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Abstract

Sparse grid interpolation is widely used to provide good approximations to
smooth functions in high dimensions based on relatively few function eval-
uations. By using an efficient conversion from the interpolating polynomial
provided by evaluations on a sparse grid to a representation in terms of
orthogonal polynomials (gPC representation), we show how to use these
relatively few function evaluations to estimate several types of sensitivity
coefficients and to provide estimates on local minima and maxima. First,
we provide a good estimate of the variance-based sensitivity coefficients of
Sobol’ [1] and then use the gradient of the gPC representation to give good
approximations to the derivative-based sensitivity coefficients described by
Kucherenko and Sobol’ [2]. Finally, we use the package HOM4PS-2.0 [3] to
determine the critical points of the interpolating polynomial and use these
to determine the local minima and maxima of this polynomial.

Keywords: Sparse grid, polynomial interpolation, stochastic collocation,
polynomial chaos, sensitivity analysis, optimization

1. Introduction

A common task in fitting a model to data is to find parameters p =
(p1, . . . , pn) to minimize some cost function, C(p), often a sum of squared
differences between model output and experimental data. This is a partic-
ularly difficult task when the dimensionality of the parameter space is large
and the dependence of C on p is nonlinear. One approach to this problem
is to sample the function at some set of points and try to estimate relevant
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quantities, such as various types of sensitivity coefficients and the location of
local minima, from this sample. Often, these samples are used to construct
a simpler model (e.g., linear, polynomial, sum of Gaussians, etc.) that may
be used to approximate the original model in a computationally inexpensive
way. Such approximate models are described with various terms, including
metamodels, surrogate models, response surfaces and model emulators. In
settings in which the sampling points are given in advance, common ap-
proaches include RS-HDMR, cut-HDMR, ANOVA decomposition, kriging,
and moving least squares. In settings in which the sampling points may be
chosen at will, two common approaches are sparse grid interpolation and
generalized polynomial chaos (gPC) using cubature1. In this paper we focus
on these last two metamodels, the relationship between them, and their ap-
plication to computing global sensitivity coefficients and global maxima and
minima.

More precisely, sensitivity methods can be divided into global (the fo-
cus in this paper) and local, while global methods can in turn be divided
into screening methods, non-parametric methods, variance-based methods,
and moment-independent or density based methods. The classic paper on
screening methods is [4], which details a method for sampling model outputs
over a high-dimensional input space in order to estimate the mean and vari-
ance of partial derivatives of the output with respect to each input. A num-
ber of non-parametric approaches for global SA, including locally weighted
regression, additive models, projection pursuit regression, and recursive par-
titioning regression are detailed in [5]. Further non-parametric methods,
along with a description for using these methods to estimate values and con-
fidence intervals for variance-based sensitivity coefficients are given in [6].
An overview of global SA methods is provided in [7], which also introduces
a new, moment-independent importance measure; this measure is discussed
also in [8]. Many global SA methods are discussed in [9]. In terms of other
metamodels, an overview of Kriging and discussion of bootstrapping to esti-
mate the variance in the Kriging predictor is given in [10]. A discussion of
gPC and its application to computing sensitivity coefficients appears in both
[11] and [12].

Another approach to constructing a polynomial metamodel is sparse grid

1Abbreviations in the text: generalized polynomial chaos (gPC), Monte Carlo (MC),
Chebyshev-Gauss-Lobatto (CGL)
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interpolation, which has been used widely in recent years as a means of pro-
viding a reasonable approximation to a smooth function, f , defined on a hy-
percube in Rn, based on relatively few function evaluations [13]. This method
produces a polynomial interpolant using Lagrange interpolating polynomi-
als based on function values at points in a union of product grids of small
dimension [14, 15]. However, for many purposes, there are computational
advantages to a representation in terms of orthogonal polynomials; such a
representation is also known as a generalized polynomial chaos (gPC) repre-
sentation. Most relevant for the discussion here is the efficient calculation of
the Sobol’ sensitivity coefficients of a polynomial in gPC form.

In this paper we start with the efficient conversion from an interpolating
polynomial in Lagrange form to the gPC form as described in [16]. We com-
bine this with the efficient calculation of the Sobol’ sensitivity coefficients
of [12] and [11] to produce an efficient algorithm for estimating these coef-
ficients using a relatively small number of function evaluations. As seen in
numerical examples, this method is both accurate and efficient for smooth
functions when compared with other approaches for estimating these values.
We also show how to use the gPC representation to estimate two derivative-
based sensitivity measures discussed in [2]. Finally, we discuss the use of
polynomial homotopy methods for finding the critical points of the interpo-
lating polynomial [3]. In cases in which the global maximum or minimum
does not lie on the boundary of the interpolating hypercube, this allows us
to find the global minimum or maximum (within the hypercube) directly. In
addition to these applications, we note that sparse grid interpolation likely
has applications in the context of other global SA methods as well. We leave
this as a topic for future research.

This research is partially supported under NSF grant DMS-0900277. The
NSF had no role in the completion of this work or in manuscript preparation.

2. Theory

In this section we provide further background on sparse grid interpolation,
generalized polynomial chaos, and sensitivity analysis.

2.1. Sparse grid interpolation and polynomial chaos

In one variable, Lagrange interpolation proceeds by selecting a set of
points, x1, . . . , xn and degree n− 1 polynomials Lj so that Lj is 1 at xj and
0 at xk for k 6= j. Given function values f(xj), we obtain an interpolating
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polynomial that agrees with f at each xj by taking P (x) =
∑n

j=1 f(xj)Lj(x).
For a well-chosen set of points, such as the Chebyshev-Gauss-Lobatto (CGL)
points, and for smooth f , the resulting polynomials converge to f quite
rapidly as the number of interpolating points is increased [14]. The simplest
generalization of this to d dimensions is to use a full product grid obtained
from the product of d one-dimensional interpolating sets, with Lagrange poly-
nomials obtained by taking products of the one-dimensional Lagrange poly-
nomials. However, since the resulting number of points is exponential in d,
this method is not practical for anything but small d. As described in [14]
and elsewhere, Smolyak [15] devised a method in which the interpolating
points in a hypercube, [0, 1]d, in d dimensions are obtained as a union of
smaller product grids. Examples of full and sparse grids in two dimensions
appear in Figure 1. In the sparse grid, the dotted points show the locations
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Figure 1: Full and sparse grids in 2 dimensions using CGL points. Left: The full grid is
obtained as a product of the points along the coordinate axes in the sparse grid. Right:
The dotted points show the entire sparse grid of nesting depth 4, while the circled points
show one of the component product subgrids.

of all the points in the sparse grid, while the circled points show the points
in one product subgrid. This example shows that using sparse grid points,
the function is sampled heavily along the coordinate axes, then somewhat
less near corners and boundaries, and even less in the interior. With these
values, we can again represent f as a sum of products of one variable La-
grange polynomials. On each of the smaller product grids in the sparse grid,
this is a simple tensorization of the one-dimensional Lagrange representation
given above. The contributions for different subgrids are then summed with
appropriate weights to produce the interpolating polynomial on the entire
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sparse grid. The use of a nested sequence of points in one dimension, such
as appropriate subsets of CGL points, implies that the good convergence
properties of interpolation in one dimension carry over to higher dimensions.
Details of the sparse grid construction and precise estimates on the rate of
convergence may be found in [14]. With appropriate modifications, sparse
grid interpolation may also be performed on hypercubes in which some of
the sides are unbounded [16].

In the gPC representation of f , the function is still represented as the
sum of products of polynomials in one variable, but now the underlying one
dimensional polynomials are orthogonal in the weighted L2 sense. That is,
over some fixed interval, I, in the real line, and with some fixed positive
weight function w(x), they satisfy

∫
I
Pj(x)Pk(x)w(x)dx = δjk. A common

example is the Legendre polynomials, which are orthogonal over the interval
[−1, 1] using the weight function w(x) = 1. The weight function often corre-
sponds to a probability distribution. More details may be found in [13] and
[12].

2.2. Sensitivity analysis

As described in [1, 17] and elsewhere, a useful decomposition of a function
f(x) = f(x1, . . . , xn) defined on a hypercube in Rn is to write it as a normal-
ized sum of functions that depend on a specified subset of the variables:

f(x) = f0 +
n∑
i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + · · ·+ f12...n(x1, . . . , xn),

with a (weighted) orthogonality condition imposed on pairs of functions in
this decomposition and a 0 mean condition in each variable separately im-
posed on each function individually. In various contexts this decomposition
is known as the Sobol’ decomposition, the ANOVA decomposition, or the
HDMR representation of f . As described in [17, 12], one method for achiev-
ing this decomposition is by expanding f in terms of a basis of tensored one-
dimensional orthogonal polynomials. As noted above, such a representation
is also known as a gPC expansion of f . A gPC representation is essentially a
refinement of the above decomposition in which each component function in
the sum above is written as a sum of a product of one-dimensional orthog-
onal polynomials. The gPC expansion in terms of several different families
of orthogonal polynomials (corresponding to different weight functions) is
discussed in detail in [18].
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2.2.1. Variance-based sensitivity coefficients

As seen in [1], the Sobol’ decomposition gives rise to variance-based global
sensitivity coefficients. Let Hn denote the hypercube [0, 1]n and assume that
the decomposition above takes place on this set. For a function, g, on this
set, define the variance of g to be

D(g) =

∫
Hn

g2(x)dx−
(∫

Hn

g(x)dx

)2

.

In terms of the Sobol’ decomposition given above, the Main Effect sensitivity
coefficient for xj is Sj = D(fj)/D(f). This is generalized to interaction
coefficients, SM by replacing fj by fM , where M is any subset of {1, . . . , n}.
Also, the Total Effect sensitivity coefficient STj is the sum of SM over all M
containing j.

A variety of approaches to the estimation of Sj and STj have been given
in the literature. Since the coefficients are obtained from integrals, Sobol’
[1] suggested the use of Monte Carlo (MC) or quasi Monte Carlo methods.
The MC method has the advantage that the rate of convergence, which is
O(1/

√
N), where N is the number of function evaluations, is independent of

dimension. However, this rate is fairly slow. Quasi-MC methods, in which
sampling is deterministic but still retains some features of randomness, can
improve this rate toO((log n)d/N), as seen in Kucherenko, et al. [19]. Both of
these methods work well, particularly when the function under consideration
is not smooth, such as the g-function of Sobol’ and other functions with
absolute values. Saltelli, et al. [20], describe the Extended FAST method
and show that it has some advantages relative to the original method of
Sobol’.

When f is Cm smooth (has continuous derivatives up to order m), then
other methods may yield faster convergence to the sensitivity coefficients.
Crestaux, et al. [12], show that all of the coefficients SM may be computed
very efficiently based on the gPC expansion of f . The computation of SM is
essentially the computation of the square of the (weighted) L2 norm of fM .
Since fM is obtained as a sum of gPC polynomials that are orthogonal in
this L2 sense, the L2 norm squared of fM is simply the sum of squares of
the coefficients of fM in its gPC expansion. Since the gPC expansion may
be obtained from a cubature rule (a method for approximating the integral
of a function over a hypercube based on specified evaluation points), the
convergence of the coefficients is directly related to the convergence of the
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cubature rule, which is typically O((logN)dm/Nm) for Cm functions (the
exponent of logN is not quite precise but is correct in spirit). However, the
cubature rules with the best rates of convergence are not nested. That is,
the evaluation points used in a cubature rule of one level of accuracy are not
contained in a cubature rule of a higher level of accuracy. This is evident,
for instance, in the Gaussian quadrature nodes in one variable.

Sparse grid interpolation provides an alternative to more general cubature
rules since the resulting interpolating polynomial may be integrated directly
to estimate the integral of the original function. In [21], sparse grid interpo-
lation using nested evaluation points was used to estimate the coefficients Sj
and STj . It was shown there that the convergence rate of this method is es-
sentially the rate shown above for cubature. Additionally, numerical results
indicate that this method converges significantly more quickly than some
quasi-MC methods or Extended FAST when f is smooth. Additionally, the
nested property of the sparse grids implies that we may reuse existing func-
tion evaluations when adding more points for a more accurate estimate of
the sensitivity coefficients. A drawback of the method in [21] is that compu-
tation of the interaction effects is difficult relative to the computation using
the gPC expansion.

Buzzard [16] gives an efficient algorithm for conversion from the sparse
grid interpolating polynomial in Lagrange form to the gPC form of the same
polynomial. By combining this algorithm with Crestaux et al.’s method for
computing SM from the gPC representation, we obtain an efficient, accurate
method for estimating all the values SM and STj for smooth functions. This
method allows for refinement of these estimates by adding points systemati-
cally. As seen in Section 3, this method compares favorably with quasi-MC
and Extended FAST when the underlying function is sufficiently smooth.

2.2.2. Derivative-based sensitivity coefficients

As described by Campolongo, Cariboni, and Saltelli [22] and further de-
veloped by Sobol’ and Kucherenko [2], an alternative to variance-based sen-
sitivity measures is to consider sensitivity coefficients based on the value of
the partial derivatives ∂f/∂xj. For f defined on the unit hypercube, Hn, the
coefficient introduced in [22] is shown in [2] to be an approximation to

µi =

∫
Hn

∣∣∣∣ ∂f∂xi
∣∣∣∣ dx.
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As an alternative, Sobol’ and Kucherenko [2] also define

νi =

∫
Hn

(
∂f

∂xi

)2

dx

and show that µi ≤
√
νi, that νi ≤ Cµi if |∂f/∂xi| ≤ C, and that STi ≤

νi/(π
2D), where D is the total variance of f . Since µi is the L1-norm of

∂f/∂xi and νi is the square of the L2-norm of ∂f/∂xi, we refer to these as
the L1 and L2 derivative sensitivity coefficients, respectively.

It was shown in [19] that quasi-MC integration methods based on Sobol’
sequences provide an efficient method for estimating µi and νi and that con-
vergence with quasi-MC is much faster in these cases than for estimation of
the Sobol’ sensitivity indices.

On the other hand, the gPC representation of the interpolating polyno-
mial for f provides an alternative method for estimating µi and νi. That
is, the gPC representation may be differentiated directly to yield a gPC ap-
proximation, gi, to ∂f/∂xi. In the case of νi, we may compute the square
of the L2-norm of gi immediately be taking the (weighted) sum of squares
of the coefficients in the gPC expansion. This gives an efficient and accu-
rate method to estimate νi. In the case of µi, the presence of the absolute
value means that µi requires the integration of a function which is continu-
ous but generally not differentiable throughout the hypercube. In this case,
we may integrate |gi| using cubature methods, but the convergence is likely
to be slower relative to the convergence for νi or even the variance-based
coefficients. In the next section we compare these method for estimating
the derivative-based sensitivity coefficients and find that the gPC approach
compares favorably with quasi-MC even for computing µi.

3. Results and Discussion

In this section we provide results of numerical experiments using the
methods described in the previous section. All computations were performed
in Matlab on a Dell Precision PWS690 with an Intel Xeon running at 3GHz
with 3GB of RAM.

We used the test functions labeled OSCILLATORY (F1) and GAUSSIAN
(F2) in [14],

F1(x) = cos

(
2πw1 +

d∑
i=1

cixi

)
, F2(x) = exp

(
−

n∑
i=1

c2i (xi − wi)2
)
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Figure 2: Main and total effect errors for the function OSCILLATORY. The sensitivity
coefficients for each dimension were calculated using each of the sparse grid method, quasi-
MC using the Sobol’ sequence, extended FAST, and analytically. The errors shown are
the mean over the 10 coordinate dimensions.

where ci and wi were chosen at random as indicated in [14] and the dimen-
sion, d, was fixed at 10. The domain of definition for both functions is [0, 1]d.
These test functions were proposed originally in [23]. Other choices of smooth
test functions gave results similar to those shown here. The sparse grid for
a given depth was created using the Matlab package spinterp, version 5.1.1
[24]. The resulting functional values were then used as input to the algorithm
described in [16] for conversion to gPC form using Legendre polynomials as
basis. The variance-based sensitivity coefficients were then computed as de-
scribed in [12], while the derivative-based coefficients were computed by first
taking the gradient and then approximating the appropriate integral. For
the calculations involving quasi-MC methods, we used the academic version
of the Sobol’ sequence generator available from the British-Russian Offshore
Development Agency (BRODA) [25]. For the calculations involving extended
FAST, we used the implementation in SimLab 3 [26].

3.1. Variance-based sensitivity coefficients

We estimated the main and total effect Sobol’ sensitivity coefficients using
4 different methods: quasi-MC, extended FAST, the sparse grid/gPC method
given here, and analytically using Mathematica. Using the analytic values
as the reference, we computed the mean error taken over the 10 dimensions.
As seen in Figure 2, the sparse grid method displayed considerably better
accuracy and faster convergence for the test function F1 than either quasi-
MC or extended FAST. In Figure 3, we plot selected values of the main effect
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Figure 3: Selected main effect values for the function OSCILLATORY. Sensitivity coeffi-
cients for the indicated coordinate dimensions were calculated using each of the sparse grid
method, quasi-MC using the Sobol’ sequence, and extended FAST. While each method
converges to correct values, the sparse grid method displays more robost ordering of sen-
sitivities for a small number of function evaluations.

coefficients Sj for F1 using the first 3 methods above. Here we see that not
only is the error smallest for the sparse grid method, but also the ordering
of the values is consistent, even for a small number of functions evaluations.
The convergence results for interaction effects and for the function F2 were
very similar and are not shown here.
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Figure 4: Error in L2 derivative coefficients for the functions OSCILLATORY and GAUS-
SIAN. The sensitivity coefficients for each dimension were calculated using the sparse grid
method, quasi-MC, and analytically. The errors shown are the mean over the 10 coordinate
dimensions.
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3.2. Derivative-based sensitivity coefficients

We estimated the L2 derivative sensitivity coefficients νi using 3 different
methods: quasi-MC with a finite difference approximation to the derivatives,
sparse grid/gPC, and analytically using Mathematica. Again using the an-
alytic values as reference, we computed the mean error taken over the 10
dimensions. As seen in Figure 4, the quasi-MC and sparse grid/gPC meth-
ods were very comparable for a relatively small number of function evalua-
tions, with somewhat better accuracy in the sparse grid method for a larger
number of evaluations. The fact that these 2 methods are comparable for
this problem is consistent with the result mentioned earlier that quasi-MC
converges faster for νi than for the Sobol’ sensitivity coefficients, together
with the fact that the error in the derivative of an interpolating function is
typically larger than the error in the function itself.
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Figure 5: Error in L1 derivative coefficients for the functions OSCILLATORY and GAUS-
SIAN. The sensitivity coefficients for each dimension were calculated using the sparse grid
method, quasi-MC, and quasi-MC with 6×105 evaluations as reference. The errors shown
are the mean over the 10 coordinate dimensions.

For the L1 derivative sensitivity coefficients µi, no analytic solution is
available. Hence we estimated these coefficients using the sparse grid/gPC
method and using quasi-MC. To provide an estimate of the error, we also
estimated these coefficients using quasi-MC with more than 600, 000 function
evaluations and used the resulting values as reference values. As seen in Fig-
ure 5, in this case quasi-MC did as well as or better than sparse grid/gPC.
This is consistent with the fact that the sparse grid method has much better
convergence for smooth functions than functions with absolute values, such
as found in the calculation of µi. Nevertheless, sparse grid/gPC is reason-
ably competitive with quasi-MC. Additionally, Figures 6 and 7 show selected
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Figure 6: Selected values of the L1 derivative coefficients for the function OSCILLATORY.
The sensitivity coefficients for the indicated dimension were calculated using the sparse grid
method and quasi-MC. Here quasi-MC displays a faster, monotone convergence compared
to the sparse grid method.

values of µi for these two functions and two methods. Here we see as in the
case of the variance based coefficients that even for a small number of func-
tion evaluations and relatively large error, the estimates provided by sparse
grid/gPC have the correct ordering.

3.3. Genetic toggle

A more realistic example is given by the dynamics of a genetic toggle
switch, which was developed in [27] and considered numerically in [28] and
[29]. Biologically, the dynamics are determined by two mutually inhibitory
promotors. Each promotor transcribes a repressor for the other, and either
repressor may be induced by an external chemical signal. Following [27], this
behavior is modeled as a differential-algebraic equation

u̇ =
α1

1 + vβ
− u

v̇ =
α2

1 + wγ
− v

w =
u

(1 + [IPTG]/K)η
.

Here u and v are the concentrations of the two repressors, α1 and α2 are
the effective rates of synthesis of the repressors, and γ and β describe the
cooperativity of repression of the two promotors. IPTG is the chemical com-
pound that induces the switch, while K and η describe the binding of IPTG
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Figure 7: Selected values of the L1 derivative coefficients for the function GAUSSIAN. The
sensitivity coefficients for the indicated dimension were calculated using the sparse grid
method and quasi-MC. Here quasi-MC and the sparse grid method appear to converge at
roughly the same rate.

with the first repressor. The quantity of interest is the steady-state value
of v, which is near 0 for low values of [IPTG] and in the range of 12 to 18
for high values of [IPTG]. The concentration at which the switch takes place
depends on the values of the 6 parameters (α1, α2, β, γ, η,K). Following [29],
we assume uniform, independent distributions for each parameter, centered
at the nominal values given by [27]. That is, the bounds for parameter i are
given by θ̄i(1± ζi), with

θ̄ = (156.25, 15.6, 2.5, 1, 2.0015, 2.9618× 10−5),

ζ = (0.20, 0.15, 0.15, 0.15, 0.30, 0.20).

We take [IPTG] = 5.012 × 10−5, which is on the ’high’ side, but not far
from the switch point for the nominal values. As seen in Figure 8, the
sparse grid and quasi-MC methods produce nearly the same estimates for
the main effect coefficients. Interestingly, the sparse grid method appears not
to have converged with the given number of points. This may be explained
by examining Figure 9, which shows the function values obtained at the
final level for each of the two methods. The sparse grid method samples
more heavily from the boundaries than does quasi-MC; in this case there is
a small region near the boundary in parameter space for which this value of
[IPTG] is on the ’low’ side. Two such points are found by the sparse grid
method (shown by the isolated dot near 0 in Figure 9), and in general, this
method produced many more samples heading down this ’cliff’ (values near
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Figure 8: Selected main effect values for the genetic toggle. Sensitivity coefficients for
the indicated coordinate dimensions were calculated using the sparse grid method and
quasi-MC using the Sobol’ sequence.

8) than did quasi-MC.
We note here that when [IPTG] is set at or very near the switch point

for the nominal values, then the sparse grid method does not perform well.
In this case, the output function is nearly discontinuous with low values on
one side of a co-dimension submanifold of parameter space and high values
on the other side. The sparse grid approximation to such a function is not
accurate because such a function cannot be well-approximated by low-degree
polynomials. Moreover, an approximation by high degree polynomials will
have high-frequency oscillations, making estimates of the derivative unreli-
able. On the other hand, quasi-MC estimations of µi and νi are also not
likely to be reliable in this setting, since most samples will miss the small
region of parameter space in which derivatives are large, and finite difference
approximations of derivatives are likely to have large errors. In the end, no
method applies in all settings, and agreement of results from multiple meth-
ods is perhaps the most reliable way to be confident that calculated values
are close to the true values.

3.4. Homotopy optimization

Finally, we note that the gPC representation derived from the sparse grid
interpolating polynomial has many uses beyond the estimation of sensitivity
coefficients. In some sense, the interpolating polynomial may be used as a
surrogate for the original function. As one example, if P is a polynomial that
closely approximates f , then by finding the minima and maxima of P , we may
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Figure 9: Sorted function values obtained for each method. Note the value near 0 obtained
by the sparse grid method.

approximate the minima and maxima of f . Of course, the approximation
of f by orthogonal polynomials often leads to spurious local maxima and
minima in the same way that approximation of a function in one variable
by a truncated Fourier series leads to high frequency artifacts. Even so, the
local minima and maxima of f will be approximated by some local minima
and maxima of P . Hence with no prior knowledge of the function f , we
may evaluate f on a sparse grid, convert to gPC representation to obtain
a polynomial P , calculate ∇P , and find the roots of ∇P = 0 to determine
candidates for the local minima and maxima of f . The package HOM4PS-2.0
[3] provides an efficient homotopy method for solving ∇P = 0.

As an illustration of this method, we used a test function in 2 dimensions
defined by selecting 3 points, x1, x2, x3 at random in H2 and setting

f(x) =
3∑
j=1

exp

(
−1

30‖Ax− xj‖2 + 0.15

)
,

where A is anisotropic scaling followed by rotation. We evaluated this func-
tion on a sparse grid with 65 points, converted to gPC form, took the gra-
dient, and used HOM4PS-2.0 to determine the critical points. As seen in
Figure 10, the interpolating function not only captures the broad outline of
the original function, but also produces a very close approximation to the 3
local minima of the original function.

15



−1 −0.5 0 0.5 1−1

0

1

2

2.2

2.4

2.6

2.8

3
Original function

x
y −1 −0.5 0 0.5 1

−1

0

1

2

2.2

2.4

2.6

2.8

3

x

Interpolated function with critical points (o)

y
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4. Conclusion

We have demonstrated that sparse grid interpolation followed by conver-
sion to a gPC representation provides an efficient and accurate method for
estimating variance-based sensitivity coefficients (including main effect, to-
tal effect, and interaction effect coefficients) and derivative-based sensitivity
coefficients (including L1 and L2 derivative sensitivity coefficients) for the
case of a smooth function. This method provides estimates for all of these
coefficients based on function evaluations at a specified set of sparse grid
points. Moreover, these estimates have known, good convergence rates that
are relatively insensitive to the number of dimensions. We showed numer-
ically that this method gives good estimates even with a relatively small
number of points and that it converges faster than quasi-MC and Extended
FAST when computing variance-based coefficients. The method given here
also converges at a rate comparable to quasi-MC for the derivative-based
sensitivity coefficients. Finally, we showed that the gPC representation may
be combined with homotopy root finding methods to identify critical points
and hence all local maxima and minima of the interpolating polynomial.
This provides a useful method for estimating the minima and maxima of the
original function. Given the wide range of applications from a single set of
function evaluations, the combination of sparse grid interpolation and gPC
representation provides a powerful method for exploring the behavior of a
smooth function.
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