b = Ax+ z, with z a random variable modeling
measurement error and noise. Let x∗ denote the minimizer of (17). Theo-
rem 1.4 of [11] gives a bound on the ‖x∗−x‖2 under the assumption that the
matrix A satisfies a particular form of the D-Restricted Isometry Property
(D-RIP). The D-RIP condition with constant δc is

(1− δc)‖v‖2
2 ≤ ‖Av‖2

2 ≤ (1 + δc)‖v‖2
2

for all v obtained as a linear combination of at most c columns of D (here we
use δc in place of the more standard δs to avoid confusion with the Sobolev
exponent, s). Theorem 1.4 of [11] then states that if D is a tight frame, and
δ7c < 0.6 for A, then the minimizer, x∗, of (17) satisfies

‖x∗ − x‖2 ≤ C0σσ + C1
‖DT x− (DT x)c‖1√

s
,
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where C0 and C1 depend only on δ2s.
This theorem does not apply directly to the problem at hand because

D is not a tight frame. However, as mentioned in [11], this assumption is
made for ease of analysis; a version of the results still apply without this
assumption. A more serious obstacle is that in the setting of (16), the set
of allowable vectors, v̂, is constrained by Ẑswv̂ = 0 and additionally by the
nonuniform probability of nonzero coefficients in the gPC expansion: low-
degree polynomials are more likely to have large coefficients than are high-
degree polynomials. For this reason, instead of estimating δc by selecting
uniformly a random subset of columns of Π′ and taking a uniform random
linear combination of these columns, we instead select a random subset of
columns of Π′ with smaller probability for high degree terms and take the
intersection of the span of these columns with the null space of Ẑsw. Since
this is a computationally expensive procedure, and since the motivation
for this nonuniform sampling is only heuristic at present, we did not do
extensive tests. However, for dimension 5, with k = 3, and 20% of points
missing, estiamtes for δc are typically in the range of 0.3, even for c close
to maximal, suggesting reasonable bounds on the recovery error. Obtaining
more rigorous bounds is an area for future research.

Noisy case: Because of the need to determine λ in (18), and because
λ may depend quite sensitively on σ in (17), the problem of estimating the
coefficients using (18) is computationally fairly expensive. Moreover, to em-
phasize the role of sparsity, we did not use the test functions given above
directly. Instead, we computed the gPC expansion of the interpolating poly-
nomial at a given depth and then set all gPC coefficients below a threshold
to 0. We did this with the function Oscillatory (normalized to have mean 0
and std dev 1) and then added Gaussian noise with std dev 0.2.

We removed some of the sparse grid points and then solved (17) for various
values of λ to approximate (18) with σ = 0.2∗sqrt(n+sqrt(2∗n))/2, where
n is the number of sampled points.

We performed this procedure in dimension 2 with depth = 5 and 13
missing points out of 65 and in dimension 5 with depth = 3 and 49 missing
points out of 241. For comparison, we computed the gPC expansion of the
function that interpolates the given function values (with noise) exactly.
The plots in Figure 7 show the original sparse coefficients on the left and
the difference between these original coefficients and each of the coefficients
obtained with (18) and obtained by interpolating the noisy values exactly.
While the recovery is far from perfect, the coefficients from (17) in general
show significantly lower error than the coefficients from exact interpolation
with noise.

7. Conclusion

We have described a block-diagonal factorization of the matrix for chang-
ing basis from Lagrange polynomials to orthogonal polynomials based on
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Figure 7. Recovery of sparse coefficients with missing val-
ues and noise in function values. Top left: gPC coefficients
for target function in 2 dimensions. Top right: error in recov-
ered coefficients (solid line), and coefficients for polynomial
that interpolates the given noisy function values exactly (dot-
ted line). Bottom left: gPC coefficients for target function
in 5 dimensions. Bottom right: recovered coefficients (solid),
and coefficients for exact interpolation (dotted).

function values at a Smolyak sparse grid. This factorization leads to an ef-
ficient algorithm for converting an interpolating polynomial from Lagrange
form to gPC form. For a fixed degree of accuracy and increasing dimension,
this algorithm is linear in the number of points of evaluation. Moreover, for
fixed dimension, the time per point of evaluation is nearly constant as the
degree of accuracy increases up to about k = 8. We also showed how to use
this factorization together with `1 minimization via the algorithm NESTA
to provide a good approximation to the original interpolating polynomial,
even when function values are not available at some points of the sparse grid
and/or when the values are corrupted by noise. Together, these results pro-
vide a significant extension to the power and flexibility provided by sparse
grid interpolation.
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