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1 Introduction

In this paper we examine some questions related to holomorphic vector fields on C2 and their
associated time-1 maps. We say that a holomorphic vector field on C2 is complete if it is
integrable for all complex values of time. By [F1], this is equivalent to being integrable for
all real values of time.

Note that any time-1 map of a complete holomorphic vector field is an automorphism of
C2, i.e. a holomorphic diffeomorphism of C2. We denote the space of such maps by Aut(C2)
and endow it with the topology of uniform convergence on compacts applied both to the
map and its inverse.

In this paper we show that there is an open dense subset S of Aut(C2) such that each
element of S is not the time-1 map for any complete holomorphic vector field on C2. We also
give a precise classification of those polynomial automorphisms of C2 which are the time-1
map of a complete holomorphic vector field.

Along other lines we give examples of holomorphic vector fields in C2 which cannot be
approximated by complete holomorphic vector fields and noncomplete vector fields which
can be approximated by complete ones.

2 Background

In this section we provide some background on the ideas of complete holomorphic vector
fields.
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A time independent holomorphic vector field X on C2 is simply a holomorphic map
X = (X1, X2) : C2 → C2, where we identify X with the vector field X1∂/∂z+X2∂/∂w. The
flow of X is a map φ which is a solution of the ordinary differential equation

d

ds
φs(p)|s=t = X(φt(p)), φ0(p) = p.

It is standard [H] that for each p ∈ C2, the solution φt exists for t in some neighborhood of
the origin in C, is unique, and is holomorphic in (t, p). Moreover, such φ satisfies the group
property φsφt = φs+t for s and t near 0.

If φ1(p) and φ−1(p) are defined for all p ∈ C2, then we see at once that X is complete in
real time, hence in complex time by [F1]. In such a case, φ1 is an automorphism of C2, and
we say that φ1 is the time-1 map of X.

Fixing p, we can think of φt(p) as an analytic map from a neighborhood of the origin in
C to C2, and we can extend the domain of definition of φt(p) in the time plane using analytic
continuation along paths starting at the origin. The maximal domain of definition is then
a Riemann surface, Rp, spread over C and is multiply sheeted in general. For more details
and further results, see [F1].

3 Automorphisms as time-1 maps

In this section we collect some results about the set of automorphisms which can arise as
the time-1 map of a holomorphic vector field.

We say that a point p is periodic of minimal period d for a map F if F d(p) = p but
F k(p) 6= p for d ∈ {1, . . . , d− 1}.

The following proposition is a simple consequence of well-known ideas and applies in the
differentiable case as well. We include the proof for completeness.

PROPOSITION 3.1 Let F be an automorphism of C2 and suppose that F has a periodic
point p of minimal period d ≥ 2 which is isolated in the set of periodic points of period d.
Then F is not the time-1 map of a time independent holomorphic vector on C2.

Proof: Suppose that F is the time-1 map of a holomorphic vector field X, and let φt be
the associated flow. Since p has period d and φd = F d, we see that φd(p) = p, and hence
φt(p) describes a closed curve for t ∈ [0, d]. Since φ1(p) 6= p by assumption, this curve is
nondegenerate.

Now by the group property, for any t ∈ [0, d] we have φdφt(p) = φtφd(p) = φt(p). Hence
each φt(p) is a periodic point of period d, which contradicts the fact that p is isolated in the
set of periodic points of period d. Thus F cannot be the time-1 map of a holomorphic vector
field.

We say that a periodic point p of minimal period d for a map F is hyperbolic if none of
the eigenvalues of (DF d)(p) has modulus 1. By the inverse function theorem, such a point
is always isolated in the set of periodic points of period d.

For notation, let B(0;R) denote the ball of radius R centered at 0 in C2.
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THEOREM 3.2 There is an open dense subset S ⊆ Aut(C2) such that no element of S is
the time-1 map of a holomorphic vector field on C2.

Proof: We let S be the set of automorphisms of C2 which have a hyperbolic periodic
point of minimal period 2. By the implicit function theorem, hyperbolic periodic points
are persistent under small perturbations of the map, so S is open, and from the previous
proposition we see that no element of S is the time-1 map of a holomorphic vector field on
C2.

It remains to show that S is dense. Let F ∈ Aut(C2) with F 6≡ I, and let R, ε, δ > 0.
Since the set of fixed points of F is an analytic set of dimension at most 1, we can choose
a point p ∈ C2 − (B(0; 3R) ∪ F−1(B(0; 3R)) ∪ F (B(0; 3R))) such that p 6= F (p). Using
techniques like those in [RR, corollary 1.3], we can find Ψ ∈ Aut(C2) such that Ψ(p) = p,
Ψ(F (p)) = F−1(p), and such that Ψ is within δ of the identity on B(0; 2R). Then p is
a periodic point of minimal period 2 for the map ΨF , and using [B, lemma 2.6], we can
find Φ ∈ Aut(C2) arbitrarily near the identity such that p is a hyperbolic periodic point of
minimal period 2 for ΦΨF .

For δ small and Φ near the identity, we see that ΦΨF and (ΦΨF )−1 will be near F and
F−1, respectively, on B(0;R). Since ΦΨF ∈ S, we see that S is dense.

In the case of polynomial automorphisms, that is, automorphisms such that each coor-
dinate function is a polynomial, we can give a precise description of those maps which can
be the time-1 map of a holomorphic vector field.

From [FM], we know that a polynomial automorphism of C2 is conjugate either to an
affine linear map, an elementary map preserving sets of the form w = const, or to a gener-
alized Hénon map. In the following theorem we show that a polynomial automorphism of
C2 which is the time-1 map of a holomorphic vector field must be conjugate to one of a few
types of elementary maps.

THEOREM 3.3 Let F be a polynomial automorphism of C2, and suppose that F is the
time-1 map of a vector field X on C2. Then F is conjugate via a polynomial automorphism
to one of the following maps.

(a) (z, w) 7→ (αz, βw)

(b) (z, w) 7→ (αz, w + 1)

(c) (z, w) 7→ (βd(z + wd), βw), d ≥ 1

(d) (z, w) 7→ (z + wµq(w), w),

where in each case α, β 6= 0, and in case (d), µ is a nonnegative integer and q(w) = wk +
qk−1w

k−1 + · · · + q1w + 1 with k ≥ 1 and qk−1 = 0 if k ≥ 2. Moreover, each of these maps
can be realized as the time-1 map of a flow φ such that φt is a polynomial automorphism of
C2 for all t.

Proof: Suppose F is not conjugate to an affine or elementary map. Then by [FM], F is
cyclically reduced, and hence has dynamical degree d ≥ 2 in the sense of [BLS].
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For n ≥ 1, let Fixn denote the set of fixed points of F n, and let Pern be the set of points
in Fixn which are not in Fixj for j < n. By [FM], we have #Fixn ≤ dn, and by [BLS], we
have

lim
n→∞

1

dn
#Pern = 1.

In particular, we can choose p ∈ Perd for some d ≥ 2, in which case p is isolated in the
set of fixed points of period d since there are only finitely many such points. Hence by
proposition 3.1 we see that F is not the time-1 map of a holomorphic vector field.

In the remaining cases, F is either an affine linear map or conjugate to an elementary
map. If F is affine, we may use a linear change of coordinates to make DF upper triangular,
so we see that F is conjugate to an elementary map in this case also. Hence by [FM], F is
conjugate either to one of the maps in (a) - (c), or to

(d′) (z, w) 7→ (βµ(z + wµq(wr)), βw),

where µ is a nonnegative integer, β is a primitive rth root of unity, and q(w) = wk +
qk−1w

k−1 + · · · q1w + 1. Here k ≥ 1, and qk−1 = 0 if β = r = 1 and k ≥ 2. By [BM], the
maps in (a) - (d) can all be realized as the time-1 map of a flow on C2 as in the statement
of the theorem, so all that remains is to show that (d′) cannot be realized as a time-1 map
if r > 1.

Let F (z, w) = (βµ(z + wµq(wr)), βw), be as in (d′) with r > 1 and hence β 6= 1. Then
the fixed point set of F r(z, w) = (z + rwµq(wr), w) is the set of points of the form (z, wj),
where the wj ’s are the roots of rwµq(wr) = 0. Since q has a nonzero root, we may assume
w1 6= 0.

Suppose that F is the time-1 map of a vector field with flow φt. Using an argument like
that in proposition 3.1, we see that each point of the form φt(z, w1) for t ≥ 0 is a fixed point
for F r, hence is contained in one of the sets C × {wj} for each t. Since the wj’s form a
discrete set, we see that the set C× {w1} is invariant under φt, hence under F . But this is
impossible since βw1 6= w1. Thus F is not the time-1 map of a holomorphic vector field.

4 Approximability of vector fields by complete vector

fields

We say that a holomorphic vector field X can be approximated by complete holomorphic
vector fields if there is a sequence Xj of holomorphic vector fields converging to X uniformly
on compact sets in C2. In [F1], the question was raised as to whether every holomorphic
vector field on C2 can be approximated by complete ones.

In this section we give two examples showing that such approximation is not always
possible and provide some general obstructions to such approximation. We also give an
example of a noncomplete holomorphic vector field which is approximable by complete ones.

We say that a fixed point p of a vector field X is attracting if there is a neighborhood
U of p such that limt→+∞ φt(q) = p uniformly for all q ∈ U . The maximal domain with this
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property is called the basin of attraction of p. A fixed point p is a saddle point if (Dφ1)(p)
has one eigenvalue larger than 1 in modulus and one smaller than 1. In this case, there are
1-dimensional immersed complex submanifolds W s(p) and W u(p) defined by

W s(p) = {q ∈ C2 : lim
t→+∞

φt(q) = p}

W u(p) = {q ∈ C2 : lim
t→−∞

φt(q) = p},

where in each case we restrict to time values t ∈ R.
If X is complete, there is a bijective holomorphic map H : C → W s(p) with H(0) = p,

and likewise a map from C to W u(p). Moreover, if q is contained in the stable manifold of
p, then for s ∈ C, we have from the group property that

lim
t→+∞

φt(φs(q)) = φs( lim
t→+∞

φt(q))

= p,

where the last equality follows from φs(p) = p. Hence φs(q) ∈ W s(p) for all s ∈ C, and
analogous statements are true for the unstable manifold or for the basin of attraction of a
fixed point.

PROPOSITION 4.1 The vector field X = (z(z − 1),−w) cannot be approximated by
complete holomorphic vector fields on C2.

Proof: Note that the associated flow for initial value (z, w) has the form

φt(z, w) =

(
z

z + et(1− z) , e
−tw

)
.

Hence X has an attracting fixed point at (0, 0) and a saddle fixed point at (1, 0). In par-
ticular, for any z in the interval (0, 1), we see that φt(z, 0) is defined for all t ∈ R and
limt→+∞ φt(z, 0) = (0, 0) and limt→−∞ φt(z, 0) = (1, 0). Thus the unstable manifold for (1, 0)
intersects the basin of attraction for (0, 0).

By the stable manifold theorem, we see that for a holomorphic vector field Y sufficiently
near X, the flow of Y will have an attracting fixed point p1 near (0, 0) and a saddle fixed
point p2 near (1, 0), and the unstable manifold for p2 will intersect the basin of attraction
for p1.

Suppose now that Y is a complete holomorphic vector field near X with these properties,
and let ψt be the corresponding flow. Pick a point p contained in the basin of attraction of
p1 and in the unstable manifold of p2. Since Y is complete, there is an injective holomorphic
map H from C onto the unstable manifold of p2 sending 0 to p2. Since the set {φs(p) :
s ∈ C} is contained in the unstable manifold of p2 but does not include p2, we see that
H−1φt(p) is entire, nonzero, and nonconstant, hence maps onto C− {0}. Thus every point
of W u(p2)− {p2} is contained in {φs(p) : s ∈ C}, hence in the basin of attraction of p1.

Now, letting γ be the image of the unit circle under the map H , we see that if q ∈ γ,
then ‖φt(q)− p1‖ < ε for t sufficiently large and positive. By compactness, we can choose t
large enough so that this is true uniformly on γ. But then for ε sufficiently small, the map
φtH(z)− p1 will violate the maximum principle. Hence no such Y exists.
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We give a second example of a holomorphic vector field which is not approximable by
complete ones using methods which generalize to many holomorphic vector fields.

PROPOSITION 4.2 The vector field X = (z2, 0) is not approximable by complete holo-
morphic vector fields on C2.

Proof: Note that the flow of X is given by

φt(z, w) =

(
z

1− tz , w
)
.

In particular, for p = (1, 0), the maximal domain of definition of φt(p) is the domain Rp =
C − {1}. Let γ1 be the boundary of the disk centered at 1 with radius 1, and let γ2 be the
interval [0, 3/4] on the real axis. Given ε > 0, it is standard that if Y is a holomorphic vector
field sufficiently close to X, then the flow ψt(p) for Y will be defined for t ∈ γ1 ∪ γ2 and will
be within ε of φt(p) on that set.

For ε sufficiently small, we will have ‖ψ3/4(p)‖ > sup{ψt(p) : |1 − t| = 1}, and hence
ψt(p) cannot be holomorphic throughout the disk of radius 1 centered at 1 by the maximum
principle. Thus Y cannot be complete, so X is not approximable by complete holomorphic
vector fields.

Suppose X is a holomorphic vector field with flow φt. If the Riemann surface Rp is
multiply connected for some p ∈ C2, then we can choose arcs γ1, γ2 : [0, 1] → Rp such
that γ1(0) = γ2(0) = 0 and such that γ1(1) and γ2(1) project to the same point in C but
φγ1(1)(p) 6= φγ2(1)(p).

In this case, for ε > 0 and Y sufficiently close to X, the flow ψt(p) of Y can be extended
along the image of γj in C for j = 1, 2 and will be within ε of φt(p) there. For ε small we see
that ψt(p) is not single valued in C, and hence Y cannot be complete. Thus X cannot be
approximated by complete holomorphic vector fields.

Finally, if Rp is a multiply connected domain in the plane, then we can surround a com-
pact boundary component of Rp with a Jordan curve γ1 in Rp, then join γ1 to this compact
boundary component with an arc γ2 contained in Rp union the boundary component. Then
φt(p) must be unbounded along γ2 since otherwise we could extend it past the boundary of
Rp. Hence we can use the same argument as in proposition 4.2 to show that X cannot be
approximated by complete holomorphic vector fields on C2. Thus we obtain the following.

THEOREM 4.3 Suppose that X is a holomorphic vector field on C2 with associated flow
φt and that X is approximable by complete holomorphic vector fields. Then for each p ∈ C2,
the maximal domain of definition of φt(p) is a simply connected domain in the plane.

Using the same ideas, this theorem is proved in [F2] for holomorphic vector fields on
Stein manifolds. That paper also exhibits various classes of vector fields which cannot be
approximated by complete holomorphic vector field.

Given any holomorphic vector field X on C2 and R, ε > 0, we can find a vector field Y
which is within ε of X on the set B(0;R) and which has an unstable manifold for one fixed
point intersecting the basin of attraction for another fixed point as in proposition 4.1. In
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this case, Y cannot be approximated by complete holomorphic vector fields, so we see that
the set of nonapproximable holomorphic vector fields is dense in the space of all holomorphic
vector fields. Since the set of approximable ones is by definition the closure of the complete
vector fields, we obtain the following theorem.

THEOREM 4.4 The set of holomorphic vector fields on C2 which are not approximable by
complete holomorphic vector fields is an open dense subset of the space of all holomorphic
vector fields.

We conclude with an example of a holomorphic vector field which is not complete but
which is approximable by complete ones. In [F1], a vector field X is constructed by using a
nonzero constant vector field on C2 and pulling this field back to C2 using a biholomorphic
map F : C2 → B, where B is the basin of attraction of a fixed point of a polynomial
automorphism. In this case, the vector field X is not complete since the constant vector
field forces any point in the basin of attraction to reach the boundary of the basin in finite
time.

However, the map F is approximable by automorphisms Fj of C2 and using these maps
to pull back the constant vector field, we obtain complete holomorphic vector fields Xj which
approximate X uniformly on compact sets.
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