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1 Introduction

An n-dimensional complex manifold is said to be (holomorphically)
dominableby C" if there is a mapF : C" — M which is holomorphic
such that the Jacobian determinant(8g%) is not identically zero. Such

a mapkF is called adominating mapln this paper, we attempt to classify
algebraic surface¥X which are dominable b{C? using a combination of
techniques from algebraic topology, complex geometry and analysis. One
of the key tools in the study of algebraic surfaces is the notion of Kodaira
dimension (defined in Sect. 2). By Kodaira’s pioneering work [Kol] and its
extensions (see, for example, [CG] and [KQ]), an algebraic surface which
is dominable byC? must have Kodaira dimension less than two. Using
the Kodaira dimension and the fundamental groupXofwe succeed in
classifying algebraic surfaces which are dominabl€bgxcept for certain
cases in whictX is an algebraic surface of Kodaira dimension zero and the
case wherX is rational without any logarithmic 1-form. More specifically,

in the case wherX is compact (namely projective), we need to exclude
only the case wheliX is birationally equivalent to a K3 surface (a simply
connected compact complex surface which admits a globally non-vanishing
holomorphic 2-form) that is neither elliptic nor Kummer (see Sects. 3 and 4
for the definition of these types of surfaces).

With the exceptions noted above, we show that for any algebraic surface
of Kodaira dimension less than 2, dominability 8Y is equivalent to the
apparently weaker requirement of the existence of a holomorphic image
of C which is Zariski dense in the surface. With the same exceptions, we
will also show the very interesting and revealing fact that dominability by
C?is preserved even if a sufficiently small neighborhood of any finite set
of points is removed from the surface. In fact, we will provide a complete
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classification in the more general category of (not necessarily algebraic)
compact complex surfaces before tackling the problem in the case of non-
compact algebraic surfaces.

We remark that both elliptic K3 and Kummer K3 surfaces are dense in
the moduli space of K3 surfaces; the former is dense of codimension-one
while the latter is dense of codimension sixteen in this moduli space (see
[PS,LP]) and intersects the former transversally (these density results hold
also in any universal family). Dominability b§? holds for both types of
K3 surfaces. This suggests that it might hold for all K3 surfaces so that
our statements above would be valid without exception for projective (and,
more generally, for compact Kahler) surfaces. Indeed, their density plus
Brody’s Lemma ([Br]) tell us that every K3 surface contains a non-trivial
holomorphic image ofC and that the generic K3 surface, which is non-
projective but remains Kahler, even contains such an image that is Zariski
dense. We mention here that dominability@ycan be shown for some non-
elliptic K3 surfaces which are close to Kummer surfaces using an argument
similar to that of Sect. 6; for length considerations, we omit this non-
elliptic case from this paper. However, we note that the statement equating
dominability to the weaker condition of having a Zariski dense imagé of
is quite false in the non-Kahler category, as is amply demonstrated by Inoue
surfaces (see [In0] or [BPV, V.19]).

Observe that if there is a dominating mgp: C2 — X, then there is
also a holomorphic image &f which is Zariski dense: First we may assume
that the Jacobian df is non-zero at the origin. Defining : C — C? by
h(z) = (sin(2r2), sin(27z%)), we see that(n) = (0, 0) with corresponding
tangent direction(2r, 47n) for eachn € Z. Taking F o h, we obtain
a holomorphic image of with an infinite number of tangent directions at
one point, which implies that the image is Zariski dense.

We say that an algebraic varie¥ysatisfies property C if every holomor-
phic image ofC in X is algebraically degenerate; i.e., is not Zariski dense.
Our first main result is that for algebraic surfaces of Kodaira dimension
less than 2 and with the exceptions mentioned above, dominabilifif sy
equivalent to the failure of property C. We will state only the main results
in the projective category in this introduction for simplicity but will discuss
fully the compact non-projective case and much of the quasi-projective case
in this paper.

Theorem 1.1 Let X be a projective surface of Kodaira dimension less than
2 and suppose thak is not birational to a K3 surface which is either
elliptic or Kummer. TherX is dominable byC? if and only if it does not
satisfy property C. Equivalently, there is a dominating holomorphic map
F : C? — Xifand only if there is a holomorphic image Gfin X which is
Zariski dense.

By a recent result of the second named author, this theorem is also true
for a projective surface of Kodaira dimension 2, which is the maximum Ko-
daira dimension for surfaces. As previously mentioned, a surface of Kodaira
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dimension 2 is not dominable b§? [Kol]; indeed, a surface of Kodaira
dimension 2 is precisely a surface which admits a possibly degenerate hyper-
bolic volume form. Thus in the case of Kodaira dimension 2, Theorem 1.1
can be established by showing that such a surface satisfies property C.
The question of whether a variety of maximum Kodaira dimension satisfies
property C was first raised explicitly by Serge Lang [Lang].

In the following theorem we give, again modulo the above mentioned
exceptions, a classification of projective surfaces which are dominable by
C? and hence a classification of projective surfaces of Kodaira dimension
less than 2 which fail to satisfy property C. We will do this in terms of the
Kodaira dimension and the fundamental group, both of which are invariant
under birational maps.

Theorem 1.2 A projective surfaceX not birationally equivalent to a K3
surface is dominable b{? if and only if it has Kodaira dimension less
than two and its fundamental group is a finite extension of an abelian group
(of even rank four or less). K(X) = —oo, then the fundamental group
condition can be replaced by the simpler condition of non-existence of more
than one linearly independent holomorphic one-form¢(X) = 0 and X

is not birationally equivalent to a K3 surface, théhis dominable byC?.

If X is birationally equivalent to an elliptic K3 surface or to a Kummer K3
surface, therX is dominable byC?.

As with Theorem 1.1, this theorem fails if we include compact non-
Kahler surfaces (even after simple minded modification of this theorem). For
instance, the Kodaira surfaces are dominablé&byout their fundamental
groups are not finite extensions of abelian groups ([Ko4]). But this theorem
remains valid in the Kahler category, thanks, for example, to Kodaira’s
resultthat all Kahler surfaces are deformations of projective surfaces ([Ko2],
[Ko3)).

More general versions of Theorem 1.1 and Theorem 1.2 for compact
complex surfaces will be given at the end of Sect. 4.

In the quasi-projective category, we also prove the analogue of Theo-
rem 1.1 modulo the same exceptions mentioned in the beginning, following
mainly the work of Kawamata [K1] and M. Miyanishi [M]. In this setting,
the analogue of the fundamental group characterization requires the study
of a new but very natural class of objects of complex dimension one that
are related to orbifolds. As for explicit examples, we will work out Theo-
rems 1.1 and an analogue of 1.2 for the complement of a reducedCumve
IP? in the case whe@ is normal crossing, where we show that dominability
is characterized by deg < 3, and for the overlapping case in whi€his
either not a rational curve of high degree or has at most one singular point.
Here, the most fascinating and revealing example is the case in @hich
a non-singular cubic curve, whose complement is a honcompact analogue
of a K3 surface. The question of the dominability of the complement of
a non-singular cubic was discussed by Bernard Shiffman at MSRI in 1996,
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and the positive resolution of this problem served as the first result in and
inspiration for this paper.

The key tools we introduce here for constructing dominating maps are
the mapping theorems we establish via a combination of complex geometry
and analysis. One of these theorems utilizes Kodaira’s theory of Jacobian
fibrations to deal with general elliptic fibrations (see Sect. 3). Other such
theorems construct the required self-map<éfdirectly via complex an-
alysis to deal withC*-fibrations, abelian and Kummer surfaces.

In particular, the constructions in Sects. 4 and 6 show that given any
complex 2-torus and any finite set of points in this torus, there is an open set
containing this finite set and a dominating map fréfinto the complement
of the open set. This should be compared with [Gr] in which it was claimed
that the complement of any open set in a simple complex torus is Kobayashi
hyperbolic (a complex torus is simple if it has no nontrivial complex subtori).
There is no contradiction because it was later realized that the proof given in
[Gr] is incorrect since the topological closure of a complex one-parameter
group need not be a complex torus. Despite this, the validity of this claim
appears to have been an open question until the current paper, which shows
the claim to be false in dimension 2. Thedimensional analogue of our
result is given in [Bul].

Many of the tools and results we develop may be of interest to other
areas of mathematics besides complex analysis and holomorphic geometry,
especially to Diophantine (arithmetic) geometry in view of the connection
between the transcendental holomorphic properties and arithmetic proper-
ties of algebraic varieties. For example, the important technique of con-
structing sections of elliptic fibrations, which is very difficult to achieve
in the algebro-geometric category but certainly useful in arithmetic and
algebraic geometry, turns out to be quite natural and relatively easy to do
in the holomorphic category. Also, we undertake a global study, from the
viewpoint of holomorphic geometry, of the monodromy action on the fun-
damental group of an elliptic fibration. Needless to say, without the deep and
beautiful contributions of Kodaira on complex analytic surfaces, we would
not be able to go much beyond dealing with some special examples, as is
the case with much of the scarce literature on the subject. However, we have
not avoided, due to the nature of this joint paper, giving elementary lemmas
and proofs while avoiding the unnecessary full force of Kodaira’s theory on
elliptic fibrations, especially as we deal with fibrations over curves that are
not necessarily quasiprojective.

The paper is organized as follows. Section 2 introduces some basic bira-
tional invariants and general notation and provides a list of the classification
of projective surfaces. Section 3 deals with projective surfaces not of zero
Kodaira dimension and solves the dominability problem completely for el-
liptic fibrations, including the non-algebraic ones. Section 4 deals with the
remaining projective and compact complex cases while Sect. 5 deals with
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the non-compact algebraic surfaces. Section 6 goes beyond these theorems
to deal with algebraic surfaces minus small open balls.

AcknowledgementsWe are very grateful to Bernard Shiffman for posing the question which
motivated and inspired this paper and for his constant encouragement during its preparation.

2 Classification of algebraic surfaces

In this section we will first introduce some basic invariants in the (logarith-
mic) classification theory of algebraic varieties (see [li] for more details,

also compare with [Ue]). Then we will provide a list of the birational classi-

fication of projective surfaces and discuss briefly the dominability problem
in the quasi-projective category. Finally, we will introduce the more general
category of compactifiable complex manifolds and a basic invariant which
distinguishes the algebraic case in dimension two.

Let X be a complex manifold with a normal crossing dividdr This

means that around any pombf X, there exists alocal coordinata,, ..., z,)
centered af) such that, for some < n, D is defined byz;z,...z, = 0in this
coordinate neighborhood. If all the componentfadire smooth, theD is
called a simple normal crossing divisor. Following litaka ([li]), we define
the logarithmic cotangent she@f; (logD) as the locally free subsheaf of the

sheaf of meromorphic 1-forms, whose restrictiorkte= X \ D is identical
to 2x and whose localization at any poigpte D is given by

r n
dz
QX(IogD):g (9)—<,q7+ E 0497,
i=1

i j=r+1

where the local coordinates, ..., z, aroundq are chosen as before. Its
dual, the logarithmic tangent she&f (—logD), is a locally free subsheaf
of Ty. We will follow a general abuse of notation and use the same notation
to denote both a locally free sheaf and a vector bundle.

By an algebraic variety in this paper, we mean a complex analytic space
Xo such thatXy has an algebraic structure in the following senXg:is
covered by a finite number of neighborhoods, each of which is isomor-
phic to a closed analytic subspace of a complex vector space defined by
polynomial equations and which piece together with rational coordinate
transformations. A proper birational map frog to another varietyX; is,
by the graph definition, an algebraic subvarietyX@fx X; which projects
generically one-to-one onto each factor as a proper morphism. If such amap
exists, we say that the two varieties are properly birational. This notion cor-
responds to that of a bimeromorphic map in the holomorphic context. Two
algebraic varieties are said to be birationally equivalent if they have iso-
morphic rational function fields; or equivalently, if they have birational
compactifications. Hironaka’s resolution of singularities theorem [Hi] (an
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elementary proof of which can be found in [BM]) implies that given any
algebraic varietyXo, there is a smooth projective varie¥/with a simple

normal crossing divisoD such thatX = X\ D is properly birational toX.

If Xo is smooth, then we can even taKeo be Xg so thatXy can be com-
pactified by adding a simple normal crossing boundary divisor. In this paper,
a surface will mean a complex two dimensional manifold while a curve that
is not explicitly a subvariety (or a subscheme) will mean a (not necessar-
ily quasi-projective) complex one-dimensional manifold. All surfaces and
curves are assumed to be connected. In particular, every algebraic surface
is isomorphic to the complement of a finite set of transversely intersecting
smooth curves without triple intersection in some projective surface. We
will use the Enriques-Kodaira classification of compact surfaces to simplify
our problem for surfaces.

One of the most important invariants under proper birational maps is
the (logarithmic) Kodaira dimension. Lety, X, X, and D be as above,
and letKy = det@(T;) whereT)_Z is the complex cotangent bundle %t

The (holomorphic) line bundl&Ky is called the canonical bundle of.
Identifying a line bundle and its sheaf of holomorphic sections, we define
a new line bundle&K = K4 (D) = Ky ® O(D) corresponding to the sheaf
of meromorphic sections df ¢ which are holomorphic except for simple
poles alongD (see Griffiths and Harris [GH] among many other standard
references). In fact,

K = detQ4(log D).

This line bundle onX is called the logarithmic canonical bundle Xf=

X'\ D, or more specifically, of X, D). We will write tensor products of
line bundles additively by a standard abuse of notation; for examfte=
K®M, Given a projective manifold and a birational morphisrfi : Y — X
such thatf ~1(D) is the same as a normal crossing divigbin Y, then
any section oimnK as a tensor power of rational 2-form ofipulls back
via f to a section oinK(E). Conversely, any section oh Ky (E) pulls
back (via f 1) to a section oinK outside a codimension-two subset (the
indeterminacy set off ~1), which therefore extends to a section rafK

by the classical extension theorem of Riemann. It follows that, for every
positive integem, h°(mK) := dim H%(mK) is independent of the choice
of X for X, and is a proper birational invariant . This allows us to
introduce the following birational invariant o{o.

Definition 2.1 The Kodaira dimension ofg is defined as
_ logh®(mK)
(Xo) = | _—
K (Xo) lrf:ljolip logm

The simpler notation(Xp) is used whernXg is projective. The Riemann-
Roch formula shows that(Xp) takes values in the set

{—OO, 0, 1, ..., dim Xo}
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By the same argument as that fo?(mK), we see that another proper
birational invariant is given by the (logarithmic) irregularity X§ defined
by

G(Xo) = h%(2(log D)).

If D =0, thenq(Xp) is just the dimension of the space of global holomor-
phic one-formgy(X) = h%(Qx) on X.

If & (Xo) = dim(Xp), thenXy is called a variety of general type. A theo-
rem of Carlson and Griffiths [CG] (see also Kodaira [Kol]) says Kat
cannot be dominated (even meromorphically)3yin this case. Hence for
both Theorem 1.1 and Theorem 1.2, we need consider only those surfaces
with Kodaira dimension less than 2.

A projective surfaceX whose canonical bundle has non-negative inter-
section with (or, equivalently, non-negative degree when restricted to) any
curve in X is called minimal. We say thd{x is nef (short for numerically
effective) in this case. In general, we say that a line buhdba X is nef if
L - C > Ofor any curveC in X.

Every algebraic surface is either projective or admits a projective com-
pactification by adding a set of smooth curves with at most normal crossing
singularities. Moreover, the Enrigues-Kodaira classification [BPV, Ch. VI]
says that a projective surface admits a birational morphism (as a composition
of blowing up smooth points) to one of the following.

(0) A surface of general type: = 2.

(1) P? or a ruled surface over a cun@ of genusg = h%(Qc) (that is,
a holomorphicP? bundle overC). The latter is birationally equivalent
toP! x C. Here,x = —oo.

(2) An abelian surface (a projective torus given ©y/a lattice). Here,
K =0.

(3) AK3surface (a simply connected surface with trivial canonical bundle).
K =0.

(4) A minimal surface with the structure of an elliptic fibration (see
Sect. 3.2). Here can be 0, 1, or-oc0.

The characteristic property of the surfaces listed above is the absence
of (—1)-curves. A(—1)-curve is a smooth rational curve (imagelH) in
a surface with self-intersectionl, i.e. whose normal bundle has degreke
From Castelnuovo’s criterion [BPV, 1114.1], &-1) curve is always the
blow-up of a (smooth) point on a surface. A simple argument (via the linear
independence of the total transform of blown(ul)-curves inH;) shows
that, given any projective surface with< 2, one can always reach one of
the surfaces listed above by blowing doyAl)-curves a finite number of
times. It is a standard fact that a projective surface with 0 is minimal
if and only if it does not have any-1)-curve, and that such a surface is the
unique one in its birational class having this property.

Let Xo be an algebraic surface having a compactificat’onwhich
is birational to one of the model surfaces listed above, Xayhere is
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a maximum Zariski open subsbt of Xq that is properly birational to the
complement of a reduced divis@ and a finite seT’ of points in X. Now

the indeterminacy set of this proper birational map frgm= X \ {CU T}

toU C Xgmust consist of a finite set of points. So to produce a dominating
map fromC? to X, it suffices to produce, for each finite set of points
T in X, a dominating map front? into the complement of in X \ C.

NeverthelessX \ C may not be dominable b§? when X, is dominable
by C?; for example, a point 0, may correspond to an infinitely near point

on X over a point ofC. However, if we think ofX, as an open subset of the

space of infinitely near points of, then we can recover the equivalence in
dominability through the above procedure (see Sect. 5).

Although we have chosen to introduce and state our results so far in
the algebraic category for simplicity, we will in fact deal with a more
general class of surfaces in the next two sections: the class of compactifiable
surfaces. These are Zariski open subsets of compact complex surfaces and
the invariantsc andq carry over to them verbatim as they are defined by
compactifications with normal crossing divisors, which exist by complex
surface theory. If a surfacé is compact, the transcendency degaex) of
the field of meromorphic functions aX is, by definition, a bimeromorphic
invariant and is called the algebraic dimension.

3 Compact surfaces withk # 0and a # 0

In this section we solve th&? dominability problem for compact surfaces
whose Kodaira dimension and algebraic dimension are both non-zero. The
bulk of this section is devoted to the case of elliptic fibrations, which we
treat completely, including all the noncompact cases. In particular, we solve
our problem for every projective surface that is birational to a minimal one
listed in (1) and (4) above. Cases (2) and (3) will be discussed in Sect. 5.

3.1 Projective surfaces with Kodaira dimensieno

Since anyP!-bundle over a curv&€ is birational to the trivialP!-bundle
overC and sinceP? is birational toP! x P!, any projective surfacX with

k(X) = —oo is birational to a surfac¥ which is a trivialP-bundle over

a curveC of genusg := h°%(Q¢). In the case wher€ is of genusg > 1,

any holomorphic image of in Y must lie in a fiber of the bundle since

C is hyperbolic. HenceX satisfies property C and so cannot be dominated
by C?. In the casé is aP* bundle over an elliptic curve or ov&t, one can
easily construct a dominating map frdPh x C* and hence front? which
respects the bundle structure (even algebraically in the latter case). In fact,
by composing with the map

(7t h?) : C? — C? (3.1)
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whereh : C — C is holomorphic with prescribed zeros (which we can do
by Weierstrass’ theorem) and, 72 are the respective projections, we can
arrange to have the dominating map miss any finite subsét @hoosing

this finite subset to be the set of indeterminacies of the birational map from
Y to X, this dominating map lifts to give a dominating map io Since

P! admits no holomorphic differentials and is simply connected, we obtain,
respectively,

q(X) = q(Y) = q(C) = g and m1(X) = m1(Y) = 71(C).

Coupling this with the fact that the fundamental group of a curve of genus
greater than 1 is not a finite extension of an abelian group gives us the
following.

Theorem 3.1 If X is a projective surface with(X) = —oo, then the
following are equivalent.

(a) X is dominable byC?.

(b) q(X) :=h%(Qx) <2

(c) X admits a Zariski dense holomorphic imageof
(d) 71(X) is a finite extension of an abelian group.

3.2 Elliptic fibrations

If X is any compact non-projective surface wétixX) # 0, thenX is an
elliptic surface by [Ko2]. Also, ifX is projective and(X) = 1, thenX is
again an elliptic surface by classification. Hence the only remaining cases of
k # 0 anda # 0 are elliptic surfaces. In this section we resolve completely
the case of elliptic surfaces.

Definition 3.2 An elliptic fibration is a proper holomorphic map from

a surface to a curve whose general fiber is an elliptic curve, i.e., a curve of
genus one. Such a surface is called an elliptic surface. An elliptic fibration
is called relatively minimal if there are n@-1)-curves on any fiber.

Note that an elliptic fibration structure on a minimal surface must be
relatively minimal.

Let f : X — C be a fibration (i.e. a proper holomorphic map with
connected fibers) between complex manifolandC. If ' : X' — C’
is another map wher€ C C, then a mafh : X’ — X is called fiber-
preserving iff o h = f’. If rank(d f) = dim C at every point on a fiber
Xs = f71(s), thenXs must be smooth by the implicit function theorem. If
rank (d f) < dim C somewhere orXs, then Xs is called a singular fiber.
Outside the singular fibers, all fibers are diffeomorphic by Ehresmann’s
theorem.

In the casef is a fibration of a surfac& over a curveC, then each fiber,
as a subscheme via the structure sheaf fOms naturally an effective
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divisor on X as follows. We writeXs = ) _ n;C; whereC; is thei-th
component of the fibe(Xs)req (Without the scheme structure) and where
n; — 1 is the vanishing order af f for a generic point or€;. The positive
integer coefficient; is called the multiplicity of theé-th component. The
multiplicity of a fiber Xs = > n;C; is defined as the greatest common
divisorng of {n;}. A fiber Xs with ng > 1 is called a multiple fiber. A smooth
fiber is then a fiber of multiplicity one having only one component. The
singular fibers form a discrete set¥by analyticity. We will assume this
setup forX andC from now on.

Leto : C — C be a finite proper morphism. The ramification index at
a points e C is defined as the vanishing orderdaf at 3 plus one. Suppose
o has ramification inderg at every point above € C and suppose that this
is true for everys € C. Then, according to [BPV, Ill, Theorem 9.1], pulling
back the fibration via this ramified cover yields an unramified coveXng
over X. Also, the resulting fibratiorX — C no longer has any multiple
fiber. Such a ramified covering is called an orbifold covering of with
the given branched (orbifold) structure GnMore generally we have:

Definition 3.3 Given a curveC with an assignment of a positive integer
for eachs € C such that the seéb = {s € C| ng > 1} is discrete inC, define

D= Z (1 — n£> s. Supposer : C — C is a holomorphic quotient map
ns>1 S

suchthatr : C\e=%(S — C\ Sis an unramified covering and such that, for

each points € S, every point orC aboves has ramification indexs. Then

C is called an orbifold covering of the orbifol(C, D). If also C is simply

connected, thel is called a uniformizing orbifold covering. A fibration

overC defines a natural (branched) orbifold structuteon C by assigning

ns to be the multiplicity of the fiber aof the fibration.
Therefore, we have the following:

Proposition 3.4 Let X be a fibration ovelC. Letng denote the multiplicity
of the fiber X for every points € C, thus endowmg:: with an orbifold

structureD as above. Le€ be an orbifold covering ofC, D). Then the pull
back fibrationX — C has no multiple fibers and — X is an unramified
holomorphic covering map.

3.2.1 The Jacobian fibration

We first begin with a preliminary discussion in the absolute case, the case
where the base is just one point.

Let Z be a one dimensional subscheme (or a curve) in a complex pro-
jective surface. The arithmetic genusafdefined bypa(Z) = h'(97) =
dimcH(O@3), is equal to the geometric genus whgris smooth. Assume
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now thatZ is an arbitrary fiber in an elliptic fibration. Singg, is an in-
variant in any algebraic family of curves ([Ha, Ill, cor. 9.13]), we have
Pa(Z) = 1 and soH'(@z) = C. From the exponential exact sequence
0—-7Z — 0 - 0 — 0, we construct the cohomology long exact
sequence oveZ to deduce:

0— HYZ.Z) 5 HY02) — HY0O%) > HAZ,Z) - 0

Il I I
aZ-module C Pic(2)

Fact: (Let Z be non-singular.) P{@) is naturally identified with the space

of holomorphic line bundles ovez, which, in our case op, = 1, is a
1-dimensional complex Lie group under tensor product. Every line bundle
L can be written a®) (E) for some divisorE = ) as (a € Z,s € Z)
ands(L) = degE :=) &

Definition 3.5 Pic°(Z) := ker$ is the subgroup oPic(Z) of line bundles
L with trivial first Chern classcy (L) := §(L).

If Z is a smooth elliptic curve with a base poimt we can construct
a group homomorphism frord to Pic®(Z) by the map

XeZrs O — o) € PIC(2).

Lemma 3.6 The mapf is holomorphic, one-to-one and hence onto.

Proof. As f is holomorphic by construction, we need to prove only that it
is one-to-one. Assume not, so thatx — o) = O (X' — o) wherex # X'.
Then® (x — X") corresponds to the trivial line bundle ov&rand soZ has
arational function with a simple pole gtand a simple zero at This gives

a 1-1 and hence surjective holomorphic map framwhich has genus 1,
to P, which has genus 0. This is a contradiction. m|

Note: Pic®(Z) = HY(02)/i(HX(Z, 7).

We now return to the case in which the base is a curve.

Given an elliptic fibrationf : X — C without multiple fibers, one can
construct a relative version of Bias follows (see [BPV, p. 153]). We first
form the @ module

Jac(f) = £,.1(0x)/ fuZ

overC. Sincepa(Xs) = 1 for every fiber, it follows thatf.; (@ x) is locally
free of rank 1 (by a well known theorem of Grauert) and hence is the sheaf
of sections of a line bundl& over C. Hencedac( f) corresponds to the
sheaf of sections of

Jaqf) .= L/f.7Z,
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which is a holomorphic fibration of complex Lie groups with a zero section
(see [Ko2], compare also [BPV, V.9]). Note that whégis smooth elliptic,
(f.1Z)s = HY(Xs, Z) which embeds il.s = H1(0x,) = C. So Ja¢f)s =
Pic°(Xs). Note also that J&d ) is a holomorphic quotient of a line bundle
L overC.

We have the following theorem from Kodaira [Ko2] (see [BPV, V9.1]).

Proposition 3.7 Let f : X — C be a relatively minimal elliptic fibration
over a curveC with a holomorphic sectios : C — X. LetX consist of all
irreducible components of fibek; not meeting (C), and letX” = X\ X_.
Then there is a canonical fiber-preserving isomorphisfrom Jag f) onto
X% mapping the zero-section iaq f) ontoo(C).

Hence it is useful to construct holomorphic sections of elliptic fibrations
for which we develop the following key lemma.

Lemma 3.8 Given a relatively minimal elliptic fibratiorf : X — C with-
out multiple fibers, assume is non-compact. Thet has a holomorphic
section. Furthermore, given a countable subBeif X whose imagef(T)
is discrete inC, the section can be chosen to avadid

Proof: From Kodaira’s table of non-multiple singular fibers ([Ko2] or
[BPV, Table 3 p. 150]), we see that every fiber which is not multiple in
a relatively minimal elliptic fibration has a component of multiplicity one.
So, every point oi€ admits a neighborhood with a section. We now choose
a locally finite good covering of by open setdJ,, Us, ..., with sections

11, T2, ... Of fly,, flu,, ..., respectively. We may further stipulate that there
are no singular fibers on the intersection of any tws.

Let L = f,10x, which is a holomorphically trivial line bundle over
C sinceC is Stein. LetU < C be open and’ € H°(U, L) a section.

If T is a section off |y, then we can form the section+ ¢’ of f|y by
Proposition 3.7. By the same proposition and the fact that all fibers are
elliptic curves ovelJ; N U, there is a sectiomi] e HOU; N Uj, L) such
thatt; + r{j =r;onU; NU;.

As {7} satisfies the cocycle condition, so dogst;}. By the so-
lution to the classical additive Cousin problem (or from the fact that
H({U}, L) = HXC,L) = HYC,0) = 0 by Leray’s theorem, Dol-
beault's isomorphism, and the fact ti@ats Stein) one can find holomor-
phic sectiong/ € HO(U;, L) such thatr/ — 1:- =rt. Thent + 1 =1 —i—r
onU; NU; foralli, j. This gives rise to a globa‘ section 6f: X — C.

Given such a global section, Proposition 3.7 gives a fiber-preserving
dominating mapF : L — X whereF~1(x) C L is at most a countable
discrete set for alk in X. HenceF~1(T) is also a countable set and is
supported on the fibers &f over f(T). For eachs € f(T), therefore, we
may choose a poirg in L \ T. As L is isomorphic to the trivial line bundle
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(C being non-compact), the classical interpolation theorems of Mittag-
Leffler and of Weierstrass give us a holomorphic sectioof L with the
prescribed valugj for all s € T. But thenF o o is a section off which
avoidsT. This completes the proof. ]

3.2.2 Theorem 1.1 in the case of elliptic fibrations

Theorem 3.9 Let f : X — Cbe arelatively minimal elliptic fibration with
a finite number of multiple fibers. Assume tkais a Zariski open subset
of a projective curveC. Letns be the multiplicity of the fibeKs. Then the

following are equivalent.

(a) X is dominable byC?. .
(b) x :=2—29(C) — #CT\ C) — 2(1— n—) > 0.

ng>2 S
(c) There exists a holomorphic map @f to X whose image is Zariski
dense.

Remark 1:x = x(C, D) is the orbifold Euler characteristic @¢C, D). It
. — 1\.
can be written ag(C, D) = 2 — 2g(C) — Z(l — n—s) if we setns = oo

seC
for s € C\ C (where % = 0). Hence, if we complete th@-divisor

D= ;(1— nis)s toD = Z(l— %)soné, then

s
seC

x(C, D) =2 —29(C) — degD.

Proof of theorem:The pair(C, D) defines an orbifold as given in Defin-
ition 3.3. We will show that (a) holds j(C, D) > 0 while property C holds
for X (that is, (c) fails to hold) ify(C, D) < 0. This will conclude the proof.

From the classical uniformization theorem for orbifold Riemann sur-
faces (see, for example, [FK, IV 9.12[)C, D) has a uniformizing orbifold
coveringC which isP!, C or D according tox(C, D) > 0, x(C, D) = 0 or
x(C, D) < Orespectively, unless = P! andD has one or two components.
In the latter (“unless”) case, we simply redefi@eto be the complement
of the components dD in P! and reseD to be 0, shrinkingX as a resuilt.
We can do this because it does not change the factit@tD) > 0 and
because once we show that the resultiig dominable byC?, the original
X is also.

By pulling back the fibration t€, we obtain a relatively minimal elliptic
fibrationY overC. Now, Proposition 3.4 implies that the natural map from
Y to X is an unramified covering. Hence any holomorphic map ffono
X must lift to a holomorphic map t¥. It follows that if C = D, then any
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such map must lift to a fiber and hence its imageXimust lie in a fiber.
So, property C holds and cannot be dominated §? in this case.

It remains to show thaX is dominated byC? in the caseC = C or
P! to complete the proof of this theorem. Note that the latter case can be
reduced to the former by simply removing a point framHence, we may
take C to be C which is non-compact. Lemma 3.8 now applies to give
a section of the pullback fibratiofi : Y — C. By Proposition 3.7Y is
dominated by Jad) which in turn is dominated by a line bundleoverC
by construction. Henc¥ is dominated byL = C? (since any line bundle
overC is holomorphically trivial) as required. O

Now, let f' : X’ — C be an arbitrary elliptic fibration. By contracting
the (—1)-curves on the fiber, we get a bimeromorphic mafsom X’ to
a surfaceX having a relatively minimal elliptic fibration structure over
As before, X defines an orbifold structur® on C. If X has an infinite
number of multiple fibers or ifC is not quasi-projective, thel® is the
universal covering ofC, D) and conditions (a) and (c) of this theorem both
fail for X. Otherwise the above theorem can be applied to conclude that
conditions (a) and (c) are still equivalent Tt Let T be the indeterminacy
set ofa. By examining the last paragraph of the above proof, we see that
Lemma 3.8 actually applies to give us a dominating map from the trivial
line bundleL overC to X, and the zero-section &f maps to a section of
that avoidsT . Composing with a self-map a&f given by a section of with
prescribed zeros (just as in Equation 3.1) then gives us a dominating map
from L to X which avoidsT. Hence, ifX is dominable byC?, then X’ is
also. It is clear thaX’ satisfies property C iK does. Hence, we obtain the
following, which covers Theorem 1.1 in the case of elliptic surfaces.

Theorem 3.10 Let f : X — C be an elliptic fibration. Then conditions (a)
and (c) of Theorem 3.9 above are equivalentXgthat is, dominability by
C? is equivalent to having a Zariski-dense holomorphic imag€ of

Note that we do not requir€ to be quasi-projective in this theorem.

3.2.3 An algebro-geometric characterization

In this section, we will give, without proof, a characterization of dominabil-
ity by C? for a projective elliptic fibration in terms of familiar quantities in
algebraic geometry and not involving the fundamental group. Unfortunately,
the condition given is not straightforward nor does it seem very tractable.
Hence, we will leave the proof (which is based on the simple fact that the
saturation of the cotangent sheaf of the base, pulled back by the fibration
map, includes the orbifold cotangent sheaf &3 subsheaf) to the reader.
We will deal only with the case ot = 1 since the other possibility of

x = 0 contains the, so far, problematic K3 surfaces. However, all surfaces
with ¥ = 0 other than the K3's are dominable I&f. We note that from
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the classification list in Sect. 2, a surface with= 1 is necessarily elliptic.
Before the statement of the following proposition, recall that a vector sheaf
is called big if it contains an ample subsheaf. Recall also that a divisor in
a surface is nef if its intersection with any effective divisor is non-negative.

Proposition 3.11 Let X be a projective surface with(X) = 1. ThenX is
dominable byC? if and only if there exists a nef and big divisetr such
that, for every nef divisoN with Kx N = 0, there exists a positive integer
m with S"Qx(H — N) big.

It is not difficult to extract a birational invariant out of this frof@-
subsheaves of the cotangent sheaf of such an elliptic surface; again we leave
this to the interested reader.

In the remainder of this section, we give a more satisfactory and ele-
mentary characterization of dominability, now in terms of the fundamental

group.

3.3 The fundamental group of an elliptic fibration

We begin with the remark that, except for our narrow focus on holomorphic
geometry, most of the results we obtain in this section are not presumed to
be new.

Let f : X — C be an elliptic fibration. Then the fibration determines
a branched orbifold structur® on C as given in Definition 3.3. Le€° be
the complement of the set of branch point<OnThenX° = f~1(C) is an
elliptic fibration defined byf° = f|x., which has no multiple fiber. Let’ be

the complement of the singular fibersXnThenf’ = f|x defines a smooth
fibration over a curve€’ C C, and is therefore differentiably locally trivial
by Ehresmann’s theorem. We have the following commutative diagram.

X es  Xoes X
fry el L f (3.2)
Ce C°—C

We first observe the following trivial lemma for our consideration of
m1(X). Throughout this section, all paths are assumed to be continuous.

Lemma 3.12 Assume that we are given a real codimension two suldset
of X and a pathv : [0, 1] — X such thatv(0) and v(1) lies outsideW.
Thenv is homotopic to a path that avoid¥ keeping the end points fixed.

Proof: We first impose a metric oX. Since[0, 1] is compact, there is an
integern such thav([(i — 1)/n,i/n]) is contained in a geodesically convex
open ballB; for alli € {1, 2, ..., n}. Then the intersection of these balls are
also geodesically convex and, in particular, connected. Now replate)

by a point inB; () Bi;1 \ W for each integer € [1,n — 1]. Then replace
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Vli—1/nim DY @ path inB; \ W connectingv((i — 1)/n) with v(i/n), for

each integer € [1, n]. This is possible because the complemen®?\bin

each of the open balls is connected/ss of real codimension two in them.
Since the balls are contractible and intersect in connected open sets, we see
that the new path is homotopic to the original one fixing the end points but
now avoidsw. O

If the pathv given above has the same end points, that@® = v(1),
then we callv a loop. We will often identifyv with its image.

For the next two propositions, we observe from Kodaira’s table of sin-
gular fibers (see [BPV, V.7]) that, for a fibefs of an elliptic fibration
(as a topological space or a simplicial complex)(Xs) is eitherZ & Z
(corresponding to a nonsingular elliptic curvé),(corresponding to the
(semi-)stable singular fibers), or the trivial group (corresponding to the
other singular fibers).

Proposition 3.13 Let f : X — C be an elliptic fibration. In the case
C = P, let X, be a multiple fiber if one exists. Assurhéas no multiple
fibers except possibly foX., and thatC is simply connected. Then (X)
is a quotient ofr,(Xs) for every fiber outsideX.. In particular, 71 (X) is
abelian.

Proof. Since contracting—1)-curves does not change the fundamental
group, we may assume without loss of generality thistrelatively minimal.

Let Xsbe an arbitrary fiber. Being a CW-subcomplex@itis a deformation
retract of a small neighborho&diwhich we may assume to contain a smooth
fiber Xg nearby. SinceX is path connected, we can choose any base point
in considering its fundamental group. Fix then a base pgpiat Xy and

a loop Q with this base point. We will show tha&p is pointed homotopy
equivalent inX to a loop inXy C U. The theorem then follows aX%; is

a deformation retract afl.

Since the singular fibers form a real codimension two subset, we can
modify Q to avoid them up to pointed homotopy equivalence by Lemma 3.12
above. In the cas€ = P! but X, is not already given, leX., be a fiber
outsideU andQ. Since every homotopy (@) in X \ X is also one inX,
we may safely replac& by X \ X, so thatC becomes contractible in this
case. Hence, we may assume in all casesGhsaicontractible and thaD is
a loop inX’, the complement of the singular fibersXnh So Lemma 3.8 and
Proposition 3.7 apply to give an isomorphism from@do X with parts of
the singular fibers complemented. Hence, we get, by construction(df)Jac
a mapd from a holomorphically trivial line bundl& overC to X which is
an unramified covering abow¢’ C X. Fixing a pointgy € 67%(q) C Ly,
we see thaf can be lifted to a pati) in L from go to a pointg; € Ly
by the theory of covering spaces. £ss contractible, there is a homotopy
retraction ofL to Ly which provides a pointed homotopy Gf to a path
in Ly. Pushing down this homotopy (vi§ to X gives a pointed homotopy
from Q to a loop inXy as required. ]
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Looking back at the above proof, we see that we can reach the same
conclusion by allowingXs to be a multiple fiber as long &3is contractible
and X is free of other multiple fibers. This can be done by contracting the
loop Q, as given in the proof, but only to the neighborhddaf X before
homotoping toX via the deformation retraction &f to Xs. Of course Xs
as stated in the theorem is no longer arbitrary in this case as it is a multiple
fiber. If C = P! and D has two components (correspondingXcaving
two multiple fibers), we can remove one of the components (corresponding
to removing one multiple fiber fronX) for the same conclusion. We recall

that 1
ng(l—n—s)s

defines the orbifold structure ofiwhereng is the multiplicity of the fibeiXs.
Hence, we get a complement to the above proposition.

Proposition 3.14 Let f : X — C be an elliptic fibration defining the

orbifold structureD onC. If C = P! and D has one or two components, or

if C is contractible andD has one component, then(X) is a quotient of

1(Xs) for every componergtof D. Hencer1(X) is abelian in these cases.
O

3.3.1 Monodromy action as conjugation in the fundamental group

Although it is not absolutely necessary, some familiarity with the notion
of monodromy and vanishing cycles used in geometry may be useful for
reading this section.

Let the setup be as in diagram 3.2 and Xgtbe a non-singular fiber.
Fix a base poing in X, for all fundamental group considerations from now
on. There is an action of,(X’, q) onm1(X,, g) via the monodromy action
which, in the cas€’ is notP?, is just the conjugation action im (X', g).
Indeed, in this case, we have the following exact sequence from the theory
of fiber bundles (or from elementary covering space theory)

0— m(X;,q) — (X, — m(C',r) = 0, (3.3)

from which we deduce that the monodromy action is really an action of
m1(C’, r) onmy(X;, ) since the latter is abelian.

In general, we will letH denote the image at1(X;, Q) in m1(X, Q)
under the inclusion oX; in X. Itis easy to see that is a normal subgroup
in w1(X) (by the definition of the monodromy action). In this paper, we
will be mainly interested in the monodromy action Bh As opposed to
the usual case of the monodromy action on the homology level, this action
need not be trivial, unless we know, for example, thatX, q) is abelian.
Hence, it is of interest for us to know how fag(X, g) is from abelian. _

With the same setup, suppd&& D) has a uniformizing orbifold coves.

This is the case unle€s = P! and D has one or two components, again
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by the uniformization theorem ([FK, IV 9.12]). In the latter cases, Propo-
sition 3.14 and Proposition 3.13 tell us that(X) is abelian so that the
monodromy action orH is trivial. In all other cases, lef : X — C be

the pullback fibration. Proposition 3.4 implies théts an unramified cover
over X. Let R be the covering group an@ = m1(X). From the theory

of covering spaces, we know th@tis an extension ofr1(X) by R. Since
m1(X;) surjects tary(X) C 71(X) by Proposition 3.4, we see that

H = 71(X).

Note thatR is a quotient ofr,(C°) and hence also of,(C’), allowing us

to identify the conjugation action d® on H with the monodromy action.
Hence, we have the following exact sequence (which we can regard as
a quotient of the exact sequence 3.3)

0 H—->G—-R—-0. (3.4)

The following proposition tells us that this monodromy action térvia
loops inX’, which induces the conjugation action®fon H, depends only
on the pointed homotopy class of the image of these loofs ihence, the
monodromy action orH is really an action by the group,(C), which is
a quotient ofR. In particular, it tells us that the action is trivial whéhis
simply connected. This is the closest analogue, on the level 06f the
fact that vanishing cycles are vanishing on the level of homology.

Proposition 3.15 Let f : X — C be an elliptic fibration. LeX; be a non-
singular fiber with a base poirg. If «, 8 andy are loops based aj with «

in X;, and f o B is pointed homotopic td o y in C, theng~tap is pointed
homotopic inX to y tay.

Proof: We may assume, via Lemma 3.12, thiatand y lie in X'. Let
h: [0, 1] x [0, 1] — C be a pointed homotopy betwedno g and f o y,
which exists by assumption. Note that

(foP(foy)™t=n(3(0,1] x [0, 1]))

as loops up to pointed homotopy equivalence, wldemgeans the oriented
boundary. Our conclusion would follow if we show that the monodromy
action of this latter loop, call ite, on« is trivial in 71 (X).

By compactness df([0, 1] x [0, 1]), there is a partitiof0 = ag < a; <
.. < ap =1} of [0, 1] such thath([a_1, &] x [aj_1, ;]) iS contained in an
open diskD;; containing at most one branch point and such that the loop

wij :=h(3(lai—1, &1 x [aj-1, &)
lies in X', for all i, j € {1,2,...,n}. Sincery(f~X(Dj)) is abelian by
Proposition 3.14, the monodromy action @f on any pointed loop in
the fiber is trivial inz1(f~1(Dj)), and hence inr1(X) as well, for all

i, e{l, 2, ...,n}. Ourresult now follows from the fact that the monodromy
action ofy is just the sum of the monodromy action of thg’s. 0
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We can do a bit better wheX is compact.

Lemma 3.16 With the setup as in the above proposition, assume further
that eitherX is compact orX is a holomorphic fiber bundle ov€r. Then an
integerm exists, independent gf such thai3™ commutes witk in 771 (X).

Proof. LetH be the image of1(X,) in 71(X). We may assume, as before,
that f is relatively minimal.

If X has a singular fiber, theH is cyclic and hence the result follows
from the fact that the automorphism group of a cyclic group is finite.

If Xis a holomorphic fiber bundle ovér, then the monodromy actions
can be realized as holomorphic automorphisms of the fiber. The group
of such automorphisms is a finite cyclic extension of the group of lattice
translations (this can be deduced easily or determined from the table in
V.5 of [BPV] listing such groups). Hence every monodromy action up to
a power is a translation on the fiber, which therefore leaves every element
of 71(X;) invariant.

If X is compact and has no singular fibers, then it is a holomorphic fiber
bundle by Kodaira’s theory of Jacobian fibrations. So the result follows by
the last paragraph. 0

If X is non-compact and is algebraic without singular fibers, then the
conclusion of this lemma may no longer hold. Neverthless, we can embed
X in a projective surfaceX, which is again elliptic. Deligne’s Invariant
Subspace Theorem [Del] implies that elementg{i0X;) which vanish in
m1(X) are generated ove) by commutators of the form given by this
lemma. But we can deduce this directly from the fact that the abelianization
of 71(X) must have even rank so that eith¢ties in the center of(X) (in
the case wheiX is birational to an elliptic fiber bundle) or the commutator
subgroup ofr1(X) generatesd overQ. In fact, Kodaira’s theory allows us
to deduce a strong version of the Invariant Subspace Theorem (in the case
of elliptic fibrations) which is valid even outside the algebraic category:

Proposition 3.17 Let f : X — C be an elliptic fibration without singular
fibers and such tha€C is the complement of a discrete set in a quasi-
projective curve. LeX; be a fiber. Then eithef is holomorphically locally
trivial or 71(X;) ® Q = Hi(X;) ® Q is generated by the vanishing cycles
— that is, by loops of the form '8t 8 (naturally identified as elements
of 71(X;) via monodromy) in the notation of Proposition 3.15, whers
aloopinX;.

We remark that a weaker form of this proposition is in fact due to Kodaira
and is disguised in the proof of Theorem 11.7 in [Ko2]. We will follow his
method, almost verbatim, in our proof.

Proof: We begin with some preliminaries concerning the period function
z(s), which takes values in the upper half plane. Recall that, as far as
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monodromy actions are concerned, we can idengifg ,(X) with an
element ofr1(C), which we will denote again g% by abuse of notation.

By Theorem 7.1 and Theorem 7.2 of [Ko2] (neither of which re-
quires the additional assumption of that section concerning the compactif-
ication), we have a multivalued holomorphic period functzgs) on C with
positive imaginary part such that, under the monodromy representation
(B) eSL(2, Z) of B € m1(C) as an automorphism of the lattieq (X, ) with
a fixed choice of basig(r) transforms as

az(r)+b
czr)y +d’

under our choice of basis. By definitiofi, z(s)) is the period defining the
elliptic curve Xg via analytic continuation ofl, z(r)), which is fixed by our
choice of basis o, (X;) (see Equation 7.3 in [K02]).

With a choice of basis over the poinffixed, we can regard the period
functionzas a single valued holomorphic function on the universal c6ver
Also, we can naturally identifyr,(C) with the covering transformation
group ofC overC. Then we have (see Equation 8.2 in [K02])

az¢) +b _(ab -
=R where (B) = (c d) and ¢ € C.

where (8) = (2 3) € SL(2, Z)

B 2(r) —

Z(B(§)) = B.z(§) =

Let M denote the submodule af (X,;) = H.1(X;) = Z & Z generated
by the vanishing cycles. After a suitable change of basis, we may assume
thatM = nZ & mZ C Z & Z, wherem andn are integers. 1M does not
generateH; (X;) overQ, then eithem or n must vanish. Ifm vanishes, then
we must have

B = (cl) bf) (for someby € Z),

and therefore(p(§)) = z(§) + bg for all B € 71(C). Since the imaginary
part of z(s) is positive, exf2riz(s)] defines a single valued holomorphic
function onC with modulus less than 1. Hence, it must extend to a bounded
holomorphic function on the compactificati@ of C and therefore must

be constant. It follows that(s) is constant and so the fibration is locally
holomorphically trivial. Ifn vanishes, then

B) = (Ci S) (for somecg € 7)),

and therefore

1/z(B(&)) = 1/z(8) + Cp.
Hence, considering exp2ri/z(s)] instead of ex[2riz(s)] gives us the
same conclusion. This ends our proof. ]

In order to studyG = m1(X), we need some information about its
quotientR. This is fortunately a classical subject that we now turn to.
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3.3.2 Fuchsian groups versus elementary groups

In this section, we will collect some basic definitions and facts that we will
need about Kleinian groups. We refer the reader to [FK, IV.5-1V.9] and
[Mas, I-V] for more details.

Let (C, D) be an orbifold and le€ be its uniformizing orbifold covering
with covering groupR which acts holomorphically o€. SinceC = P!, C
or D, all of which have natural embeddings irité, R can be identified as
a subgroup of the grou of holomorphic automorphisms &f, the group
of Mobius transformations. So identifieR,becomes a Kleinian group; that
is, a subgroup di with a properly discontinuous action at some point, and
hence in some maximum open sub®ebf PL. The set of pointay = P\ Q
whereR does not act properly discontinuously is called the limit seRof

An elementary group is a Kleinian grodpwith no more than two points
inits limit set. Such a group acts properly discontinuouslyoa P*, where
AisPL C orC*.

By a Fuchsian group, we mean a Kleinian grdrvith a properly dis-
continuous action on some dikc P* such thafD/R is quasi-projective;
that is,D is the uniformizing orbifold covering of an orbifoldC, D) where
C = D/Ris quasi-projective. IfD has finitely many components, then
(C, D) is known as a finite marked Riemann surface &nd called basic.
The limit set of a Fuchsian group necessarily contains the bounddby of
(which characterizes Fuchsian groups of the first kind in the literature). It
follows that a Fuchsian group cannot be an elementary group. We can also
see this directly as follows.

Lemma 3.18 An elementary Kleinian group is not a Fuchsian group.

Proof: Let R be an elementary Kleinian group, th&acts properly dis-
continuously om = P!, C or C* as a subset d#'. If Ralso acts on a disk
D c P!, then the boundary of this disk with at most two points removed is
contained inA. SinceR is properly discontinuous oA, and hence on this
punctured boundan)/R is not quasi-projective. Hende is not Fuchsian.

|

The following is a direct consequence of the uniformization theorem.

Proposition 3.19 Let (C, D) be a uniformizable orbifold wher® has
a finite number of components. LRRbe the uniformizing orbifold covering
group of(C, D) properly regarded as a Kleinian group. The«C, D) < O

if and only if Ris a Fuchsian group while/(C, D) > 0if and only ifRis
an elementary group.

The reader is cautioned that Lemma 3.18 is not a corollary of this since
the definition of an elementary group is more general than that given in this
proposition.
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ConcerningR as an abstract group, Proposition 3.19 and the basic theory
of elementary Kleinian groups (see [Mas, V.C and V.D] or [FK, IV 9.5])
gives:

Proposition 3.20 With the same setup as Proposition 3.19, assume that
x(C, D) > 0. Then there is a finite orbifold coverirg of (C, D) such that

C = P!, C* or an elliptic curve. In particular,R is a finite extension of

a free abelian group of rank at most two.

Quoting [Mas, V.G.6], using Lemma 3.18 and Proposition 3.20, we have:

Proposition 3.21 Let R be a Fuchsian group as defined above. Theis
not a finite extension of an abelian group. HenRéas not isomorphic to an
elementary group as an abstract group.

3.3.3 The fundamental group characterization in Theorem 1.2

Before stating the main theorem of this section, we need the following
proposition from [BPV, V.5]. We first note from the same source that an
elliptic fiber bundle over an elliptic curve is called a primary Kodaira surface

if it is not Ké&hler. A non-trivial free quotient of such a surface by a finite
group is called a secondary Kodaira surface. The fundamental group of such
a surface is unfortunately not a finite extension of an abelian group, even
though the surface i§%-dominable.

Proposition 3.22 An elliptic fiber bundle over an elliptic curve is either
a primary Kodaira surface, or a free and finite quotient of a compact complex
2-dimensional torus.

Armed with this, we are ready to tackle our second main theorem,
Theorem 1.2, in the case of elliptic fibrations. We will state a more general
theorem:

Theorem 3.23 Let f : X — C be an elliptic fibration withC quasi-
projective. Assume that is not bimeromorphic to a free and finite quotient
of a primary Kodaira surface. TheX is dominable byC? if and only if
m1(X) is a finite extension of an abelian group (of rank at most 4).

Proof: With the assumptions as in the theorem, weGet= 71(X) as
before. By the same argument as that for Theorem 3.10, we may assume,
without loss of generality, thaX is relatively minimal by contracting the
(—1)-curves (ass is unchanged in this process) AMfhas an infinite number

of multiple fibers, then the orbifoldC, D) is uniformized byD and soX

is not dominable byC?. Proposition 3.21 tells us th& is not isomorphic

to a finite extension of an abelian group in this case. Hence, we may also
assume thaD has only a finite number of components for the rest of
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the proof. Theorem 3.9 then applies and so it is sufficient to show that
x(C, D) > 0if and only if G is a finite extension of an abelian group.

Assumethag(C, D) < 0. If (C, D) projectivizes tqP, D) (see the first

remark after Theorem 3.9 for the definition B), then D must have more
than two components by the definition pfHence(C, D) is uniformizable

and we may apply Proposition 3.19 and Proposition 3.21 to conclude that
the orbifold uniformizing grougR of (C, D) is not a finite extension of an
abelian group. But then neither@asR is a quotient ofG.

Conversely, assumgC, D) > 0. If (C, D) projectivizes tqP*, D) and
D has no more than two components, ti@&is abelian by Proposition 3.13
and Proposition 3.14. OtherwiséC, D) is uniformizable and, with the
notation as in Sect. 3.3.1, the exact sequence 3.4 impliesGhatan
extension ofH by R. Proposition 3.20 now applies to give a pull back

elliptic fibration f : X — C without multiple fibers such thaX is a finite
unramified covering oK and such tha = P, C* or an elliptic curve. We
will consider each of these cases (bseparately Note first th& = 71 (X)
(respectlverR) is a finite extension ob = 71(X) (respectlverR) and that
H = H. ReplacingC by a finite unramified covering &, we may assume,
thanks to Lemma 3.16 and Proposition 3.17, tHates in the center of5
(that is, the conjugation action & on H is trivial).

In the case whe® = P!, Proposition 3.13 implies thab is a quotient
of a free abelian group of rank two. HenGeis abelian of rank no greater

than two. SinceX is Kahler if and only ifX is, this rank is even i is
Kahler and odd if not.

In the case wheil€ = C*, the triviality of the conjugation action of

R = Z implies immediately thaG is abelian, of rank one greater than that
of H.

In the case wheg is an elliptic curve, Proposition 3.17 implies thét
must either be a holomorphically locally trivial fibration ov@r or H is
finite cyclic. In the former case, Proposition 3.22 tells us tBas a finite
extension of a free abelian group of rank four. In the latter case)/2tbe
the order ofH. SinceR is abelian, the commutator of two elemeatand
bin G must lie inH. Henceab = bacfor somec € H. Sincec commutes
with botha andb, we havea™b = ba™ anda™b™ = (ab)™. This shows

thatG™ = {a™ | a € G} is an abelian subgroup @ intersectingH at 1.
Hence, we can form the internal direct s@f' @ H in G which we can
easily identify with the inverse image &" in G, whereR™ is a normal
subgroup of indexm? in R. (We note as an aside th&™ is canonically
isomorphic toR™.) It follows thatG becomes abelian if we replade by
a finite covering of itself and so our theorem is proved. ]
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4 Other compact complex surfaces

We deal with the remaining cases of compact complex surfaces in this sec-
tion. These are the case of zero Kodaira dimension and the case of zero
algebraic dimension. In fact, by Kodaira’s classification, all surfaces with
Kodaira dimension zero are elliptic fibrations except for those bimeromor-
phic to compact complex 2-dimensional tori and K3 surfaces, where the
elliptic ones form a dense codimension one family in their respective mod-
uli space. As we have already resolved the case of elliptic fibrations in the
previous section, we need to consider only the tori and the K3 surface cases.
We first resolve the case of tori, and indeed prove a much stronger result of
independent interest, before considering the other cases.

4.1 Compact complex tori

A 2-dimensional compact complex torus is the quotierifoby a latticeA
of real rank 4. LetX be such a surface, which we call a torus surface. Any
compact surfac& bimeromorphic taX admits a dominating holomorphic
map from the complement of finitely many points X We show in this
section that the complement of finitely many pointiis dominable byC?.
This will follow immediately from Proposition 4.1 below. Hencéjs also
dominable byC? as a result.

Following Rosay and Rudin [RR1], we say that a discreterset C?
is tameif there is a holomorphic automorphisr&, of C? such thatF(A)
is contained in a complex line. Using techniques of [RR1] or [BF], the
complement of a tame set is dominable®$; and in fact, there exists an
injective holomorphic map frort? to C? \ A.

By alattice, we mean a discréfemodule. For the following proposition,
let A be a lattice inC?, letqy, ..., qn € C?, and letAg = U, A +qj,
whereA + q; represents translation loy.

Proposition 4.1 The setAq is tame. In particularC?\ A is dominable by
C? using an injective holomorphic map.

This result will be strengthened considerably in Sect. 6. Before proving
this proposition, we need a lemma.

Lemma 4.2 There exists an invertible, complex linear transformation
C? — C? such thatim w1 A(Ap) is a discrete set ilR. Moreover, we may
assume that ifp, g € A(Ag) with p # g, then|p — q] > 1 and either
Imzip=Imaziqor|Imzip—Imx=iq > 1

Proof. Letwy, vy, v3, v4 be aZ-basis forA, and letE be the span oveR of
v1, V2, v3. Using the real inner product, leg # 0 be orthogonal t&. Using
the complex inner product, lel # O be orthogonal toiy. Thenu; andiu;
are both real orthogonal tg,, soCu; C E. ChooseA; complex linear such



Algebraic surfaces holomorphically dominable @ 641

that A;(ug) = (1,0) and A¢(uy) = (0, 1). Thenz'A.(E) is a one (real)
dimensional subspace @f, so by rotating in the first coordinate, we may
assume that*A;(E) is the real line irC.

Let o = Im 7tAs(vy), andpj = Im 7 A (pj) for j = 1,...,m.
Then foreach =1, ..., mandk € Z, we have

7wt AL(E + kva + pj) S R +i(Kuo + i),

so thatlm 71A1(Ao) is discrete inR. Applying an appropriate dilation to
A; gives A as desired. O

Note that this lemma implies that given a finite set of points in a complex
2-torus, there is an open sk, containing this finite set and a nonconstant
image ofC avoidingU. In particular, the complement &f in this torus is
not Kobayashi hyperbolic. As mentioned in the introduction, this result will
be strengthened in Sect. 6 to show that there is a dominating map into the
complement of such an open &t

Proof of Proposition 4.11.emma 4.2 implies that there is a complex line
L = C(zo, wo) wWith orthogonal projectionr, : C?2 — L and real numbers
"o, - - . » 4m Such that

mL(Ao) C UTL; (MoZ + pj +iR)(Zo, wo). 4.1)

l.e., identifying L with C in the natural way, the image @, undern is
contained in a union of lines parallel to the imaginary axis, and this union
of lines intersects the real axis in a discrete set.

Making a linear change of coordinates, we may assumétkatC(0, 1),
in which case we may identifyr, with projection to the second co-
ordinate, 72. Let 7! denote projection to the first coordinate, and let
E =UL (oZ + pj +iR).

We next show that there is a continuous, positive funcfigon E such
that if (z, w) € Agwith z # 0, then fo(w)|z| > 2|w|. First, define

] if wemr(Ag);
r — | min{|z|:(z,w)e Ao, z#0} 5
1w {0 if we E\m2(Ao).

Thenri(w) > 0, and since\ is discreter is upper-semicontinuous.

Letra(w) = 2(r1(w)+1) forw € E. Sincer, is also upper-semicontinu-
ous, it is bounded above on compacta, so a standard construction gives
a function fy which is continuous ork with fo(w) > ra(w) > 0. Then
for (z, w) € Ag with z # 0, we havefg(w)|z] > 2r1(w)|z] > 2w| by
definition ofr;.

We next find a non-vanishing entire functidnso that| f(w)z| > |w|
if (z,w) € Ag with z £ 0. Since fq is positive onE, log fo(w) is con-
tinuous and real-valued oB, and logfo(w) > log 2 + log(r{(w) + 1).
By Arakelian’s theorem (e.g. [RR2]), there exists an engfe) with
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|log fo(w) — g(w)| < log2 forw € E. Then f(w) = exp(g(w)) is en-
tire and non-vanishing, and (&, w) € Ag with z # 0, then

| f(w)z] = exp(Reg(w))|z| = ri(w)|z| = |w|.

Finally, defineF(z, w) = (f(w)z, w). ThenF is a biholomorphic map
of C? onto itself, and for(z, w) € Ag with z # 0, we havezF(z, w)| >
|T2F(z, w)|. SinceF(Ap) is discrete, we see that F(Ao) is discrete. Hence
F(Ao) is tame by [RR1, Theorem 3.9]. By definition of tanrg, is also
tame, so as mentioned earli€® \ A is dominable byC?. ]

Corollary 4.3 The complement of a finite set of points in a two dimensional
compact complex torus is dominable®3. Hence any surface bimeromor-
phic to such a torus is dominable I&f.

We remark that not all tori are elliptic. The elliptic torus surfaces form
a 3 dimensional family in the 4 dimensional family of torus surfaces and
the generic torus contains no curves. All compact complex tori are Kéhler.
Also a compact surface bimeromorphic to a torus can be characterized by
x = 0andq = 2.

4.2 K3 surfaces

A compact complex surfac& is called a K3 surface if its fundamental
group and canonical bundle are trivial. A useful fact in the compact complex
category, due to Siu ([Siu]), is that all K3 surfaces are Kahler. One can show
that H?(X, Z) is isometric to a fixed latticd. of rank 22. If ¢ is such

an isometry, ther(X, ¢) is called a marked K3 surface. The set of such
surfaces is parametrized by a 20 dimensional non-Hausdorff manffold
[BPV, VIII] (The fact thatM is smooth follows from S.T. Yau’s resolution

of the Calabi conjecture in [Yau] (see e.g., [T]) and the fact thais not
Hausdorff is due to Atiyah ([At]).)

We first observe a few facts from the classical work of Piatetsky-Shapiro
and Shafarevich in [PS] (see also [LP],[Shi],[BPV, VII]), where they
obtained a global version of the Torelli theorem for K3 surfaces. Given
a marked K3 surface and a poiate M corresponding to it, there is
a smooth Hausdorff neighborhod@d of o, a smooth complex manifold,

and a proper holomorphic ma‘cp—p> U whose fibers are exactly the marked
K3 surfaces parametrized fy. Within this local family, the subset of pro-
jective K3 surfaces is parametrized by a topologically dense subsgt of
which is a countable union of codimension one subvarieties. The elliptic
K3 surfaces (that is, K3 surfaces admitting an elliptic fibration) also form
a topologically dense codimension one familyin

The following proposition follows directly from Theorem 3.23 and the
fact that the fundamental group of a K3 surface is trivial.
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Proposition 4.4 A compact complex surface bimeromorphic to an elliptic
K3 surface is holomorphically dominable 6.

The previous section on complex tori allows us to deal with another
class of K3 surfaces — the Kummer surfaces, which form a 4 dimensional
family in the 20 dimensional family of K3 surfaces. Such a surfcs,
by definition, obtained by taking the quotient of a torus surfAdgiven as
a complex Lie grougC?/lattice) by the natural involutiog(x) = —x, then
blowing up the 16 orbifold singular points (resulting in 1:62) curves).
Alternatively, one can describ¥ as aZ, quotient of A, where A is the
blowing up of A at the 16 points of order 2 and where the quotient map is
branched along the exceptional X)-curves of the blowing up. Since the
inverse image of any finite set of points Jis finite in A and hence also
finite in A, any surface bimeromorphic to a Kummer surface is dominable
by C? according to Corollary 4.3.

Proposition 4.5 A compact surface bimeromorphic to a Kummer surface
is dominable byC?.

Before we leave the subject of K3 surfaces, it is worth mentioning that
projective K3 surfaces are dominable Byx C by the work of [GG] and
[MM]. Clearly, elliptic K3 surfaces and Kummer surfaces are so dom-
inable as well. Such a surface cannot be measure hyperbolic as defined by
Kobayashi ([Kob]). However, it is still an unsolved problem whether all K3
surfaces are so dominable. The only other compact complex surfaces for
which this problem remains open are the non-elliptic and non-Hopf surfaces
of class VI, outside the Inoue-Hirzebruch construction.

4.3 Other compact surfaces and our two main theorems

Besides those bimeromorphic to K3 and torus surfaces, the remaining com-
pact complex surfaces with zero Kodaira dimension are all elliptic, and
are all dominable byC2. Such a surface must be bimeromorphic to either

a Kodaira surface (defined and characterized in Sect. 3.3.3), a hyperelliptic
surface (which is a finite free quotient of a product of elliptic curves, and
hence projective), or an Enriques surface (which is a surface admitting an
unramified double covering by an elliptic K3 surface). Except for the first
among these three types, the fundamental group is always a finite extension
of an abelian group.

Finally, the only remaining compact complex surfaces are those with
algebraic dimension 0 and= —oo. This category includes the non-elliptic
Hopf surfaces, which are dominable B¢ by construction (see [Ko4]).
This category also includes the Inoue surfaces, which must be excluded
from our main theorems since their universal covéb ig C, hence are not
dominable byC?, while any nonconstant image 6fmust be Zariski dense
(see Proposition 19.1 in [BPV, V]). However, it is of interest to note that
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the Zariski dense holomorphic images®are constrained by higher order
equations on an Inoue surface so that if we relax property C in this sense,
we can in fact include Inoue surfaces in the next theorem. Unfortunately,
aside from the Hopf surfaces and the Inoue surfaces, the detailed structure
of surfaces of this type is not yet clear even though we know the existence
of projective affine structures for a special subclass of these surfaces.

We now summarize our investigation in the compact category by giving
the following extensions of our main theorems stated in the introduction:

Theorem 4.6 Let X be a compact complex surface of Kodaira dimension
less thar2. Assume that eithes(X) # —oo or a(X) # 0. In the case that

X is bimeromorphic to a K3 surface that is not Kummer, assume further
that X is elliptic. ThenX is dominable byC? if and only if it does not
satisfy property C. Equivalently, there is a dominating holomorphic map
F : C? — Xifand only if there is a holomorphic image Gfin X which is
Zariski dense.

Theorem 4.7 Let X be a compact complex surface not bimeromorphic to
a Kodaira surface. Assume that eithgiX) # —oo ora(X) # 0. Inthe case
that X is bimeromorphic to a K3 surface that is not Kummer, assume further
that X is elliptic. ThenX is dominable byC? if and only if it has Kodaira
dimension less than two and its fundamental group is a finite extension of
an abelian group (of ranK or less).

5 Non-compact algebraic surfaces

We begin with a key example which motivated the general algebraic setting.
This is the example of the complement of a smooth cubic curié,iwhich
we will show to be dominable b{?.

5.1 Complement of a cubic PP

Let C be a smooth cubic curve [F¢ and letX = P?\ C. Then its logarith-
mic canonical bundl&p2(C) is the trivial line bundle as degp: = —3.
Hencex(X) = 0 andX is a logarithmic K3 surface; that is, a non-compact
2-dimensional Calabi-Yau manifold.

Proposition 5.1 The surfaceX = P?\ C is dominable byC?.

Proof: A tangent line toC at a non-inflection point meets at one other
point. This gives rise to a holomorphi®' bundle with two holomorphic
sections. To see that this is actually a bundle (i.e. locally trivial), identify it
with the projectivization of the tautological vector bundle of rank two over
the dual curve o€ with the obvious isomorphism. We may pull back this
bundle and the sections to the universal cdverf C, with two sections,,
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ands. Hence one may regard the complemensgfC) of this bundle as
a trivial line bundle orC with a meromorphic sectios(with poles coming
from points of inflection of the cubic).

Hence, it suffices to construct a holomorphic map fréhonto the
complement of the graph of a meromorphic functsdo give a dominating
map to X. Note that each vertical slice of the complement of the graph is
C* except at a pole of, where the vertical slice i€.

To construct such a map, first define

exp(tw) — 1
ut w) = ZER (5.0
tw?  t?wd
=w+7+T+"' (5.2)

which is entire onC?. Note that(t, ¥ (t, w)) is a fiberwise selfmap of?
which misses precisely the graph-el/t, a function with a simple pole at
the origin.

SinceC is Stein, there exists an entire functigrsuch that has the
same principle parts as This is because we may writke= f/f; where
f and f, are entire with no common zeros. So lbgs well defined in
a neighborhood of each zero &f. By Mittag-Leffler and Weierstrass, we
can find an entire functiog; with the same Taylor expansion as lbdgo
the order of vanishing of; at each zero of;. Theng = f;/expg; is our
desired function. In particulag vanishes precisely wherhas a pole. Then
h=s— :—é is entire, so

#(z, w) = h(2) — ¥(9(2), w)
expwg(2)
9(2)
is entire onC?. For fixedz with g(z) # 0, we see from the second equality
that¢(z, w) can attain any value i€ \ {s(2)} by varyingw. If g(z) = 0O,
then¢(z, w) = h(z) — w, which can attain any value i@ by varyingw.
Hence, the ma@ : C2 — C2\ graph(s) given by

P (z, w) = (Z, $(z, w))

is holomorphic and onto. Composing this map with the map intoPthe
bundle overC, we obtain a dominating map into the complement of the
cubicC. O

=s(2) -

Note that an important step here is the construction of an entire function
h whose graph does not intersect the graph dhis is certainly analogous
to the situation of elliptic fibrations.

Remark:The complement of a smooth cubic does not admit any algebraic
map toP! whose generic fiber contaili®'. This is the only example among
complements of normal crossing divisorsBfa with this property. In fact,
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this is the only meaningful affine example with this property that is dom-
inable byC? (see [M, p. 189]). Since this is a logarithmic K3 surface, this
phenomenon is suggestive of the situation for a generic compact K3 surface.

We isolate the following useful theorem from the above proof.

Theorem 5.2 Letsbe a meromorphic function dd. Then the complement
of the graph ofs admits a dominating fiber-preserving holomorphic map
from C2.

5.1.1 Complements of normal crossing divisor®in

Let X be the complement of a normal crossing diviBdn P2. If degD > 3,
thenic(X) = 2 and henceX is not dominable byC?. If degD = 3, then
D consists of at most three components and it is easy to checktigt
dominable byC? as follows. If D has only one component, then it is either
a smooth cubic or a cubic with one node. In the first case, the result follows
from Proposition 5.1. In the second case, blowing up that node gives us a
P! bundle overP! with two sections, one corresponding to the exceptional
curve of the blow-up. These two sections intersect precisely at the two fibers
of the bundle corresponding to the two tangent directions of the cubic at the
node. Hence, removing these two fibers gives us a surface biholomorphic to
C*x C*, whichis dominable b{?. If D has two components, then it consists
of a line and a conic (that is, a smooth curve of degree two) intersecting at
two points. Blowing up one of the points of their intersection (corresponding
to projecting from this point of intersection) gives u®abundle overC
with two sections complemented, one of which is the exceptional curve of
the blow-up. If we think of one section as, then the other section can be
regarded as a meromorphic function @rand so Theorem 5.2 applies to
give a dominating map frorft? to X. An easier way is to delete the fiber
containing the only point of intersection of these two sections. The resulting
X is biholomorphic taC* x C* and hence dominable I&?. If D has three
comgonents, then each must be a line And C* x C*, which is dominable
by C=.

From the above argument, we see also that if beg 3, thenX is
dominable byC?. In summary, we have:

Theorem 5.3 Let D be a normal crossing divisor if??. ThenP? \ D is
dominable byC? if and only ifdegD < 3.

We remark that this theorem is no longer truBifs not normal crossing.
The unique counterexample in one direction is wiizrconsists of three
lines intersecting at only one point, which is not dominableCByAnother
counterexample, but in the opposite direction, is given by the complement
of the union of a conic and two lines intersecting at a point of the conic
(which we discussed in the two component case ofldleg 3 above).
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5.2 The general quasi-projective case

Let X be an algebraic surface ové. Then X = X \ D where X is

projective andD is a normal crossing divisor iiX. This is the notation

set forth in Sect. 2 and we will assume this setup throughout this section.
Kawamata ([K1],[K2],[K3]) has considered the structurexoénd obtained

a classification theory analogous to that in the projective case. Much of this
is explained in some detail in Miyanishi ([M]). We will use their results
directly to tackle our problem in this section.

If there is a surjective morphisnfi : X — C whose generic fiber is
connected, then we say th&tis fibered overC. (We remind the reader
that morphisms are algebraic holomorphic maps.) More generalfy;sf
required to be only holomorphic rather than a morphism, then we say that
X is holomorphically fibered oveE. For example, the complement of the
graph of a meromorphic function is holomorphically fibered o@ewith
generic fiberC*. As before, we letXs = f~(s) be the fiber oves. We
first quote the subadditivity property of (log-)Kodaira dimension due to
Kawamata ([K1]):

Proposition 5.4 If X is fibered over a curv€, then
K(X) = k(C) + ik (Xs)
for s outside a finite set of points i@; that is, for the generic fibeXs.

From the definitions, a curve of positive genus with punctures has pos-
itive Kodaira dimension. An elliptic curve has Kodaira dimension zero.
A puncturedP! hask = —oo, 0 or 1 according to the number of punctures
being 1 2 or greater than 2, respectively.

Given a dominating morphisni between algebraic varieties, it is clear
that f* is injective on the level of logarithmic forms (see [li]). Since tensor
powers of top dimensional logarithmic forms define the Kodaira dimension,
we see thatiff is equidimensional, then it must decrease Kodaira dimension.

If g(X) > 0, then there is a morphism froXto a semi-abelian variety
(a commutative algebraic Lie group that is an extension of a compact torus
by (C*)X for somek) of dimensiong(X), called the quasi-Albanese map
and constructed by litaka in [lil]. One has the simple formula relajin¢)

to the first Betti numbers ok and X:
a(Xx) — q(X) = by (X) — by(X).

Note thatC does not support any logarithmic form by this formula.

5.2.1 Surfaces fibered by open subsefB'of

Let X be fibered over a curve C by a mdpwhose generic fiber i®*
(possibly) with punctures. Then, by a finite number of contractions of
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(—1)-curves that remain on the fiber, the compactificattonf X admits

a birational morphisny to a ruled surface’ over a projective curve,
the compactification o€, andg is a composition of blowing ups. Hence
Y = Y|c is alP! bundle overC, whose bundle map will again be denoted
by g. We may writef = h o g, where

chHx2vylc (5.3)

If every holomorphic image of in X is constant irC (when composed
with f), thenX satisfies property C. Otherwise, there exists a holomorphic
mapr : C — X such thatf or is not constant. By taking the fiber product
with f o r, we can pull back the factorization picture 5.3 to one dver

chLxivhc

where f = h o § is surjective with a holomorphic sectién Here, X may
be singular, but we will regard it only as an auxiliary space.

We will first deal with the case where the general fiber has at most
one puncture; that isXs = P! or C for s in an open subset of. We
can then regardf as a trivialP! bundle with a sectiorD,, to which the
puncture (if one exists) on the “generic” fiber 6fis mapped. Note that
Y\ Dy = C? with coordinatesz, w), and so we may regard a section of
h as a meromorphic function ofl. In particular,§ o f is a meromorphic
section ofh.

Since X is obtained fromY by a finite number of blow ups, we can
identify points onX as infinitely near points olY of order O or more as
in [Ha, p. 392]. Note that the set of fibers ¥hwhich contain infinitely
near points of order 1 or more is finite (since the set of such fibeYsiin
finite). This finite set of fibers il pulls back to a discrete set of fibers¥n
In'Y, such a higher order infinitely near point corresponds to a poix in
obtained by finitely many blow-ups, hence to the specification of a finite
jet at the point inY. Under pull-back, this corresponds to a finite jetvin
Additionally, there is a finite set of fibers i¥i which may have more than
one puncture, and these fibers all pull back to a discrete set of fib¥rs in
Together, these two types of fibers will be called exceptional fibers.

In order to produce a dominating map in¥ it suffices to produce
a fiberwise dominating map(z, w) = (z, H(z, w)) into Y which respects
these exceptional fibers in the following sense&flfs an exceptional fiber,
then F(s, w) is a single point independent of. Moreover, ifYs is a fiber
having more than one puncture, then the image of thefrgtpuld avoid all
such punctures. Ns is a fiber having an infinitely near point, théits, w)
should equafjor(s). Additionally, if §of passes through this infinitely near
point, and¢ is holomorphic in a neighborhood ef then the local curve
Z+— (z, H(z, ¢(2))) should agree with the jet given by the infinitely near
point onYs.
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Fortunately, the sectiofof has the correct jet whenever it intersects one
of these exceptional fibers, so we can use this section to obtain such a map.
Let q(z0 = § o f(2), which is meromorphic. We will definél(z, w) =
p(2)w + q(z) for some entirep(z). For each exceptional fib&, there is an
integerns > 1 such that ifp vanishes to ordems at s, thenF defined with
this H respects the exceptional fiber as indicated above. By Weierstrass’
theorem, there existg entire vanishing exactly to ordeg at eachs. Then
F(z, w) = (z, H(z, w)) gives a dominating map frori2 into Y respecting
the exceptional fibers, and this map pushes forward, timen lifts to give
a dominating map inteX, as desired.

We now deal with the case where the generic fibeff a§ C*. In this
case,Y can be identified with & bundle with a double sectioDy, to
which the punctures on the “generic” fibers bimaps to. Now, eitheDy
consists of two components, both of which are smooth sectios of
Dy consists of one component. In either case, outside of a discrete set of
fibers, Dy can be written locally as the union of two mermorphic sections.
Moreover, we define the set of exceptional fibers exactly as in the previous
case.

First, using a fiber-preserving biholomorphic magok P* to itself, we
may movejof to become theo-section. Then the requirement of agreeing
with the jet of§ o I at a points is equivalent to having a pole of some
given order ats in the new coordinate system. Next, et be the points
in C at which Dy intersects this new infinity section. Near a parg E;,

Dy can be written a® = h(2) £+ /9(2) = u*(z) for some meromorphig
andh. Hence there existss > 0 such thati*(z)(z — 9)" converges to 0 as
z tends tos. We may assume also thatsfe E; ands is the base point of
an exceptional fiber, then timg obtained here is larger than thgobtained
above for this exceptional fiber.

Let E be the union ofE; and the set of base points corresponding to
exceptional fibers. Lep be entire with a zero of ordet, at eachs € E
and no other zeros, and &4z, w) = (z, p(2)w). Then®(Dy) is a double
section inC x C, and a dominating map frofi? to (C x P) \ ®(Dy)
followed by ®~* gives a dominating map to the complementDsf which
respects the exceptional fibers.

Hence it suffices to construct a dominating map into the complement of
®(Dy). Note thatd® (Dy) can be written as) = v*(z) = p(z2)u*(2), where
v* are holomorphic except possibly for square root singularities at branch
points.

For complex numbersandv, define a Mobius transformatidy, , (w)
(uw — v)/(w — 1), which takes 0 tw andoo to u, and defineG,, , (w)
expw(u — v)). Note thatN,,(w) = N,y (1/w) and thatG, ,(w)
1/G,.u(w). HenceHo(u, v, w) = Ny, (Gy . (w)) satisfiesHo(u, v, w)
Ho(v, u, w). Since symmetric functions af" andv— are holomorphic, we
see thatH(z, w) = Ho(v*(2), v~ (2), w) is well-defined and holomorphic
from C? to C x PL. Moreover, for fixeds such thav® (s) are distinctH(s, -)
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is nonconstant front to P! \ {v(9)}. If v*(s) are equal, then assuming
without loss thas = 0, we havev*(z) = h(z) £ +/9(z) for some holomor-
phic 9(z2) = zZ"g1(2) with g1(0) # 0, m > 1. Thenvt — v~ = 2./G, so
multiplying the numerator and denominatortéfby expg—w(v*™ —v7)/2)
and using the Taylor expansion of exp gives

g (h+/91+w/9 —(h- /91 -w,/9 + O(z™
1+w/9 - 1A- .9+ 0(z™

_ 2hw/g+2,/9+ O(2™)
o 2w,/g+ O(|z|™) '

As z — 0, this last expression tendsh@) + 1/w, and henceH(0, -) maps
C ontoP!\ {v*(2)}.

Thus H is a dominating map front? to the complement of>(Dy),
hence as noted befor® ! o H is a dominating map front? to the com-
plement of Dy which respects the exceptional fibers. As before, this map
pushes forward t& and lifts to give a dominating map int§, as desired.

We can now summarize with the following theorem.

Theorem 5.5 Assume thaX is fibered over a curv€ and that the generic
fiber isPP* with at most two punctures. Thetis dominable byC? if and
only if there is a Zariski dense image ©fin X.

The arguments given in this paper are not sufficient to resolve the ques-
tion of dominability for open fibered surfaces. As an example, we have the
following question.

Question 5.6 Let X be the complement of a double section in a conic bundle
overC, C*, or an elliptic curve. 1sX dominable byC??

We will consider this and related questions in a forthcoming paper.

5.2.2 Thec = —oo case

Let #(X) = —oo. Thenk(X) = —oo as well. HenceX is either rational

or birationally ruled over a curve of non-negative genus. In the latter case,
Proposition 5.4 says that is fibered over a curv€ with «(C) > 0 where

the generic fiber i®! with at most one puncture. Hence Theorem 5.5 applies
in this case to give us the equivalence of dominabilityd$and the failure

of property C. Note that property C holds in the cas€) > 0 (which
include the casg(X) > 2), corresponding t&€ being hyperbolic.

In the remaining case wheX is rational, we can again divide into two
cases according to wheth@(X) is zero or not. In the latter case, we again
have a fibering ofX over a curveC via the quasi-Albanese map with the
generic fiber having at most one puncture by Proposition 5.4, as before.
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This is because there are no logarithmic 2-formsXosincex (X) = —oo.

By the same token, every logarithmic 1-form ohis the pull back of

a logarithmic form orC (One can also see this from the fact tiatwith

at most one puncture has no logarithmic forms so that any logarithmic
form on X becomes trivial when restricted to the generic fiber. Hence,
q(X) = G(C).) So,C must beP! with at least two punctures. If it has more
than two punctures, correspondingdoX) > 2, thenC is hyperbolic. So

we have degeneracy of holomorphic maps fr@rn this case. Otherwise,
Theorem 5.5 applies.

We are left with the case whe@ X) = 0 where Proposition 5.4 no
longer applies, but where much of the analysis has been done in [M].
We now quote Theorerl’) of [M], (which follows from Theorem 1.3.11
of [M])

Theorem 5.7 With X and D as before, assume thét is connected. Then
k(X) = —oo if and only if X fibers over a curve with generic fiber beiftg
or C.

Except in the case whedé = IP?, there is, of course, some fiberingXf
to a curve (as is clear from, for example, (1) of the classification list given
in Sect. 2) and every such fibering must be to a ci@vhat is eitherP?
or C. In these fibered cases, we would like to show that the generic fiber
is P! with at most two punctures so that Theorem 5.5 can be applied to
show thatX is dominable byC?. However, it remains an open question
whether or not the generic fiber has this form, and although this question
should be resolved by some case checking, this lack prevents us from giving
a complete classification in the caseX) = —oo andq(X) = 0.

We can now summarize this section as follows.

Theorem 5.8 Let X be the complement of a normal crossing diviEbim
a projective surface. AssumgX) = —oo. If q(X) > 2, then X satisfies
property C and hence is not dominable @y. If G(X) = 1 orif (X) =0
and D is connected, theiX is dominable byC? if and only if there exists
a holomorphic map of to X whose image is Zariski dense.

5.2.3 Thec = 1 case

Here, we can directly apply the basic litaka fibration theorem, Theorem 11.8
in [li] (see also [Ue]):

Theorem 5.9 Assume (X) > 0. ThenXis properly birational to a variety
X* which is fibered over a variety of dimensi@(X) and whose generic
fiber has Kodaira dimension zero.

This theorem holds foiX of any dimension. But for our situation at
hand, it says thak is properly birational to a surfacé* which is fibered
over a curve with generic fiber that is either an elliptic curvePbmith
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two punctures. Now, we have already shown that for such a fibered variety,
dominability is unchanged for any variety properly birational to it. The
latter case is already resolved by Theorem 5.5. The former case can also
be resolved to give the same conclusion by the same analysis as that of
Theorem 5.5 with the help of the Jacobian fibration as in Sect. 3. Thus,
combining with Theorem 5.5, we have:

Theorem 5.10 AssumeX is fibered over a curve with generic fiber that is
either an elliptic curve oiP* with at most two punctures. This is the case,
for example, whei(X) = 1. ThenX is dominable byC? if and only if there
exists a holomorphic map @éf to X whose image is Zariski dense.

5.2.4 Thec = 0case

It remains to look at the case whetéX) = 0. If G(X) > 2, then a well
known theorem of Kawamata ([K4]) says thathas a birational morphism

to a semi-abelian surface. Hencéjs dominable byC?. If G(X) = 1, then

X is fibered over a curve and the generic fiber is an elliptic curve Bt is
with at most two punctures by Proposition 5.4. Hence Theorem 5.10 applies
in this case. Whe(X) = 0, our problem remains with some K3 surfaces
as explained in Sect. 4.2.

Finally, if X is affine rational and has a component that is not a rational
curve, then Lemma I1.5.5 of [M] says that eith¥ris fibered over a curve
with generic fibefP! with at most two punctures oX is the complement
of a smooth cubic ifP2. The former is handled by Theorem 5.5 while the
latter is dominated by"? as shown in Sect. 5.1. This resolves the case of
the complement of a reduced divisBrin P? unlessC is a rational curve,
which one can resolve as well whérhas either only one singular point or
is of low degree (and it is easy to check all the cases for degree less than 4).
This is a good exercise for the case wheris a rational curve of high
degree, which we will not attempt here. Note thaCifs normal crossing
with dominable complement, thed is again a smooth cubic iB?, being
the unique non-rational component.

Theorem 5.11 Assumex(X) = 0. If G(X) is positive or ifX is affine and
D has a component that is not a rational curve, théns dominable by
C?if and only if there exists a holomorphic map®to X whose image is
Zariski dense.

6 Compact complex surface minus small balls

For the compact complex surfaces which we showed to be dominalalé by

a surprisingly stronger result can be achieved, thanks to the theory of Fatou-
Bieberbach domains. We can show that these surfaces remain dominable
after removing any finite number of sufficiently small open balls. In this
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section we show how this can be done in the most difficult case, the case of
a two dimensional compact complex torus. We show that given any finite
set of points in a toru$, it is possible to find some open set, containing

this finite set, and a holomorphic m&p: C> — T \ U with non-vanishing
Jacobian determinant. In fadt,lifts to an injective holomorphic map from
C?to C2. For the statement of the following theorem, we focus only on this
lifted map. For notationA2(p; r) is the bidisk with centep and radiir in

both coordinate directions amd represents projection to th¢h coordinate

axis.

Theorem 6.1 Let A € C? be a discrete lattice, lepy, ... , pm € C?, let
Ao = UL, A + pj, and forr > 0, let Agy = UpeaoA2(p; 1). For some

r > 0, there exists an injective holomorphic mBp C? — C?\ Aq;.

In fact, the proof will show that any discrete set contained\iy is
a tame set in the sense of Sect. 4.1. As an immediate corollary, we obtain
the following result, as mentioned in the introduction. Awimensional
version of this result is found in [Bul].

Corollary 6.2 LetT be a complex 2-torus and I& c T be finite. Then
there exists an open sdtcontainingE and a dominating map froiG? into
the complement @ .

For the remainder of this sectiom, Ao and Ag, will be as in the
statement of this theorem.
6.1 Preparatory lemmas

In this subsection we state some necessary lemmas. The proofs are straight-
forward and perhaps even standard, but they are provided for completeness.

Notation: Fore > 0,letS = {x+iy: X e R, —e <y < €}.

Lemma6.3 LetC > 0, let f : R — [0, C] be measurable, and let
€ € (0,1). Then there exists a functiamholomorphic onS. such that if
8> 0andzy = Xg+1iyp € S with f(X) = ¢cgfor xg — 8§ < X < Xo+ 8, then

2Ce
19(20) — f(X0)| < —.
b}
Moreover,Reg(z) > Oforall z € S.

Proof: Forn e Z, let
1 (" f(x) f(x)
On(2) = anf ( iE—Z_X—i-iE—Z)dX

1 €
-2 [ (Gra)
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l.e., g, is obtained via the Cauchy integral using the functioan the two
boundary components & and truncating ax = £n. By [R, Thm 10.7],
eachgy is holomorphic inS.. Moreover, forzg = Xg +iyp € S, we have
|y0| < €, S0

(X — 22+ €% > Re (X — (Xo +Y0)? + €2 > (X — Xo)2. (6.1)

Using this last inequality and the boundednessfofit follows im-
mediately thatg, converges uniformly on compact subsets®fto the
holomorphic function

1 [ €
9(2) = = /;OO f(x) (m) dx. (6.2)

A simple contour integration shows thatfifis replaced by the constacy,
then the integral in (6.2) isp for all z € S. Hence, ifzg = Xg +iyg € S
with f(X) = cpfor xg — 8 < X < %o + 8, then using (6.1),

f(xo)| = ! C>OfX ‘ dx
19(20) — (o)l—‘;f_oo(()—co)<m> '

C Xo—& 00 €

T —00 Xo+0 (X - XO)
2¢C

< —.

L)

IA

To show thaReg(z) > 0, note that the second part of (6.1) implies that
Re(e/((x — 22+ €%) > 0forallze S, and sincef is real, (6.2) implies
Reg(z) > 0. O

Lemma6.4 LetV = {(z,w) : |w| < 1+ |z?}. Then there exists an
injective holomorphic mag : C? — V.

Proof: Let H(z, w) = (w, w? — z/2). ThenH is a polynomial automor-
phism of C?, and (0, 0) is an attracting fixed point foH. By [RR1, ap-
pendix], there is an injective holomorphic médrom C? onto the basin of
attraction of(0, 0), which is defined a = {p € C? : limy_ H"(p) =
(0, 0)}. By [BS], there exist®R > 0 such thaB is contained in

Ve={lzl = R [w] < RRU{|Z] = R, [w] < |z]}.

Hence takingd = ¥/R gives an injective holomorphic map fro@¥ into
V; C V. O
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6.2 Proof of Theorem 6.1

We will construct an automorphism @ mappingAo, into the complement
of the setv of Lemma 6.4. This will be sufficient to prove the theorem, and
by [RR1] this implies that any discrete set contained\yy is tame.

Choose an invertible, complex lineéras in Lemma 4.2. Without loss
of generality, we may replac& by A(A), p; by A(p;), andAg by A(Ao).
ThenwlAg is contained inU, Ly, where each y is a line of the form
R + iy, y« real. Moreoverdist(Lj, L) > 1if j #k, and|p —q| > 1if

P.q € Ao with p #q.
Let{q;};Z,; be an enumeration of the set

{geAo:|7%ql <1/8} ={g e Ao: A%(g; 1/8) N (C x {0}) # ).
Let C = log 32, and defindy : R — [0, C] for eachk by

fi(X) = 0 if (x+iw, 0) € A?%(qj; 1/8) for someq;
Y =1C  otherwise

Lets = 1/16, and choose < §/2 small enough thatQ@e¢/78 < log(3/2).
Letr = ¢/2, and recall that\g; = Upca, A%(P; ).

Let S = (X +i(y+w) : —€ < ¥y < €} andU, = UX, S Define
g hoIomorphlc onU, by applying Lemma 6.3 withf = fk to deflneg
on §. By Arakelian’s Theorem (e.g. [RR2]), there existentire such that
if ze U2, then|h(2) — g(2)| < log(4/3). Define

F1(z, w) = (z, wexp(h(2))).
ThenF; : C? — C?is biholomorphic.
We show next that there is a complex line in the complemeRt @i ).
To do this, letp € Ao, and suppose first that € A%(q;; r) for someg;.
Choosek so thatyx = Im 7tq;, and writerp = X + iYo.
Note that|yo — w| < r = €/2. Also, sincelz?q;| < 1/8, we see that if

IX —Xo| < (1/8) —r, then(x+iw, 0) € A?(q;; 1/8). Sinces < (1/8) —r,
we havefi(x) = 0 forxg — § < X < Xg + 8, and hence by Lemma 6.3 and
the choice ot andh,

lh(z*p)| < |g(x*p)| + log(4/3)
& + log(4/3)
L)

<log2

IA

IA

Hence

(6.3)

wl =

T2 F1(p)| < 2I7?p| < 2(|72qj| + 1) <
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In the remaining casey € Ao, but p ¢ A2(q;;r) for any j, in which
case|w?p| > (1/8) —r. Letq € Ap such thatp € A?(q; r), and choosé
so thaty, = Im 7'q.

Suppose first thaty, = Re w'p satisfiesf(x) = C for |x — Xg| < 8.
Sincelyo — | < r = ¢/2, we have by Lemma 6.3 and choiceecdndh
that

Reh(r'p) > Reg(x'p) — log(4/3)
>C — & — log(4/3)
76
> log 16
Hence
|7?Fi(p)| > 16/7%p| > 16((1/8) —r) > 1. (6.4)

Otherwise, fy(x) = 0 for somex with |x — Xg| < 8, S0 there existg
such thatz'p — =lqj| < (1/8) + 8 +r, hence

I7'q — 7'gj| < (1/8) + 8+ 2r < 1/4.

Sinceq andq; are distinct points of\o, we haveq—q;| > 1 by assumption,
so|n?q — 7?q;|> > 1 — (1/4)?, and hence

B
o1
(el o

7*al = rfa — 7| — Iy = == -
and
72pl > 22— >
—_— —_— 4'
SinceRe g(rlp) > 0 by Lemma 6.3, we havBe h(zlp) > —log(4/3),
and hence

3 9
I72F1i(p)| > Z'”zp' > 16 (6.5)

From (6.3), (6.4) and (6.5), we conclude thatife Ag,, then either
|m?F1(p)| < 1/3 or |[w?F1(p)| > 9/16. In particular,

. 1 1
d|st(F1(AQ,r), C x {§}> > 1_6
Note also thatr'F;(p) = n'pfor all p € C2.

Tofinish the proof, we will construdt, similar toF; so that~, (F1(Aq,))
is contained inC? \ V, whereV is as in Lemma 6.4.
First note that foz = x +iy € S, we havely — x| < €, S0

Re[(z—in)?+ (Iml + DN+ 1+ €] = X2+ (Il + &2+ 1> 0. (6.6)
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Hence we can choose a branch of log so that
02(2) = log((z = in)* + (Ind +N*+ 1+ €) +1+1og1l6  (6.7)

is holomorphic onu,S<. Again by Arakelian’s Theorem, there exists
entire such that iz € Sg/z, then|gx(2) — ha(2)] < 1, soRe hy(2) >
Regy(z) — 1. Let

1
F(z, w) = (z, (w — 5) exp(hz(z))) .

Again, F, : C? — C? is biholomorphic. Moreover, ip € F1(Ag,), then
|72p— 3| > 1/16, andrp = z = x + iy with |y — y| < r for somek, so
by (6.6) and (6.7), we have

1
|m2Fa(p)| > |7?p— 5| expRehz(2)

1
z 7g PReq(2) - 1)

> X2+ (Ind + 0% +1
> 1+ |7tp|?
> 1+ |7t Fa(p) %

HenceF,Fi(Ao;) NV = @, whereV 2 &(C?) is as in Lemma 6.4,
so takingF = F;*F,'® gives an injective holomorphic map : C? —
FriF,H(V) € €2\ Ao, as desired. o

6.3 The general case of complements of small open balls

It is now easy to deduce the following corollary from Theorem 6.1.

Corollary 6.5 Let X be bimeromorphic to a compact complex torus or
to a Kummer K3 surface. Then, given any finite set of pointX,irthe
complement of a neighborhood of this set is dominabl&%yn particular,
such a complement is not measure hyperbolic.

The case of elliptic fibrations ové®t! or over an elliptic curve can be
handled in the same way as that of Theorem 6.1. This is because removing
a finite number of small open balls (plus a smooth fiber away from them
if the base isP?!) is tantamount to removing via the Jacobian fibration
a discrete set of contractible open set§€frbounded away from the axis by
fixed constants and whose projection to the first fa€tas also a discrete
set of contractible open subsets@fSee also Theorem 2.3 in [Bu].
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