
Digital Object Identifier (DOI) 10.1007/s002229900049
Invent. math. 139, 617–659 (2000)

 Springer-Verlag 2000

Algebraic surfaces holomorphically dominable byC2

Gregery T. Buzzard1,?,Steven S. Y. Lu2,??

1 Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
2 Department of Mathematics, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada

Oblatum 2-II-1999 & 9-IX-1999 / Published online: 29 November 1999

1 Introduction

An n-dimensional complex manifoldM is said to be (holomorphically)
dominableby Cn if there is a mapF : Cn → M which is holomorphic
such that the Jacobian determinant det(DF) is not identically zero. Such
a mapF is called adominating map. In this paper, we attempt to classify
algebraic surfacesX which are dominable byC2 using a combination of
techniques from algebraic topology, complex geometry and analysis. One
of the key tools in the study of algebraic surfaces is the notion of Kodaira
dimension (defined in Sect. 2). By Kodaira’s pioneering work [Ko1] and its
extensions (see, for example, [CG] and [KO]), an algebraic surface which
is dominable byC2 must have Kodaira dimension less than two. Using
the Kodaira dimension and the fundamental group ofX, we succeed in
classifying algebraic surfaces which are dominable byC2 except for certain
cases in whichX is an algebraic surface of Kodaira dimension zero and the
case whenX is rational without any logarithmic 1-form. More specifically,
in the case whenX is compact (namely projective), we need to exclude
only the case whenX is birationally equivalent to a K3 surface (a simply
connected compact complex surface which admits a globally non-vanishing
holomorphic 2-form) that is neither elliptic nor Kummer (see Sects. 3 and 4
for the definition of these types of surfaces).

With the exceptions noted above, we show that for any algebraic surface
of Kodaira dimension less than 2, dominability byC2 is equivalent to the
apparently weaker requirement of the existence of a holomorphic image
of C which is Zariski dense in the surface. With the same exceptions, we
will also show the very interesting and revealing fact that dominability by
C2 is preserved even if a sufficiently small neighborhood of any finite set
of points is removed from the surface. In fact, we will provide a complete
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classification in the more general category of (not necessarily algebraic)
compact complex surfaces before tackling the problem in the case of non-
compact algebraic surfaces.

We remark that both elliptic K3 and Kummer K3 surfaces are dense in
the moduli space of K3 surfaces; the former is dense of codimension-one
while the latter is dense of codimension sixteen in this moduli space (see
[PS,LP]) and intersects the former transversally (these density results hold
also in any universal family). Dominability byC2 holds for both types of
K3 surfaces. This suggests that it might hold for all K3 surfaces so that
our statements above would be valid without exception for projective (and,
more generally, for compact Kähler) surfaces. Indeed, their density plus
Brody’s Lemma ([Br]) tell us that every K3 surface contains a non-trivial
holomorphic image ofC and that the generic K3 surface, which is non-
projective but remains Kähler, even contains such an image that is Zariski
dense. We mention here that dominability byC2 can be shown for some non-
elliptic K3 surfaces which are close to Kummer surfaces using an argument
similar to that of Sect. 6; for length considerations, we omit this non-
elliptic case from this paper. However, we note that the statement equating
dominability to the weaker condition of having a Zariski dense image ofC
is quite false in the non-Kähler category, as is amply demonstrated by Inoue
surfaces (see [In0] or [BPV, V.19]).

Observe that if there is a dominating mapF : C2 → X, then there is
also a holomorphic image ofCwhich is Zariski dense: First we may assume
that the Jacobian ofF is non-zero at the origin. Definingh : C → C2 by
h(z) = (sin(2πz), sin(2πz2)), we see thath(n) = (0,0)with corresponding
tangent direction(2π,4πn) for eachn ∈ Z. Taking F ◦ h, we obtain
a holomorphic image ofC with an infinite number of tangent directions at
one point, which implies that the image is Zariski dense.

We say that an algebraic varietyX satisfies property C if every holomor-
phic image ofC in X is algebraically degenerate; i.e., is not Zariski dense.
Our first main result is that for algebraic surfaces of Kodaira dimension
less than 2 and with the exceptions mentioned above, dominability byC2 is
equivalent to the failure of property C. We will state only the main results
in the projective category in this introduction for simplicity but will discuss
fully the compact non-projective case and much of the quasi-projective case
in this paper.

Theorem 1.1 Let X be a projective surface of Kodaira dimension less than
2 and suppose thatX is not birational to a K3 surface which is either
elliptic or Kummer. ThenX is dominable byC2 if and only if it does not
satisfy property C. Equivalently, there is a dominating holomorphic map
F : C2→ X if and only if there is a holomorphic image ofC in X which is
Zariski dense.

By a recent result of the second named author, this theorem is also true
for a projective surface of Kodaira dimension 2, which is the maximum Ko-
daira dimension for surfaces. As previously mentioned, a surface of Kodaira
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dimension 2 is not dominable byC2 [Ko1]; indeed, a surface of Kodaira
dimension 2 is precisely a surface which admits a possibly degenerate hyper-
bolic volume form. Thus in the case of Kodaira dimension 2, Theorem 1.1
can be established by showing that such a surface satisfies property C.
The question of whether a variety of maximum Kodaira dimension satisfies
property C was first raised explicitly by Serge Lang [Lang].

In the following theorem we give, again modulo the above mentioned
exceptions, a classification of projective surfaces which are dominable by
C2 and hence a classification of projective surfaces of Kodaira dimension
less than 2 which fail to satisfy property C. We will do this in terms of the
Kodaira dimension and the fundamental group, both of which are invariant
under birational maps.

Theorem 1.2 A projective surfaceX not birationally equivalent to a K3
surface is dominable byC2 if and only if it has Kodaira dimension less
than two and its fundamental group is a finite extension of an abelian group
(of even rank four or less). Ifκ(X) = −∞, then the fundamental group
condition can be replaced by the simpler condition of non-existence of more
than one linearly independent holomorphic one-form. Ifκ(X) = 0 and X
is not birationally equivalent to a K3 surface, thenX is dominable byC2.
If X is birationally equivalent to an elliptic K3 surface or to a Kummer K3
surface, thenX is dominable byC2.

As with Theorem 1.1, this theorem fails if we include compact non-
Kähler surfaces (even after simple minded modification of this theorem). For
instance, the Kodaira surfaces are dominable byC2 but their fundamental
groups are not finite extensions of abelian groups ([Ko4]). But this theorem
remains valid in the Kähler category, thanks, for example, to Kodaira’s
result that all Kähler surfaces are deformations of projective surfaces ([Ko2],
[Ko3]).

More general versions of Theorem 1.1 and Theorem 1.2 for compact
complex surfaces will be given at the end of Sect. 4.

In the quasi-projective category, we also prove the analogue of Theo-
rem 1.1 modulo the same exceptions mentioned in the beginning, following
mainly the work of Kawamata [K1] and M. Miyanishi [M]. In this setting,
the analogue of the fundamental group characterization requires the study
of a new but very natural class of objects of complex dimension one that
are related to orbifolds. As for explicit examples, we will work out Theo-
rems 1.1 and an analogue of 1.2 for the complement of a reduced curveC in
P2 in the case whenC is normal crossing, where we show that dominability
is characterized by degC ≤ 3, and for the overlapping case in whichC is
either not a rational curve of high degree or has at most one singular point.
Here, the most fascinating and revealing example is the case in whichC is
a non-singular cubic curve, whose complement is a noncompact analogue
of a K3 surface. The question of the dominability of the complement of
a non-singular cubic was discussed by Bernard Shiffman at MSRI in 1996,
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and the positive resolution of this problem served as the first result in and
inspiration for this paper.

The key tools we introduce here for constructing dominating maps are
the mapping theorems we establish via a combination of complex geometry
and analysis. One of these theorems utilizes Kodaira’s theory of Jacobian
fibrations to deal with general elliptic fibrations (see Sect. 3). Other such
theorems construct the required self-maps ofC2 directly via complex an-
alysis to deal withC∗-fibrations, abelian and Kummer surfaces.

In particular, the constructions in Sects. 4 and 6 show that given any
complex 2-torus and any finite set of points in this torus, there is an open set
containing this finite set and a dominating map fromC2 into the complement
of the open set. This should be compared with [Gr] in which it was claimed
that the complement of any open set in a simple complex torus is Kobayashi
hyperbolic (a complex torus is simple if it has no nontrivial complex subtori).
There is no contradiction because it was later realized that the proof given in
[Gr] is incorrect since the topological closure of a complex one-parameter
group need not be a complex torus. Despite this, the validity of this claim
appears to have been an open question until the current paper, which shows
the claim to be false in dimension 2. Then-dimensional analogue of our
result is given in [Bu].

Many of the tools and results we develop may be of interest to other
areas of mathematics besides complex analysis and holomorphic geometry,
especially to Diophantine (arithmetic) geometry in view of the connection
between the transcendental holomorphic properties and arithmetic proper-
ties of algebraic varieties. For example, the important technique of con-
structing sections of elliptic fibrations, which is very difficult to achieve
in the algebro-geometric category but certainly useful in arithmetic and
algebraic geometry, turns out to be quite natural and relatively easy to do
in the holomorphic category. Also, we undertake a global study, from the
viewpoint of holomorphic geometry, of the monodromy action on the fun-
damental group of an elliptic fibration. Needless to say, without the deep and
beautiful contributions of Kodaira on complex analytic surfaces, we would
not be able to go much beyond dealing with some special examples, as is
the case with much of the scarce literature on the subject. However, we have
not avoided, due to the nature of this joint paper, giving elementary lemmas
and proofs while avoiding the unnecessary full force of Kodaira’s theory on
elliptic fibrations, especially as we deal with fibrations over curves that are
not necessarily quasiprojective.

The paper is organized as follows. Section 2 introduces some basic bira-
tional invariants and general notation and provides a list of the classification
of projective surfaces. Section 3 deals with projective surfaces not of zero
Kodaira dimension and solves the dominability problem completely for el-
liptic fibrations, including the non-algebraic ones. Section 4 deals with the
remaining projective and compact complex cases while Sect. 5 deals with
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the non-compact algebraic surfaces. Section 6 goes beyond these theorems
to deal with algebraic surfaces minus small open balls.

Acknowledgements.We are very grateful to Bernard Shiffman for posing the question which
motivated and inspired this paper and for his constant encouragement during its preparation.

2 Classification of algebraic surfaces

In this section we will first introduce some basic invariants in the (logarith-
mic) classification theory of algebraic varieties (see [Ii] for more details,
also compare with [Ue]). Then we will provide a list of the birational classi-
fication of projective surfaces and discuss briefly the dominability problem
in the quasi-projective category. Finally, we will introduce the more general
category of compactifiable complex manifolds and a basic invariant which
distinguishes the algebraic case in dimension two.

Let X̄ be a complex manifold with a normal crossing divisorD. This
means that around any pointq of X̄, there exists a local coordinate(z1, ..., zn)
centered atq such that, for somer ≤ n, D is defined byz1z2...zr = 0 in this
coordinate neighborhood. If all the components ofD are smooth, thenD is
called a simple normal crossing divisor. Following Iitaka ([Ii]), we define
the logarithmic cotangent sheafΩX̄(logD) as the locally free subsheaf of the
sheaf of meromorphic 1-forms, whose restriction toX = X̄ \ D is identical
to ΩX and whose localization at any pointq ∈ D is given by

ΩX̄(logD) =
r∑

i=1

O X̄,q

dzi

zi
+

n∑
j=r+1

O X̄,qdzj ,

where the local coordinatesz1, ..., zn aroundq are chosen as before. Its
dual, the logarithmic tangent sheafTX̄(−logD), is a locally free subsheaf
of TX̄. We will follow a general abuse of notation and use the same notation
to denote both a locally free sheaf and a vector bundle.

By an algebraic variety in this paper, we mean a complex analytic space
X0 such thatX0 has an algebraic structure in the following sense:X0 is
covered by a finite number of neighborhoods, each of which is isomor-
phic to a closed analytic subspace of a complex vector space defined by
polynomial equations and which piece together with rational coordinate
transformations. A proper birational map fromX0 to another varietyX1 is,
by the graph definition, an algebraic subvariety ofX0 × X1 which projects
generically one-to-one onto each factor as a proper morphism. If such a map
exists, we say that the two varieties are properly birational. This notion cor-
responds to that of a bimeromorphic map in the holomorphic context. Two
algebraic varieties are said to be birationally equivalent if they have iso-
morphic rational function fields; or equivalently, if they have birational
compactifications. Hironaka’s resolution of singularities theorem [Hi] (an
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elementary proof of which can be found in [BM]) implies that given any
algebraic varietyX0, there is a smooth projective varietȳX with a simple
normal crossing divisorD such thatX = X̄\D is properly birational toX0.
If X0 is smooth, then we can even takeX to beX0 so thatX0 can be com-
pactified by adding a simple normal crossing boundary divisor. In this paper,
a surface will mean a complex two dimensional manifold while a curve that
is not explicitly a subvariety (or a subscheme) will mean a (not necessar-
ily quasi-projective) complex one-dimensional manifold. All surfaces and
curves are assumed to be connected. In particular, every algebraic surface
is isomorphic to the complement of a finite set of transversely intersecting
smooth curves without triple intersection in some projective surface. We
will use the Enriques-Kodaira classification of compact surfaces to simplify
our problem for surfaces.

One of the most important invariants under proper birational maps is
the (logarithmic) Kodaira dimension. LetX0, X, X̄, and D be as above,
and letKX̄ = detC (T∨X̄ ) whereT∨

X̄
is the complex cotangent bundle ofX̄.

The (holomorphic) line bundleKX̄ is called the canonical bundle of̄X.
Identifying a line bundle and its sheaf of holomorphic sections, we define
a new line bundleK = KX̄(D) = KX̄ ⊗ O(D) corresponding to the sheaf
of meromorphic sections ofKX̄ which are holomorphic except for simple
poles alongD (see Griffiths and Harris [GH] among many other standard
references). In fact,

K = detΩX̄(log D).

This line bundle onX̄ is called the logarithmic canonical bundle ofX =
X̄ \ D, or more specifically, of(X̄, D). We will write tensor products of
line bundles additively by a standard abuse of notation; for example,mK =
K⊗m. Given a projective manifold̄Y and a birational morphismf : Ȳ→ X̄
such that f −1(D) is the same as a normal crossing divisorE in Ȳ, then
any section ofmK as a tensor power of rational 2-form onX pulls back
via f to a section ofmKȲ(E). Conversely, any section ofmKȲ(E) pulls
back (via f −1) to a section ofmK outside a codimension-two subset (the
indeterminacy set off −1), which therefore extends to a section ofmK
by the classical extension theorem of Riemann. It follows that, for every
positive integerm, h0(mK) := dim H0(mK) is independent of the choice
of X̄ for X0 and is a proper birational invariant ofX0. This allows us to
introduce the following birational invariant ofX0.

Definition 2.1 The Kodaira dimension ofX0 is defined as

κ̄(X0) = lim sup
m→∞

logh0(mK)

logm
.

The simpler notationκ(X0) is used whenX0 is projective. The Riemann-
Roch formula shows that̄κ(X0) takes values in the set

{−∞,0,1, ...,dim X0}.
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By the same argument as that forh0(mK), we see that another proper
birational invariant is given by the (logarithmic) irregularity ofX0 defined
by

q̄(X0) = h0(ΩX̄(log D)).

If D = 0, thenq̄(X0) is just the dimension of the space of global holomor-
phic one-formsq(X) = h0(ΩX) on X.

If κ̄(X0) = dim(X0), thenX0 is called a variety of general type. A theo-
rem of Carlson and Griffiths [CG] (see also Kodaira [Ko1]) says thatX0
cannot be dominated (even meromorphically) byCn in this case. Hence for
both Theorem 1.1 and Theorem 1.2, we need consider only those surfaces
with Kodaira dimension less than 2.

A projective surfaceX whose canonical bundle has non-negative inter-
section with (or, equivalently, non-negative degree when restricted to) any
curve inX is called minimal. We say thatKX is nef (short for numerically
effective) in this case. In general, we say that a line bundleL on X is nef if
L ·C ≥ 0 for any curveC in X.

Every algebraic surface is either projective or admits a projective com-
pactification by adding a set of smooth curves with at most normal crossing
singularities. Moreover, the Enriques-Kodaira classification [BPV, Ch. VI]
says that a projective surface admits a birational morphism (as a composition
of blowing up smooth points) to one of the following.

(0) A surface of general type:κ = 2.
(1) P2 or a ruled surface over a curveC of genusg = h0(ΩC) (that is,

a holomorphicP1 bundle overC). The latter is birationally equivalent
to P1× C. Here,κ = −∞.

(2) An abelian surface (a projective torus given byC2/a lattice). Here,
κ = 0.

(3) A K3 surface (a simply connected surface with trivial canonical bundle).
κ = 0.

(4) A minimal surface with the structure of an elliptic fibration (see
Sect. 3.2). Hereκ can be 0, 1, or−∞.

The characteristic property of the surfaces listed above is the absence
of (−1)-curves. A(−1)-curve is a smooth rational curve (image ofP1) in
a surface with self-intersection−1, i.e. whose normal bundle has degree−1.
From Castelnuovo’s criterion [BPV, III4.1], a(−1) curve is always the
blow-up of a (smooth) point on a surface. A simple argument (via the linear
independence of the total transform of blown up(−1)-curves inH1) shows
that, given any projective surface withκ < 2, one can always reach one of
the surfaces listed above by blowing down(−1)-curves a finite number of
times. It is a standard fact that a projective surface withκ ≥ 0 is minimal
if and only if it does not have any(−1)-curve, and that such a surface is the
unique one in its birational class having this property.

Let X0 be an algebraic surface having a compactificationX̄0 which
is birational to one of the model surfaces listed above, sayX̄. There is
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a maximum Zariski open subsetU of X0 that is properly birational to the
complement of a reduced divisorC and a finite setT ′ of points in X̄. Now
the indeterminacy set of this proper birational map fromX = X̄ \ {C ∪ T}
to U ⊆ X0 must consist of a finite set of points. So to produce a dominating
map fromC2 to X0, it suffices to produce, for each finite set of points
T in X̄, a dominating map fromC2 into the complement ofT in X̄ \ C.
Nevertheless,̄X \ C may not be dominable byC2 when X0 is dominable
byC2; for example, a point onX0 may correspond to an infinitely near point
on X̄ over a point ofC. However, if we think ofX0 as an open subset of the
space of infinitely near points of̄X, then we can recover the equivalence in
dominability through the above procedure (see Sect. 5).

Although we have chosen to introduce and state our results so far in
the algebraic category for simplicity, we will in fact deal with a more
general class of surfaces in the next two sections: the class of compactifiable
surfaces. These are Zariski open subsets of compact complex surfaces and
the invariantsκ̄ and q̄ carry over to them verbatim as they are defined by
compactifications with normal crossing divisors, which exist by complex
surface theory. If a surfaceX is compact, the transcendency degreea(X) of
the field of meromorphic functions onX is, by definition, a bimeromorphic
invariant and is called the algebraic dimension.

3 Compact surfaces withκ 6= 0 and a 6= 0

In this section we solve theC2 dominability problem for compact surfaces
whose Kodaira dimension and algebraic dimension are both non-zero. The
bulk of this section is devoted to the case of elliptic fibrations, which we
treat completely, including all the noncompact cases. In particular, we solve
our problem for every projective surface that is birational to a minimal one
listed in (1) and (4) above. Cases (2) and (3) will be discussed in Sect. 5.

3.1 Projective surfaces with Kodaira dimension−∞
Since anyP1-bundle over a curveC is birational to the trivialP1-bundle
overC and sinceP2 is birational toP1× P1, any projective surfaceX with
κ̄(X) = −∞ is birational to a surfaceY which is a trivialP1-bundle over
a curveC of genusg := h0(ΩC). In the case whereC is of genusg > 1,
any holomorphic image ofC in Y must lie in a fiber of the bundle since
C is hyperbolic. HenceX satisfies property C and so cannot be dominated
byC2. In the caseY is aP1 bundle over an elliptic curve or overP1, one can
easily construct a dominating map fromP1×C1 and hence fromC2 which
respects the bundle structure (even algebraically in the latter case). In fact,
by composing with the map

(π1,hπ2) : C2→ C2 (3.1)
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whereh : C→ C is holomorphic with prescribed zeros (which we can do
by Weierstrass’ theorem) andπ1, π2 are the respective projections, we can
arrange to have the dominating map miss any finite subset inY. Choosing
this finite subset to be the set of indeterminacies of the birational map from
Y to X, this dominating map lifts to give a dominating map intoX. Since
P1 admits no holomorphic differentials and is simply connected, we obtain,
respectively,

q(X) = q(Y) = q(C) = g and π1(X) = π1(Y) = π1(C).

Coupling this with the fact that the fundamental group of a curve of genus
greater than 1 is not a finite extension of an abelian group gives us the
following.

Theorem 3.1 If X is a projective surface withκ(X) = −∞, then the
following are equivalent.

(a) X is dominable byC2.
(b) q(X) := h0(ΩX) < 2.
(c) X admits a Zariski dense holomorphic image ofC.
(d) π1(X) is a finite extension of an abelian group.

3.2 Elliptic fibrations

If X is any compact non-projective surface witha(X) 6= 0, thenX is an
elliptic surface by [Ko2]. Also, ifX is projective andκ(X) = 1, thenX is
again an elliptic surface by classification. Hence the only remaining cases of
κ 6= 0 anda 6= 0 are elliptic surfaces. In this section we resolve completely
the case of elliptic surfaces.

Definition 3.2 An elliptic fibration is a proper holomorphic map from
a surface to a curve whose general fiber is an elliptic curve, i.e., a curve of
genus one. Such a surface is called an elliptic surface. An elliptic fibration
is called relatively minimal if there are no(−1)-curves on any fiber.

Note that an elliptic fibration structure on a minimal surface must be
relatively minimal.

Let f : X → C be a fibration (i.e. a proper holomorphic map with
connected fibers) between complex manifoldsX andC. If f ′ : X′ → C′
is another map whereC′ ⊆ C, then a maph : X′ → X is called fiber-
preserving if f ◦ h = f ′. If rank(d f ) = dim C at every point on a fiber
Xs = f −1(s), thenXs must be smooth by the implicit function theorem. If
rank (d f ) < dim C somewhere onXs, then Xs is called a singular fiber.
Outside the singular fibers, all fibers are diffeomorphic by Ehresmann’s
theorem.

In the casef is a fibration of a surfaceX over a curveC, then each fiber,
as a subscheme via the structure sheaf fromC, is naturally an effective
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divisor on X as follows. We writeXs = ∑
ni Ci where Ci is the i -th

component of the fiber(Xs)red (without the scheme structure) and where
ni − 1 is the vanishing order ofd f for a generic point onCi . The positive
integer coefficientni is called the multiplicity of thei -th component. The
multiplicity of a fiber Xs = ∑

ni Ci is defined as the greatest common
divisorns of {ni }. A fiber Xs with ns > 1 is called a multiple fiber. A smooth
fiber is then a fiber of multiplicity one having only one component. The
singular fibers form a discrete set inX by analyticity. We will assume this
setup forX andC from now on.

Let α : C̃→ C be a finite proper morphism. The ramification index at
a points̃ ∈ C̃ is defined as the vanishing order ofdα at s̃ plus one. Suppose
α has ramification indexns at every point aboves ∈ C and suppose that this
is true for everys ∈ C. Then, according to [BPV, III, Theorem 9.1], pulling
back the fibration via this ramified cover yields an unramified coveringX̃
over X. Also, the resulting fibrationX̃ → C̃ no longer has any multiple
fiber. Such a ramified covering̃C is called an orbifold covering ofC with
the given branched (orbifold) structure onC. More generally we have:

Definition 3.3 Given a curveC with an assignment of a positive integerns
for eachs ∈ C such that the setS= {s ∈ C| ns > 1} is discrete inC, define

D =
∑
ns>1

(
1− 1

ns

)
s. Supposeα : C̃→ C is a holomorphic quotient map

such thatα : C̃\α−1(S)→ C\Sis an unramified covering and such that, for
each points ∈ S, every point onC̃ aboves has ramification indexns. Then
C̃ is called an orbifold covering of the orbifold(C, D). If also C̃ is simply
connected, theñC is called a uniformizing orbifold covering. A fibration
overC defines a natural (branched) orbifold structureD onC by assigning
ns to be the multiplicity of the fiber ats of the fibration.

Therefore, we have the following:

Proposition 3.4 Let X be a fibration overC. Letns denote the multiplicity
of the fiberXs for every points ∈ C, thus endowingC with an orbifold
structureD as above. Let̃C be an orbifold covering of(C, D). Then the pull
back fibrationX̃→ C̃ has no multiple fibers and̃X→ X is an unramified
holomorphic covering map.

3.2.1 The Jacobian fibration

We first begin with a preliminary discussion in the absolute case, the case
where the base is just one point.

Let Z be a one dimensional subscheme (or a curve) in a complex pro-
jective surface. The arithmetic genus ofZ, defined bypa(Z) = h1(OZ) :=
dimC H1(OZ), is equal to the geometric genus whenZ is smooth. Assume
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now that Z is an arbitrary fiber in an elliptic fibration. Sincepa is an in-
variant in any algebraic family of curves ([Ha, III, cor. 9.13]), we have
pa(Z) = 1 and soH1(OZ) = C. From the exponential exact sequence
0 → Z → O → O∗ → 0, we construct the cohomology long exact
sequence overZ to deduce:

0→ H1(Z,Z) i→ H1(OZ)→ H1(O∗Z)
δ→ H2(Z,Z)→ 0

|| || ||
aZ-module C Pic(Z)

Fact: (Let Z be non-singular.) Pic(Z) is naturally identified with the space
of holomorphic line bundles overZ, which, in our case ofpa = 1, is a
1-dimensional complex Lie group under tensor product. Every line bundle
L can be written asO(E) for some divisorE = ∑

ai si (ai ∈ Z, si ∈ Z)
andδ(L) = degE :=∑ai .

Definition 3.5 Pic0(Z) := kerδ is the subgroup ofPic(Z) of line bundles
L with trivial first Chern classc1(L) := δ(L).

If Z is a smooth elliptic curve with a base pointσ , we can construct
a group homomorphism fromZ to Pic0(Z) by the map

x ∈ Z
f7→ O(x − σ) ∈ Pic0(Z).

Lemma 3.6 The mapf is holomorphic, one-to-one and hence onto.

Proof: As f is holomorphic by construction, we need to prove only that it
is one-to-one. Assume not, so thatO(x − σ) = O(x′ − σ) wherex 6= x′.
ThenO(x − x′) corresponds to the trivial line bundle overZ and soZ has
a rational function with a simple pole atx′ and a simple zero atx. This gives
a 1-1 and hence surjective holomorphic map fromZ, which has genus 1,
to P1, which has genus 0. This is a contradiction. ut
Note: Pic0(Z) = H1(OZ)/i(H1(Z,Z)).

We now return to the case in which the base is a curve.
Given an elliptic fibrationf : X → C without multiple fibers, one can

construct a relative version of Pic0 as follows (see [BPV, p. 153]). We first
form theOC module

Jac( f ) = f∗1(OX)/ f∗1Z

overC. Sincepa(Xs) = 1 for every fiber, it follows thatf∗1(OX) is locally
free of rank 1 (by a well known theorem of Grauert) and hence is the sheaf
of sections of a line bundleL over C. HenceJac( f ) corresponds to the
sheaf of sections of

Jac( f ) := L/ f∗1Z,
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which is a holomorphic fibration of complex Lie groups with a zero section
(see [Ko2], compare also [BPV, V.9]). Note that whenXs is smooth elliptic,
( f∗1Z)s = H1(Xs,Z) which embeds inLs = H1(OXs) = C. So Jac( f )s =
Pic0(Xs). Note also that Jac( f ) is a holomorphic quotient of a line bundle
L overC.

We have the following theorem from Kodaira [Ko2] (see [BPV, V9.1]).

Proposition 3.7 Let f : X → C be a relatively minimal elliptic fibration
over a curveC with a holomorphic sectionσ : C→ X. LetX′σ consist of all
irreducible components of fibersXs not meetingσ(C), and letXσ = X\X′σ .
Then there is a canonical fiber-preserving isomorphismh from Jac( f ) onto
Xσ mapping the zero-section inJac( f ) ontoσ(C).

Hence it is useful to construct holomorphic sections of elliptic fibrations
for which we develop the following key lemma.

Lemma 3.8 Given a relatively minimal elliptic fibrationf : X→ C with-
out multiple fibers, assumeC is non-compact. Thenf has a holomorphic
section. Furthermore, given a countable subsetT of X whose imagef(T)
is discrete inC, the section can be chosen to avoidT.

Proof: From Kodaira’s table of non-multiple singular fibers ([Ko2] or
[BPV, Table 3 p. 150]), we see that every fiber which is not multiple in
a relatively minimal elliptic fibration has a component of multiplicity one.
So, every point onC admits a neighborhood with a section. We now choose
a locally finite good covering ofC by open setsU1,U2, ..., with sections
τ1, τ2, ... of f |U1, f |U2, ..., respectively. We may further stipulate that there
are no singular fibers on the intersection of any twoUj ’s.

Let L = f∗1OX, which is a holomorphically trivial line bundle over
C sinceC is Stein. LetU ⊆ C be open andτ ′ ∈ H0(U, L) a section.
If τ is a section off |U , then we can form the sectionτ + τ ′ of f |U by
Proposition 3.7. By the same proposition and the fact that all fibers are
elliptic curves overUi ∩ Uj , there is a sectionτ ′ij ∈ H0(Ui ∩ Uj , L) such
thatτi + τ ′ij = τ j onUi ∩Uj .

As {τ ′ij } satisfies the cocycle condition, so does{−τ ′ij }. By the so-
lution to the classical additive Cousin problem (or from the fact that
H1({Ui }, L) = H1(C, L) = H1(C,O) = 0 by Leray’s theorem, Dol-
beault’s isomorphism, and the fact thatC is Stein), one can find holomor-
phic sectionsτ ′i ∈ H0(Ui , L) such thatτ ′i − τ ′ij = τ ′j . Thenτi + τ ′i = τ j + τ ′j
on Ui ∩Uj for all i, j . This gives rise to a global section off : X→ C.

Given such a global section, Proposition 3.7 gives a fiber-preserving
dominating mapF : L → X whereF−1(x) ⊂ L is at most a countable
discrete set for allx in X. HenceF−1(T) is also a countable set and is
supported on the fibers ofL over f(T). For eachs ∈ f(T), therefore, we
may choose a pointqs in L \T. As L is isomorphic to the trivial line bundle
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(C being non-compact), the classical interpolation theorems of Mittag-
Leffler and of Weierstrass give us a holomorphic sectionσ of L with the
prescribed valueqs for all s ∈ T. But thenF ◦ σ is a section off which
avoidsT. This completes the proof. ut

3.2.2 Theorem 1.1 in the case of elliptic fibrations

Theorem 3.9 Let f : X→ C be a relatively minimal elliptic fibration with
a finite number of multiple fibers. Assume thatC is a Zariski open subset
of a projective curveC̄. Letns be the multiplicity of the fiberXs. Then the
following are equivalent.

(a) X is dominable byC2.

(b) χ := 2− 2g(C)− #(C \C)−
∑
ns≥2

(
1− 1

ns

)
≥ 0.

(c) There exists a holomorphic map ofC to X whose image is Zariski
dense.

Remark 1:χ = χ(C, D) is the orbifold Euler characteristic of(C, D). It

can be written asχ(C, D) = 2− 2g(C)−
∑
s∈C

(
1− 1

ns

)
if we setns = ∞

for s ∈ C \ C (where 1
∞ = 0). Hence, if we complete theQ-divisor

D =
∑
s∈C

(
1− 1

ns

)
s to D =

∑
s∈C

(
1− 1

ns

)
s on C, then

χ(C, D) = 2− 2g(C)− degD.

Proof of theorem:The pair(C, D) defines an orbifold as given in Defin-
ition 3.3. We will show that (a) holds ifχ(C, D) ≥ 0 while property C holds
for X (that is, (c) fails to hold) ifχ(C, D) < 0. This will conclude the proof.

From the classical uniformization theorem for orbifold Riemann sur-
faces (see, for example, [FK, IV 9.12]),(C, D) has a uniformizing orbifold
coveringC̃ which isP1,C orD according toχ(C, D) > 0,χ(C, D) = 0 or
χ(C, D) < 0 respectively, unlessC = P1 andD has one or two components.
In the latter (“unless”) case, we simply redefineC to be the complement
of the components ofD in P1 and resetD to be 0, shrinkingX as a result.
We can do this because it does not change the fact thatχ(C, D) ≥ 0 and
because once we show that the resultingX is dominable byC2, the original
X is also.

By pulling back the fibration tõC, we obtain a relatively minimal elliptic
fibrationY overC̃. Now, Proposition 3.4 implies that the natural map from
Y to X is an unramified covering. Hence any holomorphic map fromC to
X must lift to a holomorphic map toY. It follows that if C̃ = D, then any
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such map must lift to a fiber and hence its image inX must lie in a fiber.
So, property C holds andX cannot be dominated byC2 in this case.

It remains to show thatX is dominated byC2 in the caseC̃ = C or
P1 to complete the proof of this theorem. Note that the latter case can be
reduced to the former by simply removing a point from̃C. Hence, we may
take C̃ to beC which is non-compact. Lemma 3.8 now applies to give
a section of the pullback fibratioñf : Y → C. By Proposition 3.7,Y is
dominated by Jac( f̃ ) which in turn is dominated by a line bundleL overC
by construction. HenceX is dominated byL = C2 (since any line bundle
overC is holomorphically trivial) as required. ut

Now, let f ′ : X′ → C be an arbitrary elliptic fibration. By contracting
the (−1)-curves on the fiber, we get a bimeromorphic mapα from X′ to
a surfaceX having a relatively minimal elliptic fibration structure overC.
As before,X defines an orbifold structureD on C. If X has an infinite
number of multiple fibers or ifC is not quasi-projective, thenD is the
universal covering of(C, D) and conditions (a) and (c) of this theorem both
fail for X. Otherwise the above theorem can be applied to conclude that
conditions (a) and (c) are still equivalent forX. Let T be the indeterminacy
set ofα−1. By examining the last paragraph of the above proof, we see that
Lemma 3.8 actually applies to give us a dominating map from the trivial
line bundleL overC̃ to X, and the zero-section ofL maps to a section off
that avoidsT. Composing with a self-map ofL given by a section ofL with
prescribed zeros (just as in Equation 3.1) then gives us a dominating map
from L to X which avoidsT. Hence, ifX is dominable byC2, then X′ is
also. It is clear thatX′ satisfies property C ifX does. Hence, we obtain the
following, which covers Theorem 1.1 in the case of elliptic surfaces.

Theorem 3.10 Let f : X→ C be an elliptic fibration. Then conditions (a)
and (c) of Theorem 3.9 above are equivalent forX; that is, dominability by
C2 is equivalent to having a Zariski-dense holomorphic image ofC.

Note that we do not requireC to be quasi-projective in this theorem.

3.2.3 An algebro-geometric characterization

In this section, we will give, without proof, a characterization of dominabil-
ity by C2 for a projective elliptic fibration in terms of familiar quantities in
algebraic geometry and not involving the fundamental group. Unfortunately,
the condition given is not straightforward nor does it seem very tractable.
Hence, we will leave the proof (which is based on the simple fact that the
saturation of the cotangent sheaf of the base, pulled back by the fibration
map, includes the orbifold cotangent sheaf as aQ subsheaf) to the reader.
We will deal only with the case ofκ = 1 since the other possibility of
κ = 0 contains the, so far, problematic K3 surfaces. However, all surfaces
with κ = 0 other than the K3’s are dominable byC2. We note that from
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the classification list in Sect. 2, a surface withκ = 1 is necessarily elliptic.
Before the statement of the following proposition, recall that a vector sheaf
is called big if it contains an ample subsheaf. Recall also that a divisor in
a surface is nef if its intersection with any effective divisor is non-negative.

Proposition 3.11 Let X be a projective surface withκ(X) = 1. ThenX is
dominable byC2 if and only if there exists a nef and big divisorH such
that, for every nef divisorN with KX N = 0, there exists a positive integer
m with SmΩX(H − N) big.

It is not difficult to extract a birational invariant out of this fromQ-
subsheaves of the cotangent sheaf of such an elliptic surface; again we leave
this to the interested reader.

In the remainder of this section, we give a more satisfactory and ele-
mentary characterization of dominability, now in terms of the fundamental
group.

3.3 The fundamental group of an elliptic fibration

We begin with the remark that, except for our narrow focus on holomorphic
geometry, most of the results we obtain in this section are not presumed to
be new.

Let f : X → C be an elliptic fibration. Then the fibration determines
a branched orbifold structureD on C as given in Definition 3.3. LetC◦ be
the complement of the set of branch points inC. ThenX◦ = f −1(C) is an
elliptic fibration defined byf ◦ = f |X◦ , which has no multiple fiber. LetX′ be
the complement of the singular fibers inX̄. Then f ′ = f |X′ defines a smooth
fibration over a curveC′ ⊆ C, and is therefore differentiably locally trivial
by Ehresmann’s theorem. We have the following commutative diagram.

X′ ↪→ X◦ ↪→ X
f ′ ↓ f ◦ ↓ ↓ f

C′ ↪→ C◦ ↪→ C
(3.2)

We first observe the following trivial lemma for our consideration of
π1(X). Throughout this section, all paths are assumed to be continuous.

Lemma 3.12 Assume that we are given a real codimension two subsetW
of X and a pathν : [0,1] → X such thatν(0) and ν(1) lies outsideW.
Thenν is homotopic to a path that avoidsW keeping the end points fixed.

Proof: We first impose a metric onX. Since[0,1] is compact, there is an
integern such thatν([(i −1)/n, i/n]) is contained in a geodesically convex
open ballBi for all i ∈ {1,2, ...,n}. Then the intersection of these balls are
also geodesically convex and, in particular, connected. Now replaceν(i/n)
by a point inBi

⋂
Bi+1 \W for each integeri ∈ [1,n − 1]. Then replace
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ν|[(i−1)/n,i/n] by a path inBi \W connectingν((i − 1)/n) with ν(i/n), for
each integeri ∈ [1,n]. This is possible because the complement ofW in
each of the open balls is connected asW is of real codimension two in them.
Since the balls are contractible and intersect in connected open sets, we see
that the new path is homotopic to the original one fixing the end points but
now avoidsW. ut

If the pathν given above has the same end points, that isν(0) = ν(1),
then we callν a loop. We will often identifyν with its image.

For the next two propositions, we observe from Kodaira’s table of sin-
gular fibers (see [BPV, V.7]) that, for a fiberXs of an elliptic fibration
(as a topological space or a simplicial complex),π1(Xs) is eitherZ ⊕ Z
(corresponding to a nonsingular elliptic curve),Z (corresponding to the
(semi-)stable singular fibers), or the trivial group (corresponding to the
other singular fibers).

Proposition 3.13 Let f : X → C be an elliptic fibration. In the case
C = P1, let X∞ be a multiple fiber if one exists. Assumef has no multiple
fibers except possibly forX∞ and thatC is simply connected. Thenπ1(X)
is a quotient ofπ1(Xs) for every fiber outsideX∞. In particular, π1(X) is
abelian.

Proof: Since contracting(−1)-curves does not change the fundamental
group, we may assume without loss of generality thatf is relatively minimal.
Let Xs be an arbitrary fiber. Being a CW-subcomplex ofX, it is a deformation
retract of a small neighborhoodU which we may assume to contain a smooth
fiber Xs′ nearby. SinceX is path connected, we can choose any base point
in considering its fundamental group. Fix then a base pointq ∈ Xs′ and
a loop Q with this base point. We will show thatQ is pointed homotopy
equivalent inX to a loop inXs′ ⊂ U. The theorem then follows asXs is
a deformation retract ofU.

Since the singular fibers form a real codimension two subset, we can
modify Q to avoid them up to pointed homotopy equivalence by Lemma 3.12
above. In the caseC = P1 but X∞ is not already given, letX∞ be a fiber
outsideU andQ. Since every homotopy (ofQ) in X \ X∞ is also one inX,
we may safely replaceX by X \ X∞ so thatC becomes contractible in this
case. Hence, we may assume in all cases thatC is contractible and thatQ is
a loop inX′, the complement of the singular fibers inX. So Lemma 3.8 and
Proposition 3.7 apply to give an isomorphism from Jac( f ) to X with parts of
the singular fibers complemented. Hence, we get, by construction of Jac( f ),
a mapθ from a holomorphically trivial line bundleL overC to X which is
an unramified covering aboveX′ ⊂ X. Fixing a pointq0 ∈ θ−1(q) ⊂ Ls′,
we see thatQ can be lifted to a pathQ̃ in L from q0 to a pointq1 ∈ Ls′
by the theory of covering spaces. AsC is contractible, there is a homotopy
retraction ofL to Ls′ which provides a pointed homotopy of̃Q to a path
in Ls′. Pushing down this homotopy (viaθ) to X gives a pointed homotopy
from Q to a loop inXs′ as required. ut
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Looking back at the above proof, we see that we can reach the same
conclusion by allowingXs to be a multiple fiber as long asC is contractible
and X is free of other multiple fibers. This can be done by contracting the
loop Q, as given in the proof, but only to the neighborhoodU of Xs before
homotoping toXs via the deformation retraction ofU to Xs. Of course,Xs
as stated in the theorem is no longer arbitrary in this case as it is a multiple
fiber. If C = P1 and D has two components (corresponding toX having
two multiple fibers), we can remove one of the components (corresponding
to removing one multiple fiber fromX) for the same conclusion. We recall
that

D =
∑
s∈C

(
1− 1

ns

)
s

defines the orbifold structure onX wherens is the multiplicity of the fiberXs.
Hence, we get a complement to the above proposition.

Proposition 3.14 Let f : X → C be an elliptic fibration defining the
orbifold structureD onC. If C = P1 and D has one or two components, or
if C is contractible andD has one component, thenπ1(X) is a quotient of
π1(Xs) for every components of D. Hence,π1(X) is abelian in these cases.

ut

3.3.1 Monodromy action as conjugation in the fundamental group

Although it is not absolutely necessary, some familiarity with the notion
of monodromy and vanishing cycles used in geometry may be useful for
reading this section.

Let the setup be as in diagram 3.2 and letXr be a non-singular fiber.
Fix a base pointq in Xr for all fundamental group considerations from now
on. There is an action ofπ1(X′,q) onπ1(Xr ,q) via the monodromy action
which, in the caseC′ is notP1, is just the conjugation action inπ1(X′,q).
Indeed, in this case, we have the following exact sequence from the theory
of fiber bundles (or from elementary covering space theory)

0→ π1(Xr ,q)→ π1(X
′,q)→ π1(C

′, r)→ 0, (3.3)

from which we deduce that the monodromy action is really an action of
π1(C′, r) onπ1(Xr ,q) since the latter is abelian.

In general, we will letH denote the image ofπ1(Xr ,q) in π1(X,q)
under the inclusion ofXr in X. It is easy to see thatH is a normal subgroup
in π1(X) (by the definition of the monodromy action). In this paper, we
will be mainly interested in the monodromy action onH. As opposed to
the usual case of the monodromy action on the homology level, this action
need not be trivial, unless we know, for example, thatπ1(X,q) is abelian.
Hence, it is of interest for us to know how farπ1(X,q) is from abelian.

With the same setup, suppose(C, D)has a uniformizing orbifold cover̃C.
This is the case unless̄C = P1 and D̄ has one or two components, again
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by the uniformization theorem ([FK, IV 9.12]). In the latter cases, Propo-
sition 3.14 and Proposition 3.13 tell us thatπ1(X) is abelian so that the
monodromy action onH is trivial. In all other cases, let̃f : X̃ → C̃ be
the pullback fibration. Proposition 3.4 implies thatX̃ is an unramified cover
over X. Let R be the covering group andG = π1(X). From the theory
of covering spaces, we know thatG is an extension ofπ1(X̃) by R. Since
π1(Xr ) surjects toπ1(X̃) ⊂ π1(X) by Proposition 3.4, we see that

H = π1(X̃).

Note thatR is a quotient ofπ1(C◦) and hence also ofπ1(C′), allowing us
to identify the conjugation action ofR on H with the monodromy action.
Hence, we have the following exact sequence (which we can regard as
a quotient of the exact sequence 3.3)

0→ H → G→ R→ 0. (3.4)

The following proposition tells us that this monodromy action onH via
loops inX′, which induces the conjugation action ofR on H, depends only
on the pointed homotopy class of the image of these loops inC. Hence, the
monodromy action onH is really an action by the groupπ1(C), which is
a quotient ofR. In particular, it tells us that the action is trivial whenC is
simply connected. This is the closest analogue, on the level ofπ1, of the
fact that vanishing cycles are vanishing on the level of homology.

Proposition 3.15 Let f : X→ C be an elliptic fibration. LetXr be a non-
singular fiber with a base pointq. If α, β andγ are loops based atq with α
in Xr , and f ◦ β is pointed homotopic tof ◦ γ in C, thenβ−1αβ is pointed
homotopic inX to γ−1αγ .

Proof: We may assume, via Lemma 3.12, thatβ and γ lie in X′. Let
h : [0,1] × [0,1] → C be a pointed homotopy betweenf ◦ β and f ◦ γ ,
which exists by assumption. Note that

( f ◦ β)( f ◦ γ)−1 = h
(
∂([0,1] × [0,1]))

as loops up to pointed homotopy equivalence, where∂ means the oriented
boundary. Our conclusion would follow if we show that the monodromy
action of this latter loop, call itµ, onα is trivial in π1(X).

By compactness ofh([0,1]×[0,1]), there is a partition{0= a0 < a1 <
... < an = 1} of [0,1] such thath([ai−1,ai ] × [aj−1,aj ]) is contained in an
open diskDij containing at most one branch point and such that the loop

µij := h
(
∂([ai−1,ai ] × [aj−1,aj ])

)
lies in X′, for all i, j ∈ {1,2, ...,n}. Sinceπ1

(
f −1(Dij )

)
is abelian by

Proposition 3.14, the monodromy action ofµij on any pointed loop in
the fiber is trivial inπ1( f −1(Dij )), and hence inπ1(X) as well, for all
i, j ∈ {1,2, ...,n}. Our result now follows from the fact that the monodromy
action ofµ is just the sum of the monodromy action of theµij ’s. ut
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We can do a bit better whenX is compact.

Lemma 3.16 With the setup as in the above proposition, assume further
that eitherX is compact orX is a holomorphic fiber bundle overC. Then an
integerm exists, independent ofβ, such thatβm commutes withα in π1(X).

Proof: Let H be the image ofπ1(Xr ) in π1(X). We may assume, as before,
that f is relatively minimal.

If X has a singular fiber, thenH is cyclic and hence the result follows
from the fact that the automorphism group of a cyclic group is finite.

If X is a holomorphic fiber bundle overC, then the monodromy actions
can be realized as holomorphic automorphisms of the fiber. The group
of such automorphisms is a finite cyclic extension of the group of lattice
translations (this can be deduced easily or determined from the table in
V.5 of [BPV] listing such groups). Hence every monodromy action up to
a power is a translation on the fiber, which therefore leaves every element
of π1(Xr ) invariant.

If X is compact and has no singular fibers, then it is a holomorphic fiber
bundle by Kodaira’s theory of Jacobian fibrations. So the result follows by
the last paragraph. ut

If X is non-compact andf is algebraic without singular fibers, then the
conclusion of this lemma may no longer hold. Neverthless, we can embed
X in a projective surfaceX̄, which is again elliptic. Deligne’s Invariant
Subspace Theorem [Del] implies that elements inπ1(Xr ) which vanish in
π1(X) are generated overQ by commutators of the form given by this
lemma. But we can deduce this directly from the fact that the abelianization
of π1(X̄)must have even rank so that eitherH lies in the center ofπ1(X̄) (in
the case when̄X is birational to an elliptic fiber bundle) or the commutator
subgroup ofπ1(X̄) generatesH overQ. In fact, Kodaira’s theory allows us
to deduce a strong version of the Invariant Subspace Theorem (in the case
of elliptic fibrations) which is valid even outside the algebraic category:

Proposition 3.17 Let f : X→ C be an elliptic fibration without singular
fibers and such thatC is the complement of a discrete set in a quasi-
projective curve. LetXr be a fiber. Then eitherf is holomorphically locally
trivial or π1(Xr )⊗Q = H1(Xr )⊗Q is generated by the vanishing cycles
— that is, by loops of the formα−1β−1αβ (naturally identified as elements
of π1(Xr ) via monodromy) in the notation of Proposition 3.15, whereα is
a loop in Xr .

We remark that a weaker form of this proposition is in fact due to Kodaira
and is disguised in the proof of Theorem 11.7 in [Ko2]. We will follow his
method, almost verbatim, in our proof.

Proof: We begin with some preliminaries concerning the period function
z(s), which takes values in the upper half plane. Recall that, as far as
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monodromy actions are concerned, we can identifyβ ∈ π1(X) with an
element ofπ1(C), which we will denote again asβ by abuse of notation.

By Theorem 7.1 and Theorem 7.2 of [Ko2] (neither of which re-
quires the additional assumption of that section concerning the compactif-
ication), we have a multivalued holomorphic period functionz(s) onC with
positive imaginary part such that, under the monodromy representation
(β) ∈SL(2,Z) of β ∈ π1(C) as an automorphism of the latticeH1(Xr )with
a fixed choice of basis,z(r) transforms as

β∗ : z(r) 7−→ az(r)+ b

cz(r)+ d
, where (β) =

(
a b
c d

)
∈ SL(2,Z)

under our choice of basis. By definition,(1, z(s)) is the period defining the
elliptic curveXs via analytic continuation of(1, z(r)), which is fixed by our
choice of basis onH1(Xr ) (see Equation 7.3 in [Ko2]).

With a choice of basis over the pointr fixed, we can regard the period
functionzas a single valued holomorphic function on the universal coverC̃.
Also, we can naturally identifyπ1(C) with the covering transformation
group ofC̃ overC. Then we have (see Equation 8.2 in [Ko2])

z(β(ξ)) = β∗z(ξ) = az(ξ)+ b

cz(ξ)+ d
, where (β) =

(
a b
c d

)
and ξ ∈ C̃.

Let M denote the submodule ofπ1(Xr ) = H1(Xr ) = Z⊕ Z generated
by the vanishing cycles. After a suitable change of basis, we may assume
that M = nZ⊕mZ ⊆ Z ⊕ Z, wherem andn are integers. IfM does not
generateH1(Xr ) overQ, then eitherm or n must vanish. Ifm vanishes, then
we must have

(β) =
(

1 bβ
0 1

)
(for somebβ ∈ Z),

and thereforez(β(ξ)) = z(ξ) + bβ for all β ∈ π1(C). Since the imaginary
part of z(s) is positive, exp[2πiz(s)] defines a single valued holomorphic
function onC with modulus less than 1. Hence, it must extend to a bounded
holomorphic function on the compactification̄C of C and therefore must
be constant. It follows thatz(s) is constant and so the fibration is locally
holomorphically trivial. Ifn vanishes, then

(β) =
(

1 0
cβ 1

)
(for somecβ ∈ Z),

and therefore
1/z(β(ξ)) = 1/z(ξ)+ cβ.

Hence, considering exp[−2πi/z(s)] instead of exp[2πiz(s)] gives us the
same conclusion. This ends our proof. ut

In order to studyG = π1(X), we need some information about its
quotientR. This is fortunately a classical subject that we now turn to.
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3.3.2 Fuchsian groups versus elementary groups

In this section, we will collect some basic definitions and facts that we will
need about Kleinian groups. We refer the reader to [FK, IV.5-IV.9] and
[Mas, I-V] for more details.

Let (C, D) be an orbifold and let̃C be its uniformizing orbifold covering
with covering groupR which acts holomorphically oñC. SinceC̃ = P1,C
or D, all of which have natural embeddings intoP1, R can be identified as
a subgroup of the groupM of holomorphic automorphisms ofP1, the group
of Mobius transformations. So identified,Rbecomes a Kleinian group; that
is, a subgroup ofM with a properly discontinuous action at some point, and
hence in some maximum open subsetΩ, ofP1. The set of pointsΛ = P1\Ω
whereR does not act properly discontinuously is called the limit set ofR.

An elementary group is a Kleinian groupRwith no more than two points
in its limit set. Such a group acts properly discontinuously on∆ ⊂ P1, where
∆ is P1, C orC∗.

By a Fuchsian group, we mean a Kleinian groupR with a properly dis-
continuous action on some diskD ⊂ P1 such thatD/R is quasi-projective;
that is,D is the uniformizing orbifold covering of an orbifold(C, D) where
C = D/R is quasi-projective. IfD has finitely many components, then
(C, D) is known as a finite marked Riemann surface andR is called basic.
The limit set of a Fuchsian group necessarily contains the boundary ofD
(which characterizes Fuchsian groups of the first kind in the literature). It
follows that a Fuchsian group cannot be an elementary group. We can also
see this directly as follows.

Lemma 3.18 An elementary Kleinian group is not a Fuchsian group.

Proof: Let R be an elementary Kleinian group, thenR acts properly dis-
continuously on∆ = P1, C orC∗ as a subset ofP1. If R also acts on a disk
D ⊂ P1, then the boundary of this disk with at most two points removed is
contained in∆. SinceR is properly discontinuous on∆, and hence on this
punctured boundary,D/R is not quasi-projective. HenceR is not Fuchsian.

ut

The following is a direct consequence of the uniformization theorem.

Proposition 3.19 Let (C, D) be a uniformizable orbifold whereD has
a finite number of components. LetR be the uniformizing orbifold covering
group of(C, D) properly regarded as a Kleinian group. Thenχ(C, D) < 0
if and only if R is a Fuchsian group whileχ(C, D) ≥ 0 if and only if R is
an elementary group.

The reader is cautioned that Lemma 3.18 is not a corollary of this since
the definition of an elementary group is more general than that given in this
proposition.
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ConcerningRas an abstract group, Proposition 3.19 and the basic theory
of elementary Kleinian groups (see [Mas, V.C and V.D] or [FK, IV 9.5])
gives:

Proposition 3.20 With the same setup as Proposition 3.19, assume that
χ(C, D) ≥ 0. Then there is a finite orbifold covering̃C of (C, D) such that
C̃ = P1, C∗ or an elliptic curve. In particular,R is a finite extension of
a free abelian group of rank at most two.

Quoting [Mas, V.G.6], using Lemma 3.18 and Proposition 3.20, we have:

Proposition 3.21 Let R be a Fuchsian group as defined above. ThenR is
not a finite extension of an abelian group. Hence,R is not isomorphic to an
elementary group as an abstract group.

3.3.3 The fundamental group characterization in Theorem 1.2

Before stating the main theorem of this section, we need the following
proposition from [BPV, V.5]. We first note from the same source that an
elliptic fiber bundle over an elliptic curve is called a primary Kodaira surface
if it is not Kähler. A non-trivial free quotient of such a surface by a finite
group is called a secondary Kodaira surface. The fundamental group of such
a surface is unfortunately not a finite extension of an abelian group, even
though the surface isC2-dominable.

Proposition 3.22 An elliptic fiber bundle over an elliptic curve is either
a primary Kodaira surface, or a free and finite quotient of a compact complex
2-dimensional torus.

Armed with this, we are ready to tackle our second main theorem,
Theorem 1.2, in the case of elliptic fibrations. We will state a more general
theorem:

Theorem 3.23 Let f : X → C be an elliptic fibration withC quasi-
projective. Assume thatX is not bimeromorphic to a free and finite quotient
of a primary Kodaira surface. ThenX is dominable byC2 if and only if
π1(X) is a finite extension of an abelian group (of rank at most 4).

Proof: With the assumptions as in the theorem, we letG = π1(X) as
before. By the same argument as that for Theorem 3.10, we may assume,
without loss of generality, thatX is relatively minimal by contracting the
(−1)-curves (asG is unchanged in this process). IfX has an infinite number
of multiple fibers, then the orbifold(C, D) is uniformized byD and soX
is not dominable byC2. Proposition 3.21 tells us thatR is not isomorphic
to a finite extension of an abelian group in this case. Hence, we may also
assume thatD has only a finite number of components for the rest of
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the proof. Theorem 3.9 then applies and so it is sufficient to show that
χ(C, D) ≥ 0 if and only if G is a finite extension of an abelian group.

Assume thatχ(C, D) < 0. If (C, D)projectivizes to(P1, D̄) (see the first
remark after Theorem 3.9 for the definition ofD̄), then D̄ must have more
than two components by the definition ofχ. Hence(C, D) is uniformizable
and we may apply Proposition 3.19 and Proposition 3.21 to conclude that
the orbifold uniformizing groupR of (C, D) is not a finite extension of an
abelian group. But then neither isG asR is a quotient ofG.

Conversely, assumeχ(C, D) ≥ 0. If (C, D) projectivizes to(P1, D̄) and
D̄ has no more than two components, thenG is abelian by Proposition 3.13
and Proposition 3.14. Otherwise,(C, D) is uniformizable and, with the
notation as in Sect. 3.3.1, the exact sequence 3.4 implies thatG is an
extension ofH by R. Proposition 3.20 now applies to give a pull back
elliptic fibration f̂ : X̂ → Ĉ without multiple fibers such that̂X is a finite
unramified covering ofX and such that̂C = P1,C∗ or an elliptic curve. We
will consider each of these cases forC̃ separately. Note first thatG = π1(X)
(respectivelyR) is a finite extension of̂G = π1(X̂) (respectivelyR̂) and that
Ĥ = H. ReplacingĈ by a finite unramified covering of̂C, we may assume,
thanks to Lemma 3.16 and Proposition 3.17, thatH lies in the center ofĜ
(that is, the conjugation action of̂G on H is trivial).

In the case when̂C = P1, Proposition 3.13 implies that̂G is a quotient
of a free abelian group of rank two. HenceĜ is abelian of rank no greater
than two. SinceX is Kähler if and only if X̂ is, this rank is even ifX is
Kähler and odd if not.

In the case when̂C = C∗, the triviality of the conjugation action of
R̂= Z implies immediately that̂G is abelian, of rank one greater than that
of H.

In the case when̂C is an elliptic curve, Proposition 3.17 implies thatX̂
must either be a holomorphically locally trivial fibration overĈ, or H is
finite cyclic. In the former case, Proposition 3.22 tells us thatĜ is a finite
extension of a free abelian group of rank four. In the latter case, letm/2 be
the order ofH. SinceR̂ is abelian, the commutator of two elementsa and
b in Ĝ must lie inH. Hence,ab= bac for somec ∈ H. Sincec commutes
with both a andb, we haveamb = bam andambm = (ab)m. This shows
that Ĝm = {am | a ∈ Ĝ} is an abelian subgroup of̂G intersectingH at 1.
Hence, we can form the internal direct sumGm ⊕ H in G which we can
easily identify with the inverse image of̂Rm in G, whereR̂m is a normal
subgroup of indexm2 in R̂. (We note as an aside thatGm is canonically
isomorphic toRm.) It follows that Ĝ becomes abelian if we replacêX by
a finite covering of itself and so our theorem is proved. ut
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4 Other compact complex surfaces

We deal with the remaining cases of compact complex surfaces in this sec-
tion. These are the case of zero Kodaira dimension and the case of zero
algebraic dimension. In fact, by Kodaira’s classification, all surfaces with
Kodaira dimension zero are elliptic fibrations except for those bimeromor-
phic to compact complex 2-dimensional tori and K3 surfaces, where the
elliptic ones form a dense codimension one family in their respective mod-
uli space. As we have already resolved the case of elliptic fibrations in the
previous section, we need to consider only the tori and the K3 surface cases.
We first resolve the case of tori, and indeed prove a much stronger result of
independent interest, before considering the other cases.

4.1 Compact complex tori

A 2-dimensional compact complex torus is the quotient ofC2 by a latticeΛ
of real rank 4. LetX be such a surface, which we call a torus surface. Any
compact surfaceY bimeromorphic toX admits a dominating holomorphic
map from the complement of finitely many points inX. We show in this
section that the complement of finitely many points inX is dominable byC2.
This will follow immediately from Proposition 4.1 below. Hence,Y is also
dominable byC2 as a result.

Following Rosay and Rudin [RR1], we say that a discrete setΛ in C2

is tameif there is a holomorphic automorphism,F, of C2 such thatF(Λ)
is contained in a complex line. Using techniques of [RR1] or [BF], the
complement of a tame set is dominable byC2, and in fact, there exists an
injective holomorphic map fromC2 toC2 \Λ.

By a lattice, we mean a discreteZ-module. For the following proposition,
let Λ be a lattice inC2, let q1, . . . ,qm ∈ C2, and letΛ0 = ∪m

j=1Λ + qj ,
whereΛ+ qj represents translation byqj .

Proposition 4.1 The setΛ0 is tame. In particular,C2 \Λ0 is dominable by
C2 using an injective holomorphic map.

This result will be strengthened considerably in Sect. 6. Before proving
this proposition, we need a lemma.

Lemma 4.2 There exists an invertible, complex linear transformationA :
C2 → C2 such thatIm π1A(Λ0) is a discrete set inR. Moreover, we may
assume that ifp,q ∈ A(Λ0) with p 6= q, then |p− q| ≥ 1 and either
Im π1 p= Im π1q or |Im π1p− Im π1q| ≥ 1.

Proof: Let v1, v2, v3, v4 be aZ-basis forΛ, and letE be the span overR of
v1, v2, v3. Using the real inner product, letu0 6= 0 be orthogonal toE. Using
the complex inner product, letu1 6= 0 be orthogonal tou0. Thenu1 andiu1
are both real orthogonal tou0, soCu1 ⊆ E. ChooseA1 complex linear such
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that A1(u0) = (1,0) and A1(u1) = (0,1). Thenπ1A1(E) is a one (real)
dimensional subspace ofC, so by rotating in the first coordinate, we may
assume thatπ1A1(E) is the real line inC.

Let µ0 = Im π1A1(v4), andµ j = Im π1A1(pj ) for j = 1, . . . ,m.
Then for eachj = 1, . . . ,m andk ∈ Z, we have

π1A1(E+ kv4+ pj ) ⊆ R+ i(kµ0+ µ j ),

so thatIm π1A1(Λ0) is discrete inR. Applying an appropriate dilation to
A1 gives A as desired. ut

Note that this lemma implies that given a finite set of points in a complex
2-torus, there is an open set,U, containing this finite set and a nonconstant
image ofC avoidingU. In particular, the complement ofU in this torus is
not Kobayashi hyperbolic. As mentioned in the introduction, this result will
be strengthened in Sect. 6 to show that there is a dominating map into the
complement of such an open setU.

Proof of Proposition 4.1:Lemma 4.2 implies that there is a complex line
L = C(z0, w0) with orthogonal projectionπL : C2→ L and real numbers
µ0, . . . , µm such that

πL(Λ0) ⊆ ∪m
j=1(µ0Z+ µ j + iR)(z0, w0). (4.1)

I.e., identifying L with C in the natural way, the image ofΛ0 underπL is
contained in a union of lines parallel to the imaginary axis, and this union
of lines intersects the real axis in a discrete set.

Making a linear change of coordinates, we may assume thatL = C(0,1),
in which case we may identifyπL with projection to the second co-
ordinate,π2. Let π1 denote projection to the first coordinate, and let
E = ∪m

j=1(µ0Z+ µ j + iR).

We next show that there is a continuous, positive functionf0 on E such
that if (z, w) ∈ Λ0 with z 6= 0, then f0(w)|z| ≥ 2|w|. First, define

r1(w) =
{ |w|

min{|z|:(z,w)∈Λ0,z6=0} if w ∈ π2(Λ0);
0 if w ∈ E \ π2(Λ0).

Thenr1(w) ≥ 0, and sinceΛ0 is discrete,r is upper-semicontinuous.
Letr2(w) = 2(r1(w)+1) forw ∈ E. Sincer2 is also upper-semicontinu-

ous, it is bounded above on compacta, so a standard construction gives
a function f0 which is continuous onE with f0(w) ≥ r2(w) > 0. Then
for (z, w) ∈ Λ0 with z 6= 0, we have f0(w)|z| ≥ 2r1(w)|z| ≥ 2|w| by
definition ofr1.

We next find a non-vanishing entire functionf so that| f(w)z| ≥ |w|
if (z, w) ∈ Λ0 with z 6= 0. Since f0 is positive onE, log f0(w) is con-
tinuous and real-valued onE, and logf0(w) ≥ log 2+ log(r1(w) + 1).
By Arakelian’s theorem (e.g. [RR2]), there exists an entireg(w) with
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| log f0(w) − g(w)| < log 2 for w ∈ E. Then f(w) = exp(g(w)) is en-
tire and non-vanishing, and if(z, w) ∈ Λ0 with z 6= 0, then

| f(w)z| = exp(Reg(w))|z| ≥ r1(w)|z| ≥ |w|.

Finally, defineF(z, w) = ( f(w)z, w). ThenF is a biholomorphic map
of C2 onto itself, and for(z, w) ∈ Λ0 with z 6= 0, we have|π1F(z, w)| ≥
|π2F(z, w)|. SinceF(Λ0) is discrete, we see thatπ1F(Λ0) is discrete. Hence
F(Λ0) is tame by [RR1, Theorem 3.9]. By definition of tame,Λ0 is also
tame, so as mentioned earlier,C2 \Λ0 is dominable byC2. ut
Corollary 4.3 The complement of a finite set of points in a two dimensional
compact complex torus is dominable byC2. Hence any surface bimeromor-
phic to such a torus is dominable byC2.

We remark that not all tori are elliptic. The elliptic torus surfaces form
a 3 dimensional family in the 4 dimensional family of torus surfaces and
the generic torus contains no curves. All compact complex tori are Kähler.
Also a compact surface bimeromorphic to a torus can be characterized by
κ = 0 andq = 2.

4.2 K3 surfaces

A compact complex surfaceX is called a K3 surface if its fundamental
group and canonical bundle are trivial. A useful fact in the compact complex
category, due to Siu ([Siu]), is that all K3 surfaces are Kähler. One can show
that H2(X,Z) is isometric to a fixed latticeL of rank 22. If φ is such
an isometry, then(X, φ) is called a marked K3 surface. The set of such
surfaces is parametrized by a 20 dimensional non-Hausdorff manifoldM
[BPV, VIII] (The fact thatM is smooth follows from S.T. Yau’s resolution
of the Calabi conjecture in [Yau] (see e.g., [T]) and the fact thatM is not
Hausdorff is due to Atiyah ([At]).)

We first observe a few facts from the classical work of Piatetsky-Shapiro
and Shafarevich in [PS] (see also [LP],[Shi],[BPV, VIII]), where they
obtained a global version of the Torelli theorem for K3 surfaces. Given
a marked K3 surface and a pointo ∈ M corresponding to it, there is
a smooth Hausdorff neighborhoodU of o, a smooth complex manifoldZ,
and a proper holomorphic mapZ

p→ U whose fibers are exactly the marked
K3 surfaces parametrized byU. Within this local family, the subset of pro-
jective K3 surfaces is parametrized by a topologically dense subset ofU
which is a countable union of codimension one subvarieties. The elliptic
K3 surfaces (that is, K3 surfaces admitting an elliptic fibration) also form
a topologically dense codimension one family inU.

The following proposition follows directly from Theorem 3.23 and the
fact that the fundamental group of a K3 surface is trivial.
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Proposition 4.4 A compact complex surface bimeromorphic to an elliptic
K3 surface is holomorphically dominable byC2.

The previous section on complex tori allows us to deal with another
class of K3 surfaces — the Kummer surfaces, which form a 4 dimensional
family in the 20 dimensional family of K3 surfaces. Such a surfaceX is,
by definition, obtained by taking the quotient of a torus surfaceA (given as
a complex Lie groupC2/lattice) by the natural involutiong(x) = −x, then
blowing up the 16 orbifold singular points (resulting in 16 (−2) curves).
Alternatively, one can describeX as aZ2 quotient of Â, where Â is the
blowing up of A at the 16 points of order 2 and where the quotient map is
branched along the exceptional (−1)-curves of the blowing up. Since the
inverse image of any finite set of points inX is finite in Â and hence also
finite in A, any surface bimeromorphic to a Kummer surface is dominable
byC2 according to Corollary 4.3.

Proposition 4.5 A compact surface bimeromorphic to a Kummer surface
is dominable byC2.

Before we leave the subject of K3 surfaces, it is worth mentioning that
projective K3 surfaces are dominable byD × C by the work of [GG] and
[MM]. Clearly, elliptic K3 surfaces and Kummer surfaces are so dom-
inable as well. Such a surface cannot be measure hyperbolic as defined by
Kobayashi ([Kob]). However, it is still an unsolved problem whether all K3
surfaces are so dominable. The only other compact complex surfaces for
which this problem remains open are the non-elliptic and non-Hopf surfaces
of class VII0 outside the Inoue-Hirzebruch construction.

4.3 Other compact surfaces and our two main theorems

Besides those bimeromorphic to K3 and torus surfaces, the remaining com-
pact complex surfaces with zero Kodaira dimension are all elliptic, and
are all dominable byC2. Such a surface must be bimeromorphic to either
a Kodaira surface (defined and characterized in Sect. 3.3.3), a hyperelliptic
surface (which is a finite free quotient of a product of elliptic curves, and
hence projective), or an Enriques surface (which is a surface admitting an
unramified double covering by an elliptic K3 surface). Except for the first
among these three types, the fundamental group is always a finite extension
of an abelian group.

Finally, the only remaining compact complex surfaces are those with
algebraic dimension 0 andκ = −∞. This category includes the non-elliptic
Hopf surfaces, which are dominable byC2 by construction (see [Ko4]).
This category also includes the Inoue surfaces, which must be excluded
from our main theorems since their universal cover isD×C, hence are not
dominable byC2, while any nonconstant image ofCmust be Zariski dense
(see Proposition 19.1 in [BPV, V]). However, it is of interest to note that
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the Zariski dense holomorphic images ofC are constrained by higher order
equations on an Inoue surface so that if we relax property C in this sense,
we can in fact include Inoue surfaces in the next theorem. Unfortunately,
aside from the Hopf surfaces and the Inoue surfaces, the detailed structure
of surfaces of this type is not yet clear even though we know the existence
of projective affine structures for a special subclass of these surfaces.

We now summarize our investigation in the compact category by giving
the following extensions of our main theorems stated in the introduction:

Theorem 4.6 Let X be a compact complex surface of Kodaira dimension
less than2. Assume that eitherκ(X) 6= −∞ or a(X) 6= 0. In the case that
X is bimeromorphic to a K3 surface that is not Kummer, assume further
that X is elliptic. ThenX is dominable byC2 if and only if it does not
satisfy property C. Equivalently, there is a dominating holomorphic map
F : C2→ X if and only if there is a holomorphic image ofC in X which is
Zariski dense.

Theorem 4.7 Let X be a compact complex surface not bimeromorphic to
a Kodaira surface. Assume that eitherκ(X) 6= −∞ or a(X) 6= 0. In the case
that X is bimeromorphic to a K3 surface that is not Kummer, assume further
that X is elliptic. ThenX is dominable byC2 if and only if it has Kodaira
dimension less than two and its fundamental group is a finite extension of
an abelian group (of rank4 or less).

5 Non-compact algebraic surfaces

We begin with a key example which motivated the general algebraic setting.
This is the example of the complement of a smooth cubic curve inP2, which
we will show to be dominable byC2.

5.1 Complement of a cubic inP2

Let C be a smooth cubic curve inP2 and letX = P2 \C. Then its logarith-
mic canonical bundleKP2(C) is the trivial line bundle as degKP2 = −3.
Hence,κ̄(X) = 0 andX is a logarithmic K3 surface; that is, a non-compact
2-dimensional Calabi-Yau manifold.

Proposition 5.1 The surfaceX = P2 \ C is dominable byC2.

Proof: A tangent line toC at a non-inflection point meetsC at one other
point. This gives rise to a holomorphicP1 bundle with two holomorphic
sections. To see that this is actually a bundle (i.e. locally trivial), identify it
with the projectivization of the tautological vector bundle of rank two over
the dual curve ofC with the obvious isomorphism. We may pull back thisP1

bundle and the sections to the universal coverC of C, with two sectionss∞
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ands. Hence one may regard the complement ofs∞(C) of this bundle as
a trivial line bundle onC with a meromorphic sections (with poles coming
from points of inflection of the cubic).

Hence, it suffices to construct a holomorphic map fromC2 onto the
complement of the graph of a meromorphic functions to give a dominating
map toX. Note that each vertical slice of the complement of the graph is
C∗ except at a pole ofs, where the vertical slice isC.

To construct such a map, first define

ψ(t, w) = exp(tw)− 1

t
(5.1)

= w+ tw2

2! +
t2w3

3! + · · · (5.2)

which is entire onC2. Note that(t, ψ(t, w)) is a fiberwise selfmap ofC2

which misses precisely the graph of−1/t, a function with a simple pole at
the origin.

SinceC is Stein, there exists an entire functiong such that1
g has the

same principle parts ass. This is because we may writes = f/ f1 where
f and f1 are entire with no common zeros. So logf is well defined in
a neighborhood of each zero off1. By Mittag-Leffler and Weierstrass, we
can find an entire functiong1 with the same Taylor expansion as logf to
the order of vanishing off1 at each zero off1. Theng = f1/expg1 is our
desired function. In particular,g vanishes precisely whens has a pole. Then
h = s− 1

g is entire, so

φ(z, w) = h(z)− ψ(g(z),w)
= s(z)− exp(wg(z))

g(z)

is entire onC2. For fixedz with g(z) 6= 0, we see from the second equality
thatφ(z, w) can attain any value inC \ {s(z)} by varyingw. If g(z) = 0,
thenφ(z, w) = h(z)−w, which can attain any value inC by varyingw.

Hence, the mapΦ : C2→ C2 \ graph(s) given by

Φ(z, w) = (z, φ(z, w))
is holomorphic and onto. Composing this map with the map into theP1

bundle overC, we obtain a dominating map into the complement of the
cubicC. ut

Note that an important step here is the construction of an entire function
h whose graph does not intersect the graph ofs. This is certainly analogous
to the situation of elliptic fibrations.

Remark:The complement of a smooth cubic does not admit any algebraic
map toP1 whose generic fiber containsC∗. This is the only example among
complements of normal crossing divisors inP2 with this property. In fact,
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this is the only meaningful affine example with this property that is dom-
inable byC2 (see [M, p. 189]). Since this is a logarithmic K3 surface, this
phenomenon is suggestive of the situation for a generic compact K3 surface.

We isolate the following useful theorem from the above proof.

Theorem 5.2 Letsbe a meromorphic function onC. Then the complement
of the graph ofs admits a dominating fiber-preserving holomorphic map
fromC2.

5.1.1 Complements of normal crossing divisors inP2

Let X be the complement of a normal crossing divisorD inP2. If degD > 3,
then κ̄(X) = 2 and henceX is not dominable byC2. If degD = 3, then
D consists of at most three components and it is easy to check thatX is
dominable byC2 as follows. If D has only one component, then it is either
a smooth cubic or a cubic with one node. In the first case, the result follows
from Proposition 5.1. In the second case, blowing up that node gives us a
P1 bundle overP1 with two sections, one corresponding to the exceptional
curve of the blow-up. These two sections intersect precisely at the two fibers
of the bundle corresponding to the two tangent directions of the cubic at the
node. Hence, removing these two fibers gives us a surface biholomorphic to
C∗×C∗, which is dominable byC2. If D has two components, then it consists
of a line and a conic (that is, a smooth curve of degree two) intersecting at
two points. Blowing up one of the points of their intersection (corresponding
to projecting from this point of intersection) gives us aP1 bundle overC
with two sections complemented, one of which is the exceptional curve of
the blow-up. If we think of one section as∞, then the other section can be
regarded as a meromorphic function onC and so Theorem 5.2 applies to
give a dominating map fromC2 to X. An easier way is to delete the fiber
containing the only point of intersection of these two sections. The resulting
X is biholomorphic toC∗ ×C∗ and hence dominable byC2. If D has three
components, then each must be a line andX isC∗×C∗, which is dominable
byC2.

From the above argument, we see also that if degD < 3, then X is
dominable byC2. In summary, we have:

Theorem 5.3 Let D be a normal crossing divisor inP2. ThenP2 \ D is
dominable byC2 if and only ifdegD ≤ 3.

We remark that this theorem is no longer true ifD is not normal crossing.
The unique counterexample in one direction is whenD consists of three
lines intersecting at only one point, which is not dominable byC2. Another
counterexample, but in the opposite direction, is given by the complement
of the union of a conic and two lines intersecting at a point of the conic
(which we discussed in the two component case of degD = 3 above).
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5.2 The general quasi-projective case

Let X be an algebraic surface overC. Then X = X̄ \ D where X̄ is
projective andD is a normal crossing divisor in̄X. This is the notation
set forth in Sect. 2 and we will assume this setup throughout this section.
Kawamata ([K1],[K2],[K3]) has considered the structure ofX and obtained
a classification theory analogous to that in the projective case. Much of this
is explained in some detail in Miyanishi ([M]). We will use their results
directly to tackle our problem in this section.

If there is a surjective morphismf : X → C whose generic fiber is
connected, then we say thatX is fibered overC. (We remind the reader
that morphisms are algebraic holomorphic maps.) More generally, iff is
required to be only holomorphic rather than a morphism, then we say that
X is holomorphically fibered overC. For example, the complement of the
graph of a meromorphic function is holomorphically fibered overC with
generic fiberC∗. As before, we letXs = f −1(s) be the fiber overs. We
first quote the subadditivity property of (log-)Kodaira dimension due to
Kawamata ([K1]):

Proposition 5.4 If X is fibered over a curveC, then

κ̄(X) ≥ κ̄(C)+ κ̄(Xs)

for s outside a finite set of points inC; that is, for the generic fiberXs.

From the definitions, a curve of positive genus with punctures has pos-
itive Kodaira dimension. An elliptic curve has Kodaira dimension zero.
A puncturedP1 hasκ = −∞,0 or 1 according to the number of punctures
being 1,2 or greater than 2, respectively.

Given a dominating morphismf between algebraic varieties, it is clear
that f ∗ is injective on the level of logarithmic forms (see [Ii]). Since tensor
powers of top dimensional logarithmic forms define the Kodaira dimension,
we see that iff is equidimensional, then it must decrease Kodaira dimension.

If q̄(X) > 0, then there is a morphism fromX to a semi-abelian variety
(a commutative algebraic Lie group that is an extension of a compact torus
by (C∗)k for somek) of dimensionq̄(X), called the quasi-Albanese map
and constructed by Iitaka in [Ii1]. One has the simple formula relatingq̄(X)
to the first Betti numbers ofX and X̄:

q̄(X)− q(X̄) = b1(X)− b1(X̄).

Note thatC does not support any logarithmic form by this formula.

5.2.1 Surfaces fibered by open subsets ofP1

Let X be fibered over a curve C by a mapf whose generic fiber isP1

(possibly) with punctures. Then, by a finite number of contractions of
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(−1)-curves that remain on the fiber, the compactificationX̄ of X admits
a birational morphismg to a ruled surfacēY over a projective curvēC,
the compactification ofC, andg is a composition of blowing ups. Hence
Y = Ȳ|C is aP1 bundle overC, whose bundle map will again be denoted
by g. We may write f = h ◦ g, where

C r→ X
g→ Y

h→ C. (5.3)

If every holomorphic image ofC in X is constant inC (when composed
with f ), thenX satisfies property C. Otherwise, there exists a holomorphic
mapr : C→ X such thatf ◦ r is not constant. By taking the fiber product
with f ◦ r , we can pull back the factorization picture 5.3 to one overC

C r̃→ X̃
g̃→ Ỹ

h̃→ C,

where f̃ = h̃ ◦ g̃ is surjective with a holomorphic sectioñr . Here,X̃ may
be singular, but we will regard it only as an auxiliary space.

We will first deal with the case where the general fiber has at most
one puncture; that is,Xs = P1 or C for s in an open subset ofC. We
can then regard̃Y as a trivialP1 bundle with a sectionD∞ to which the
puncture (if one exists) on the “generic” fiber off̃ is mapped. Note that
Ỹ \ D∞ = C2 with coordinates(z, w), and so we may regard a section of
h̃ as a meromorphic function onC. In particular,g̃ ◦ r̃ is a meromorphic
section ofh̃.

Since X̄ is obtained fromȲ by a finite number of blow ups, we can
identify points onX as infinitely near points onY of order 0 or more as
in [Ha, p. 392]. Note that the set of fibers inY which contain infinitely
near points of order 1 or more is finite (since the set of such fibers inȲ is
finite). This finite set of fibers inY pulls back to a discrete set of fibers inỸ.
In Y, such a higher order infinitely near point corresponds to a point inX
obtained by finitely many blow-ups, hence to the specification of a finite
jet at the point inY. Under pull-back, this corresponds to a finite jet inỸ.
Additionally, there is a finite set of fibers inY which may have more than
one puncture, and these fibers all pull back to a discrete set of fibers inỸ.
Together, these two types of fibers will be called exceptional fibers.

In order to produce a dominating map intoX, it suffices to produce
a fiberwise dominating mapF(z, w) = (z, H(z, w)) into Ỹ which respects
these exceptional fibers in the following sense. IfỸs is an exceptional fiber,
then F(s, w) is a single point independent ofw. Moreover, ifỸs is a fiber
having more than one puncture, then the image of the mapF should avoid all
such punctures. If̃Ys is a fiber having an infinitely near point, thenF(s, w)
should equal̃g◦ r̃ (s). Additionally, if g̃◦ r̃ passes through this infinitely near
point, andφ is holomorphic in a neighborhood ofs, then the local curve
z 7→ (z, H(z, φ(z))) should agree with the jet given by the infinitely near
point onỸs.
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Fortunately, the sectioñg◦ r̃ has the correct jet whenever it intersects one
of these exceptional fibers, so we can use this section to obtain such a map.
Let q(z) = g̃ ◦ r̃ (z), which is meromorphic. We will defineH(z, w) =
p(z)w+q(z) for some entirep(z). For each exceptional fiber̃Ys, there is an
integerns ≥ 1 such that ifp vanishes to orderns at s, thenF defined with
this H respects the exceptional fiber as indicated above. By Weierstrass’
theorem, there existsp entire vanishing exactly to orderns at eachs. Then
F(z, w) = (z, H(z, w)) gives a dominating map fromC2 into Ỹ respecting
the exceptional fibers, and this map pushes forward toY, then lifts to give
a dominating map intoX, as desired.

We now deal with the case where the generic fiber off is C∗. In this
case,Ỹ can be identified with aP1 bundle with a double sectionDY, to
which the punctures on the “generic” fibers off̃ maps to. Now, eitherDY

consists of two components, both of which are smooth sections ofh̃, or
DY consists of one component. In either case, outside of a discrete set of
fibers,DY can be written locally as the union of two mermorphic sections.
Moreover, we define the set of exceptional fibers exactly as in the previous
case.

First, using a fiber-preserving biholomorphic map ofC×P1 to itself, we
may moveg̃◦ r̃ to become the∞-section. Then the requirement of agreeing
with the jet of g̃ ◦ r̃ at a points is equivalent to having a pole of some
given order ats in the new coordinate system. Next, letE1 be the points
in C at whichDY intersects this new infinity section. Near a points ∈ E1,
DY can be written asw = h(z)±√g(z) = u±(z) for some meromorphicg
andh. Hence there existsns > 0 such thatu±(z)(z− s)ns converges to 0 as
z tends tos. We may assume also that ifs ∈ E1 ands is the base point of
an exceptional fiber, then thens obtained here is larger than thens obtained
above for this exceptional fiber.

Let E be the union ofE1 and the set of base points corresponding to
exceptional fibers. Letp be entire with a zero of orderns at eachs ∈ E
and no other zeros, and letΦ(z, w) = (z, p(z)w). ThenΦ(DY) is a double
section inC × C, and a dominating map fromC2 to (C × P1) \ Φ(DY)
followed byΦ−1 gives a dominating map to the complement ofDY which
respects the exceptional fibers.

Hence it suffices to construct a dominating map into the complement of
Φ(DY). Note thatΦ(DY) can be written asw = v±(z) = p(z)u±(z), where
v± are holomorphic except possibly for square root singularities at branch
points.

For complex numbersu andv, define a Mobius transformationNu,v (w) =
(uw − v)/(w − 1), which takes 0 tov and∞ to u, and defineGu,v(w) =
exp(w(u − v)). Note that Nu,v(w) = Nv,u(1/w) and thatGu,v(w) =
1/Gv,u(w). HenceH0(u, v,w) = Nu,v(Gu,v(w)) satisfiesH0(u, v,w) =
H0(v,u, w). Since symmetric functions ofv+ andv− are holomorphic, we
see thatH(z, w) = H0(v

+(z), v−(z),w) is well-defined and holomorphic
fromC2 toC×P1. Moreover, for fixedssuch thatv±(s) are distinct,H(s, ·)
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is nonconstant fromC to P1 \ {v±(s)}. If v±(s) are equal, then assuming
without loss thats= 0, we havev±(z) = h(z)±√g(z) for some holomor-
phic g(z) = zmg1(z) with g1(0) 6= 0, m ≥ 1. Thenv+ − v− = 2

√
g, so

multiplying the numerator and denominator ofH by exp(−w(v+ − v−)/2)
and using the Taylor expansion of exp gives

H = (h+√g)(1+w√g)− (h−√g)(1− w√g)+ O(|z|m)
(1+w√g)− (1−√g)+ O(|z|m)

= 2hw
√

g+ 2
√

g+ O(|z|m)
2w
√

g+ O(|z|m) .

As z→ 0, this last expression tends toh(0)+1/w, and henceH(0, ·)maps
C ontoP1 \ {v±(z)}.

Thus H is a dominating map fromC2 to the complement ofΦ(DY),
hence as noted before,Φ−1 ◦ H is a dominating map fromC2 to the com-
plement ofDY which respects the exceptional fibers. As before, this map
pushes forward toY and lifts to give a dominating map intoX, as desired.

We can now summarize with the following theorem.

Theorem 5.5 Assume thatX is fibered over a curveC and that the generic
fiber isP1 with at most two punctures. ThenX is dominable byC2 if and
only if there is a Zariski dense image ofC in X.

The arguments given in this paper are not sufficient to resolve the ques-
tion of dominability for open fibered surfaces. As an example, we have the
following question.

Question 5.6 Let X be the complement of a double section in a conic bundle
overC,C∗, or an elliptic curve. IsX dominable byC2?

We will consider this and related questions in a forthcoming paper.

5.2.2 Thēκ = −∞ case

Let κ̄(X) = −∞. Thenκ(X̄) = −∞ as well. HenceX̄ is either rational
or birationally ruled over a curve of non-negative genus. In the latter case,
Proposition 5.4 says thatX is fibered over a curveC with κ(C) ≥ 0 where
the generic fiber isP1 with at most one puncture. Hence Theorem 5.5 applies
in this case to give us the equivalence of dominability byC2 and the failure
of property C. Note that property C holds in the caseκ(C) > 0 (which
include the casēq(X) ≥ 2), corresponding toC being hyperbolic.

In the remaining case when̄X is rational, we can again divide into two
cases according to whetherq̄(X) is zero or not. In the latter case, we again
have a fibering ofX over a curveC via the quasi-Albanese map with the
generic fiber having at most one puncture by Proposition 5.4, as before.



Algebraic surfaces holomorphically dominable byC
2 651

This is because there are no logarithmic 2-forms onX sinceκ̄(X) = −∞.
By the same token, every logarithmic 1-form onX is the pull back of
a logarithmic form onC (One can also see this from the fact thatP1 with
at most one puncture has no logarithmic forms so that any logarithmic
form on X becomes trivial when restricted to the generic fiber. Hence,
q̄(X) = q̄(C).) So,C must beP1 with at least two punctures. If it has more
than two punctures, corresponding toq̄(X) ≥ 2, thenC is hyperbolic. So
we have degeneracy of holomorphic maps fromC in this case. Otherwise,
Theorem 5.5 applies.

We are left with the case wherēq(X) = 0 where Proposition 5.4 no
longer applies, but where much of the analysis has been done in [M].
We now quote Theorem(1′) of [M], (which follows from Theorem I.3.11
of [M])

Theorem 5.7 With X and D as before, assume thatD is connected. Then
κ̄(X) = −∞ if and only ifX fibers over a curve with generic fiber beingP1

or C.

Except in the case whereX = P2, there is, of course, some fibering ofX
to a curve (as is clear from, for example, (1) of the classification list given
in Sect. 2) and every such fibering must be to a curveC that is eitherP1

or C. In these fibered cases, we would like to show that the generic fiber
is P1 with at most two punctures so that Theorem 5.5 can be applied to
show thatX is dominable byC2. However, it remains an open question
whether or not the generic fiber has this form, and although this question
should be resolved by some case checking, this lack prevents us from giving
a complete classification in the caseκ̄(X) = −∞ andq̄(X) = 0.

We can now summarize this section as follows.

Theorem 5.8 Let X be the complement of a normal crossing divisorD in
a projective surface. Assumeκ̄(X) = −∞. If q̄(X) ≥ 2, then X satisfies
property C and hence is not dominable byC2. If q̄(X) = 1 or if q̄(X) = 0
and D is connected, thenX is dominable byC2 if and only if there exists
a holomorphic map ofC to X whose image is Zariski dense.

5.2.3 Thēκ = 1 case

Here, we can directly apply the basic Iitaka fibration theorem, Theorem 11.8
in [Ii] (see also [Ue]):

Theorem 5.9 Assumēκ(X) ≥ 0. ThenX is properly birational to a variety
X∗ which is fibered over a variety of dimensionκ̄(X) and whose generic
fiber has Kodaira dimension zero.

This theorem holds forX of any dimension. But for our situation at
hand, it says thatX is properly birational to a surfaceX∗ which is fibered
over a curve with generic fiber that is either an elliptic curve, orP1 with
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two punctures. Now, we have already shown that for such a fibered variety,
dominability is unchanged for any variety properly birational to it. The
latter case is already resolved by Theorem 5.5. The former case can also
be resolved to give the same conclusion by the same analysis as that of
Theorem 5.5 with the help of the Jacobian fibration as in Sect. 3. Thus,
combining with Theorem 5.5, we have:

Theorem 5.10 AssumeX is fibered over a curve with generic fiber that is
either an elliptic curve orP1 with at most two punctures. This is the case,
for example, when̄κ(X) = 1. ThenX is dominable byC2 if and only if there
exists a holomorphic map ofC to X whose image is Zariski dense.

5.2.4 Thēκ = 0 case

It remains to look at the case whereκ̄(X) = 0. If q̄(X) ≥ 2, then a well
known theorem of Kawamata ([K4]) says thatX has a birational morphism
to a semi-abelian surface. Hence,X is dominable byC2. If q̄(X) = 1, then
X is fibered over a curve and the generic fiber is an elliptic curve or isP1

with at most two punctures by Proposition 5.4. Hence Theorem 5.10 applies
in this case. When̄q(X) = 0, our problem remains with some K3 surfaces
as explained in Sect. 4.2.

Finally, if X is affine rational andD has a component that is not a rational
curve, then Lemma II.5.5 of [M] says that eitherX is fibered over a curve
with generic fiberP1 with at most two punctures orX is the complement
of a smooth cubic inP2. The former is handled by Theorem 5.5 while the
latter is dominated byC2 as shown in Sect. 5.1. This resolves the case of
the complement of a reduced divisorC in P2 unlessC is a rational curve,
which one can resolve as well whenC has either only one singular point or
is of low degree (and it is easy to check all the cases for degree less than 4).
This is a good exercise for the case whenC is a rational curve of high
degree, which we will not attempt here. Note that, ifC is normal crossing
with dominable complement, thenC is again a smooth cubic inP2, being
the unique non-rational component.

Theorem 5.11 Assumēκ(X) = 0. If q̄(X) is positive or ifX is affine and
D has a component that is not a rational curve, thenX is dominable by
C2 if and only if there exists a holomorphic map ofC to X whose image is
Zariski dense.

6 Compact complex surface minus small balls

For the compact complex surfaces which we showed to be dominable byC2,
a surprisingly stronger result can be achieved, thanks to the theory of Fatou-
Bieberbach domains. We can show that these surfaces remain dominable
after removing any finite number of sufficiently small open balls. In this
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section we show how this can be done in the most difficult case, the case of
a two dimensional compact complex torus. We show that given any finite
set of points in a torusT, it is possible to find some open set,U, containing
this finite set, and a holomorphic mapF : C2→ T \U with non-vanishing
Jacobian determinant. In fact,F lifts to an injective holomorphic map from
C2 toC2. For the statement of the following theorem, we focus only on this
lifted map. For notation,∆2(p; r) is the bidisk with centerp and radiir in
both coordinate directions andπ j represents projection to thej th coordinate
axis.

Theorem 6.1 Let Λ ⊆ C2 be a discrete lattice, letp1, . . . , pm ∈ C2, let
Λ0 = ∪m

j=1Λ + pj , and for r > 0, let Λ0,r = ∪p∈Λ0∆
2(p; r). For some

r > 0, there exists an injective holomorphic mapF : C2→ C2 \Λ0,r .

In fact, the proof will show that any discrete set contained inΛ0,r is
a tame set in the sense of Sect. 4.1. As an immediate corollary, we obtain
the following result, as mentioned in the introduction. Ann-dimensional
version of this result is found in [Bu].

Corollary 6.2 Let T be a complex 2-torus and letE ⊂ T be finite. Then
there exists an open setU containingE and a dominating map fromC2 into
the complement ofU.

For the remainder of this section,Λ, Λ0 and Λ0,r will be as in the
statement of this theorem.

6.1 Preparatory lemmas

In this subsection we state some necessary lemmas. The proofs are straight-
forward and perhaps even standard, but they are provided for completeness.

Notation: Forε > 0, let Sε = {x + iy : x ∈ R,−ε < y< ε}.
Lemma 6.3 Let C > 0, let f : R → [0,C] be measurable, and let
ε ∈ (0,1). Then there exists a functiong holomorphic onSε such that if
δ > 0 andz0 = x0+ iy0 ∈ Sε with f(x) = c0 for x0− δ < x < x0+ δ, then

|g(z0)− f(x0)| ≤ 2Cε

πδ
.

Moreover,Reg(z) ≥ 0 for all z ∈ Sε.

Proof: For n ∈ Z, let

gn(z) = 1

2πi

∫ n

−n

(
f(x)

x − iε − z
− f(x)

x+ iε − z

)
dx

= 1

π

∫ n

−n
f(x)

(
ε

(x − z)2+ ε2

)
dx.
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I.e., gn is obtained via the Cauchy integral using the functionf on the two
boundary components ofSε and truncating atx = ±n. By [R, Thm 10.7],
eachgn is holomorphic inSε. Moreover, forz0 = x0 + iy0 ∈ Sε, we have
|y0| < ε, so

|(x− z)2+ ε2| ≥ Re(x − (x0+ iy0))
2+ ε2 ≥ (x− x0)

2. (6.1)

Using this last inequality and the boundedness off , it follows im-
mediately thatgn converges uniformly on compact subsets ofSε to the
holomorphic function

g(z) = 1

π

∫ ∞
−∞

f(x)

(
ε

(x− z)2+ ε2

)
dx. (6.2)

A simple contour integration shows that iff is replaced by the constantc0,
then the integral in (6.2) isc0 for all z ∈ Sε. Hence, ifz0 = x0 + iy0 ∈ Sε
with f(x) = c0 for x0 − δ ≤ x ≤ x0+ δ, then using (6.1),

|g(z0)− f(x0)| =
∣∣∣∣ 1

π

∫ ∞
−∞
( f(x)− c0)

(
ε

(x− z)2+ ε2

)
dx

∣∣∣∣
≤ C

π

(∫ x0−δ

−∞
+
∫ ∞

x0+δ
ε

(x− x0)2
dx

)
≤ 2εC

πδ
.

To show thatReg(z) ≥ 0, note that the second part of (6.1) implies that
Re(ε/((x− z)2+ ε2)) ≥ 0 for all z ∈ Sε, and sincef is real, (6.2) implies
Reg(z) ≥ 0. ut

Lemma 6.4 Let V = {(z, w) : |w| < 1 + |z|2}. Then there exists an
injective holomorphic mapΦ : C2→ V.

Proof: Let H(z, w) = (w,w2 − z/2). Then H is a polynomial automor-
phism ofC2, and(0,0) is an attracting fixed point forH. By [RR1, ap-
pendix], there is an injective holomorphic mapΨ fromC2 onto the basin of
attraction of(0,0), which is defined asB = {p ∈ C2 : limn→∞ Hn(p) =
(0,0)}. By [BS], there existsR> 0 such thatB is contained in

VR = {|z| ≤ R, |w| < R} ∪ {|z| ≥ R, |w| < |z|}.

Hence takingΦ = Ψ/R gives an injective holomorphic map fromC2 into
V1 ⊆ V. ut
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6.2 Proof of Theorem 6.1

We will construct an automorphism ofC2 mappingΛ0,r into the complement
of the setV of Lemma 6.4. This will be sufficient to prove the theorem, and
by [RR1] this implies that any discrete set contained inΛ0,r is tame.

Choose an invertible, complex linearA as in Lemma 4.2. Without loss
of generality, we may replaceΛ by A(Λ), pj by A(pj ), andΛ0 by A(Λ0).
Thenπ1Λ0 is contained in∪∞k=1Lk, where eachLk is a line of the form
R + iγk, γk real. Moreover,dist(L j , Lk) ≥ 1 if j 6= k, and|p− q| ≥ 1 if
p,q ∈ Λ0 with p 6= q.

Let {qj }∞j=1 be an enumeration of the set

{q ∈ Λ0 : |π2q| ≤ 1/8} = {q ∈ Λ0 : ∆2(q;1/8) ∩ (C× {0}) 6= ∅}.
Let C = log 32, and definefk : R→ [0,C] for eachk by

fk(x) =
{

0 if (x+ iγk,0) ∈ ∆2(qj ;1/8) for someqj
C otherwise.

Let δ = 1/16, and chooseε ≤ δ/2 small enough that 2Cε/πδ ≤ log(3/2).
Let r = ε/2, and recall thatΛ0,r = ∪p∈Λ0∆

2(p; r).
Let Sk

ε = {x + i(y + γk) : −ε < y < ε} and Uε = ∪∞k=1Sk
ε. Define

g holomorphic onUε by applying Lemma 6.3 withf = fk to defineg
on Sk

ε. By Arakelian’s Theorem (e.g. [RR2]), there existsh entire such that
if z ∈ Uε/2, then|h(z)− g(z)| ≤ log(4/3). Define

F1(z, w) = (z, wexp(h(z))).

ThenF1 : C2→ C2 is biholomorphic.

We show next that there is a complex line in the complement ofF1(Λ0,r ).
To do this, letp ∈ Λ0,r , and suppose first thatp ∈ ∆2(qj ; r) for someqj .
Choosek so thatγk = Im π1qj , and writeπ1p= x0+ iy0.

Note that|y0− γk| < r = ε/2. Also, since|π2qj | ≤ 1/8, we see that if
|x− x0| < (1/8)− r , then(x+ iγk,0) ∈ ∆2(qj ;1/8). Sinceδ < (1/8)− r ,
we have fk(x) = 0 for x0− δ ≤ x ≤ x0 + δ, and hence by Lemma 6.3 and
the choice ofε andh,

|h(π1p)| ≤ |g(π1 p)| + log(4/3)

≤ 2Cε

πδ
+ log(4/3)

≤ log 2.

Hence

|π2F1(p)| ≤ 2|π2 p| ≤ 2(|π2qj | + r) ≤ 1

3
. (6.3)
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In the remaining case,p ∈ Λ0,r but p /∈ ∆2(qj ; r) for any j , in which
case|π2p| ≥ (1/8) − r . Let q ∈ Λ0 such thatp ∈ ∆2(q; r), and choosek
so thatγk = Im π1q.

Suppose first thatx0 = Re π1p satisfies fk(x) = C for |x − x0| ≤ δ.
Since|y0 − γk| < r = ε/2, we have by Lemma 6.3 and choice ofε andh
that

Reh(π1p) ≥ Reg(π1 p)− log(4/3)

≥ C− 2Cε

πδ
− log(4/3)

≥ log 16.

Hence

|π2F1(p)| ≥ 16|π2 p| ≥ 16((1/8)− r) > 1. (6.4)

Otherwise, fk(x) = 0 for somex with |x − x0| ≤ δ, so there existsj
such that|π1 p− π1qj | ≤ (1/8)+ δ+ r , hence

|π1q− π1qj | ≤ (1/8)+ δ+ 2r ≤ 1/4.

Sinceq andqj are distinct points ofΛ0, we have|q−qj | ≥ 1 by assumption,
so |π2q− π2qj |2 ≥ 1− (1/4)2, and hence

|π2q| ≥ |π2q− π2qj | − |π2qj | ≥
√

15

4
− 1

8

and

|π2 p| ≥ |π2q| − r ≥ 3

4
.

SinceRe g(π1 p) ≥ 0 by Lemma 6.3, we haveRe h(π1p) ≥ − log(4/3),
and hence

|π2F1(p)| ≥ 3

4
|π2p| ≥ 9

16
. (6.5)

From (6.3), (6.4) and (6.5), we conclude that ifp ∈ Λ0,r , then either
|π2F1(p)| ≤ 1/3 or |π2F1(p)| ≥ 9/16. In particular,

dist
(

F1(Λ0,r ),C×
{

1

2

})
≥ 1

16
.

Note also thatπ1F1(p) = π1p for all p ∈ C2.

To finish the proof, we will constructF2 similar toF1 so thatF2(F1(Λ0,r ))
is contained inC2 \ V, whereV is as in Lemma 6.4.

First note that forz= x + iy ∈ Sk
ε , we have|y− iγk| < ε, so

Re
[
(z− iγk)

2+ (|γk| + r)2+ 1+ ε2] ≥ x2+ (|γk| + ε)2+ 1> 0. (6.6)
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Hence we can choose a branch of log so that

g2(z) = log((z− iγk)
2+ (|γk| + r)2+ 1+ ε2)+ 1+ log 16 (6.7)

is holomorphic on∪kSk
ε . Again by Arakelian’s Theorem, there existsh2

entire such that ifz ∈ Sk
ε/2, then |g2(z) − h2(z)| ≤ 1, so Re h2(z) ≥

Reg2(z)− 1. Let

F2(z, w) =
(

z,

(
w− 1

2

)
exp(h2(z))

)
.

Again, F2 : C2 → C2 is biholomorphic. Moreover, ifp ∈ F1(Λ0,r ), then
|π2 p− 1

2| ≥ 1/16, andπ1 p= z= x+ iy with |y− γk| < r for somek, so
by (6.6) and (6.7), we have

|π2F2(p)| ≥
∣∣∣∣π2 p− 1

2

∣∣∣∣ exp(Reh2(z))

≥ 1

16
exp(Reg2(z)− 1)

≥ x2+ (|γk| + r)2+ 1

≥ 1+ |π1 p|2
≥ 1+ |π1F2(p)|2.

HenceF2F1(Λ0,r ) ∩ V = ∅, whereV ⊇ Φ(C2) is as in Lemma 6.4,
so takingF = F−1

1 F−1
2 Φ gives an injective holomorphic mapF : C2 →

F−1
1 F−1

2 (V) ⊆ C2 \Λ0,r as desired. ut

6.3 The general case of complements of small open balls

It is now easy to deduce the following corollary from Theorem 6.1.

Corollary 6.5 Let X be bimeromorphic to a compact complex torus or
to a Kummer K3 surface. Then, given any finite set of points inX, the
complement of a neighborhood of this set is dominable byC2. In particular,
such a complement is not measure hyperbolic.

The case of elliptic fibrations overP1 or over an elliptic curve can be
handled in the same way as that of Theorem 6.1. This is because removing
a finite number of small open balls (plus a smooth fiber away from them
if the base isP1) is tantamount to removing via the Jacobian fibration
a discrete set of contractible open sets inC2 bounded away from the axis by
fixed constants and whose projection to the first factorC is also a discrete
set of contractible open subsets ofC. See also Theorem 2.3 in [Bu].
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