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Problem 1. If the line l has symmetric equations

x− 1

2
=

y

−3
=
z + 2

7
,

find a vector equation for the line l′ such that l′ contains the pint (2,1,-3) and
is parallel to l.

Solution. Recall that if a line has symmetric equations

x− x0

a
=
y − y0

b
=
z − z0

c
,

then the line passes the point (x0, y0, z0) and has the direction vector (a, b, c).
By hypothesis, l has the direction v = (2,−3, 7), and so does l′ since l ‖ l′. Also,
since l′ passes the point r0 = (2, 1,−3), therefore the vector equation for l′ is

r = r0 + tv = (2 + 2t)i + (1− 3t)j + (−3 + 7t)k.

Remark 1. The initial position vector r0 and the direction vector v directly
determine the line written in the vector equation form r = r0 + tv, from which
we can also deduce the parametric equation form.

Problem 2. Find parametric equations of the line containing the points P =
(1,−1, 0) and Q = (−2, 3, 5).

Solution. Clearly one candiate for r0 is P = (1,−1, 0) and one candidate for
the direction vector v is Q−P = (−3, 4, 5). Therefore the parametric equations
is

x = 1− 3t, y = −1 + 4t, z = 0 + 5t.

Problem 3. Find an equation of the plane that contains the point (1,-1,-1)
and has normal vector 1

2i + 2j + 3k.

Solution. Recall that a plane is determined by its normal vector n and any
point r0 in itself, and the equation for the plane is (r − r0) · n = 0. Applying
the formula above, one can obtain the plane satisfying the hypothesis is

(x− 1, y − (−1), z − (−1)) · (1

2
, 2, 3) = 0,
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that is,
x+ 4y + 6z + 9 = 0

.

Problem 4. Find an equation of the plane that contains the points P =
(1, 0,−1), Q = (−5, 3, 2) and R = (2,−1, 4).

Solution. Let a = Q − P = (−6, 3, 3) and b = R − P = (1,−1, 5), then
a × b = (18, 33, 3) gives a candidate for the normal vector n. We can just
choose P as the point r0 in the plane. Therefore the equation for the plane is

(x− 1, y − 0, z − (−1)) · (18, 33, 3) = 0,

that is
6x+ 11y + z = 5.

Remark 2. Actually the normal vector we have obtained is (18, 33, 3), which
is parallel to (6, 11, 1). Only B fits this condition, so the answer must be B. We
don’t even need to calculate the equation for the plane.

Problem 5. Find parametric equations of the line tangent to the curve r(t) =
ti + t2j + t3k at the point (2, 4, 8).

Solution. Clearly at the point (2, 4, 8), t = 2. Then the direction vector v for
the tangent line is the first derivative of r(t) at t = 2, which is (1, 2t, 3t2)|t=2 =
(1, 4, 12). Therefore by Remark 1, the parametric equation is x = 2 + t, y =
4 + 4t, z = 8 + 12t.

Problem 6. The position function of an object is r(t) = costi+ 3sintj − t2k.
Find the velocity, acceleration, and speed of the object when t = π.

Solution. This is an easy problem. The velocity is just the first derivative of the
position vector function, the acceleration is the second derivative of the position
vector function, and the speed is the magnitude of the velocity vector.

Problem 7. A smooth parametrization of the semicircle which passes through
the points (1, 0, 5), (0, 1, 5) and (−1, 0, 5) is

Solution. Observe that these three points given have the same z-coordiante 5,
so the semicircle is contained in the plane z = 5, which is parallel to the xy-
plane. Therefore we only need to use their x, y coordinates to parametrize the
semicircle passing the three points. Since the semicircle passing (1, 0), (0, 1) and
(−1, 0) in the xy plane is x = cost, y = sint, 0 ≤ t ≤ π, the answer has to be B,
that is, costi + sintj + 5k, 0 ≤ t ≤ π.

Remark 3. Generally any three points who are not contained in a line can
uniquely determine a triangle and thus uniquely determine the circumscribed
circle. However it’s a little complicated to find the equation for the circle. Al-
though in this problem the condition is unbelievably nice, it’s not likely in your
final exam a general problem can appear.
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Problem 8. The length of the curve r(t) = 2
3 (1 + t)

3
2 i+ 2

3 (1− t) 3
2 j + tk,−1 ≤

t ≤ 1 is

Solution. The formula for the length L is given by

L =

∫ 1

−1

|r′(t)|dt =

∫ 1

−1

√
x′(t)2 + y′(t)2 + z′(t)2dt =

∫ 1

−1

√
1 + t+ 1− t+ 1dt = 2

√
3.

Problem 9. Find the level curves of the function f(x, y) =
√

1− x2 − 2y2.

Solution. The family of level sets can be obtained by setting f(x, y) = k, that

is,
√

1− x2 − 2y2 = k(0 ≤ k ≤ 1). We square both sides and after a simple
algebra we can obtain x2 + 2y2 = 1− k2. Hence when 0 ≤ k < 1, the level sets
are ellipses. When k = 1, x2 + 2y2 = 0 and hence the level set is a single point
(0, 0). So none of the choices is correct.

Problem 10. Find the level surface of the function f(x, y, z) = z − x2 − y2

that passes through the point (1, 2,−3) intersects the (x, z)-plane (y = 0) along
the curve.

Solution. Set f(x, y, z) = z − x2 − y2 = k. Since the level surface passes
(1, 2,−3), k = f(1, 2,−3) = −3 − 1 − 4 = −8. Therefore the level surface of f
is z − x2 − y2 = −8. By letting y = 0, we find the curve of the level surface in
the xz-plane is z − x2 = −8, that is, z = x2 − 8.

Problem 11. Match the graphs of the equations with their names: (1) x2 +
y2 + z2 = 4 (a) paraboloid
(2) x2 + z2 = 4 (b) sphere
(3) x2 + y2 = z2 (c) cylinder
(4) x2 + y2 = z (d) double cone
(5) x2 + 2y2 + 3z2 = 1 (e) ellipsoid

Solution. Please check the table in Section 12.6 in the textbook.

Problem 12. Suppose that w = u2

v where u = g1(t) and v = g2(t) are differ-
entiable functions of t. If g1(1) = 3, g2(1) = 2, g′1(1) = 5 and g′2(1) = −4, find
dw
dt when t = 1.

Solution. By chain rule,

∂w

∂u
=
∂w

∂u

du

dt
+
∂w

∂v

dv

dt
=

2u

v
g′1(t) + (−u

2

v2
)g′2(t).

When t = 1, 2u
v = 2 g1(1)

g2(1) = 2 · 3
2 = 3, and −u

2

v2 = −2 g1(1)2

g2(1)2 = − 9
4 . Therefore,

dw

dt
= 3 · 5 + (−9

4
) · (−4) = 24.

Problem 13. If w = euv and u = r + s, v = rs, find ∂w
∂r .
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Solution. Although one can use chain rule to do this problem, a simpler way is
just plug u = r+ s, v = rs into the function w, that is, w = e(r+s)rs = er

2s+rs2 .
Hence

∂w

∂r
= er

2s+rs2(2rs+ s2).

Problem 14. If f(x, y) = cos(xy), find ∂2f
∂x∂y .

Solution. ∂f
∂y = −xsin(xy), hence

∂2f

∂x∂y
=

∂

∂x
(−xsin(xy)) = −sin(xy)− xycos(xy).

Problem 15. Assuming that the equation xy2 +3z = cos(z2) defines z implic-
itly as a function of x and y, find ∂z

∂x .

Solution. Defferentiating both sides of the equation with respect to x, hence the
chain rule implies

y2 + 3
∂z

∂x
= −sin(z2) · 2z · ∂z

∂x
.

Therefore,
∂z

∂x
=

−y2

3 + 2zsin(z2)
.

Problem 16. If f(x, y) = xy2, then ∇f(2, 3) =

Solution. Since ∇f(x, y) = (fx, fy) = (y2, 2xy), ∇f(2, 3) = (32, 2 · 2 · 3) =
(9, 12) = 9i + 12j.

Problem 17. Find the directional derivative of f(x, y) = 5−4x2−3y at (x, y)
towards the origin.

Solution. The direction at (x, y) towards the origin is parallel to that of −(x, y),

hence the unit directional vector u is − (x,y)√
x2+y2

. Therefore

Duf(x, y) = ∇f(x, y) · u = (−8x,−3) · − (x, y)√
x2 + y2

= E.

Problem 18. For the function f(x, y) = x2y, find a unit vector u for which
the directional derivative Duf(2, 3) is zero.

Solution. We want to find a unit vector u such that ∇f(2, 3) · u = 0. Since

∇f(2, 3) = (2xy, x2)|(x,y)=(2,3) = (12, 4), u = (1,−3)√
10

= D.

Problem 19. Find a vector pointing in the direction in which f(x, y, z) =
3xy − 9xz2 + y increases most rapidly at the point (1, 1, 0).

Solution. Recall that the gradient vector has the direction along which the func-
tion has the maximal rate of change. Therefore, the desired vector must be par-
allel to ∇f(1, 1, 0). Since ∇f(1, 1, 0) = (3y−9z2, 3x+1,−18xz)|(x,y,z)=(1,1,0) =
(3, 4, 0), the answer is A.
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Problem 20. Find a vector that is normal to the graph of the equation
2cos(πxy) = 1 at the point ( 1

6 , 2).

Solution. From the hypothesis, the graph is just the 0-level curve of the function
f(x, y) = 2cos(πxy) − 1, therefore the normal of the graph must be parallel to
the gradient vector. Computing ∇f(x, y) = (−2sin(πxy)πy,−2sin(πxy)πx) =
−2πsin(πxy)(y, x), which has the same direction as that of (y, x) (if we don’t
care about the negative sign). Now that we know that the normal of the graph
at (x, y) is parallel to (y, x), hence we conclude that at (x, y) = ( 1

6 , 2), one
candidate for the normal is (y, x) = (2, 1

6 ). Only C satisfies our conclusion.

Problem 21. Find an equation of the tangent plane to the surface x2 + 2y2 +
3z2 = 6 at the point (1, 1,−1).

Solution. The surface is the 0-level set of the function f(x, y, z) = x2 + 2y2 +
3z2 − 6, hence the normal of the tangent plane to the surface is parallel to ∇f .
At (1, 1,−1), ∇f = (2, 4,−6), hence the equation of the tangent plane is

(x− 1, y − 1, z + 1) · (2, 4,−6) = 0.

That is, x+ 2y − 3z = 6.

Problem 22. Find an equation of the plane tangent to the graph of f(x, y) =
π + sin(πx2 + 2y) when (x, y) = (2, π).

Solution. The graph is the 0-level surface of the function g(x, y, z) = z −
f(x, y). The normal of the tangent plane at (x, y, z) is parallel to ∇g(x, y, z) =
(−fx,−fy, 1) = (−2πxcos(πx2 + 2y),−2cos(πx2 + 2y), 1). At (x, y) = (2, π),
z = π and ∇g = (−4π,−2, 1), therefore the equation of the tangent plane to the
graph at (x, y) = (2, π) is

((x, y, z)− (2, π, π)) · (−4π,−2, 1) = 0,

that is,
4πx+ 2y − z = 9π.

Hence the answer is A.

Remark 4. One can also just use the formula z − z0 = fx(x0, y0)(x − x0) +
fy(x0, y0)(y − y0) to find the equation for the tangent plane to the graph of
z = f(x, y) at the point (x0, y0).

Remark 5. As another kind remark, the linear approximation of the function
f(x, y) near (x0, y0) is f(x, y) ≈ f(x0, y0)+fx(x0, y0)(x−x0)+fy(x0, y0)(y−y0).

Problem 23. The differential df of the function f(x, y, z) = xey
2−x2

is

Solution. fx = ey
2−z2 , fy = 2xyey

2−z2 and fz = −2xzey
2−z2 , so the answer is

D.
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Problem 24. Classify the critical points of the function f(x, y) = 2x3−6xy−
3y2.

Solution. fx = 6x2 − 6y, fy = −6x − 6y, fxx = 12x, fxy = −6, fyy = −6, and
D = fxxfyy − f2

xy = −72x − 36. Let fx = 0, fy = 0, we find (from fy = 0 we
get y = −x and then replacing y = −x in the equation fx = 0 and soving a
quadradic equation) the critical points are (0, 0) and (−1, 1). At (0, 0), D < 0,
hence (0, 0) is a saddle point. At (−1, 1), fxx < 0 and D > 0, hence (−1, 1) is
a local maximal point. The answer is B.

Remark 6. As long as D < 0, it’s saddle point. If fxx > 0 and D > 0, then
it’s a local minimum point. If fxx < 0 and D > 0, then it’s a local maximum
point.

Problem 25. Consider the problem of finding the minimum value of the func-
tion f(x, y) = 4x2 + y2 on the curve xy = 1. In using the method of Lagrange
multipliers, the value of λ (even though it is not needed) will be

Solution. The constraint is g(x, y) = xy = 1. Using Lagrange multiplier
method, fx = λgx and fy = λgy imply

8x = λy (1)

and
2y = λx. (2)

Hence the multiplications of both sides are equal, that is, 16xy = λ2xy. Since
xy 6= 0, we get λ2 = 16, and thus λ = ±4. Since xy = 1, x and y have the same
sign. Hence from (1), λ cannot be negative. Therefore, λ = 4.

Problem 26. Evaluate the iterated integral
∫ 3

1

∫ x
0

1
xdydx.

Solution. Notice 1
x is a constant function in terms of y, we evaluate the inner

integral
∫ x

0
1
xdy = 1

x · x = 1, and hence
∫ 3

1

∫ x
0

1
xdydx =

∫ 3

1
1dx = 2. The answer

is B.

Problem 27. Consider the double integral,
∫∫
R
f(x, y)dA, where R is the

portion of the disk x2 + y2 ≤ 1, in the upper half-plane, y ≥ 0. Express the
integral as an iterated integral.

Solution. We regard R as a type-I domain. The lower bound for y is the x-
axis, that is y = 0. The upper bound for y is the circle above the x-axis, that is
y =
√

1− x2, hence 0 ≤ y ≤
√

1− x2. Clearly −1 ≤ x ≤ 1, hence the answer is
C.

Problem 28. Find a and b for the correct interchange of order of integration:∫ 2

0

∫ 2x

x2

f(x, y)dydx =

∫ 4

0

∫ b

a

f(x, y)dxdy.
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Solution. One can certainly draw the picture of the domain D. It’s not conve-
nient for me do plug the picture here, so I’ll do it without picture. The argument
is follows:

Clearly from the left hand side,

x2 ≤ y ≤ 2x (3)

Clearly (3) with x ≥ 0 is equivalent to y
2 ≤ x ≤

√
y, the answer is B.

Problem 29. Evaluate the double integral
∫∫
R
ydA, where R is the region of

the (x, y)-plane inside the triangle with vertices (0, 0), (2, 0) and (2, 1).

Solution. The domain R is as below:

x

y

0 1 2 3

−1

0

1

O(0, 0)
A(2, 0)

B(2, 1)

Hence∫∫
R

ydA =

∫ 2

0

∫ 1
2x

0

ydydx =

∫ 2

0

1

2
y2|y= 1

2x
y=0 dx =

∫ 2

0

1

8
x2dx =

1

24
x3|20 =

1

3
.

Problem 30. The volume of the solid region in the first octant bounded above
by the parabolic sheet z = 1−x2, below by the xy plane, and on the sides by the
planes y = 0 and y = x is given by the double integral:

Solution. Still, it’s better to draw a picture, but I’ve no idea how to write the
code, I’ll just do it without picture. Since 0 ≤ z ≤ 1− x2 and x ≥ 0, we obtain
(by just solving 1 − x2 ≥ 0 and x ≥ 0) 0 ≤ x ≤ 1. What’s left is to find the
bounds for y. From the hypothesis, 0 ≤ y ≤ x. Paying attention to the order
of integration, here we first integrate with respect to z, and then y and then x
(why?), we get

V =

∫ 1

0

∫ x

0

∫ 1−x2

0

1 · dzdydx ==

∫ 1

0

∫ x

0

(1− x2)dydx.

Hence the answer is A.

Problem 31. The area of one leaf of the three-leaved rose bounded by the graph
of r = 5sin3θ is

Solution. When θ goes from 0 to π
6 , r goes from 0 to its maximum 5. When

When θ goes from π
6 to π

3 , r goes from its maximum 5 to 0. Hence 0 ≤ r ≤
5sin(3θ), 0 ≤ θ ≤ π

3 describe one leave of the rose. (It’s very clear from the
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picture.) Hence the area is given by∫ π
3

0

∫ 5sin(3θ)

0

rdrdθ =

∫ π
3

0

25sin2(3θ)

2
dθ

=
25

2

∫ π
3

0

1− cos(6θ)
2

dθ

=
25

4

(
θ − sin(6θ)

6

)∣∣∣∣π3
0

=
25π

12

Problem 32. Find the area of the portion of the plane x + 3y + 2z = 6 that
lies in the first octant.

Solution. By letting z = 0 in the plane x+3y+2z = 6, we find the intersection
of the plane and the xy-plane is the line x + 3y = 6. Hence the xy-domain D
is enclosed by x + 3y = 6 and the x, y axes, which is a triangle with two edges
6 and 2. The area of the triangle A(D) = 1

2 · 2 · 6 = 6, hence the area asked in
the problem is∫∫

D

√
1 + z2

x + z2
ydA =

∫∫
D

√
1 + (−1

2
)2 + (−3

2
)2dA =

√
14

2
A(D) = 3

√
14.

Problem 33. A solid region in the first octant is bounded by the surfaces
z = y2, y = x, y = 0, z = 0 and x = 4. The volume of the region is

Solution. Since 0 ≤ z ≤ y2, 0 ≤ y ≤ x and 0 ≤ x ≤ 4 (by letting y = 0 in
y = x we know the lower bound for x is 0),

V =

∫ 4

0

∫ x

0

∫ y2

0

dzdydx =

∫ 4

0

∫ x

0

y2dydx =

∫ 4

0

y3

3

∣∣∣∣x
0

dx =

∫ 4

0

x3

3
dx =

64

3
.

Problem 34. An object occupies the region Ω bounded above by the sphere
x2 + y2 + z2 = 32 and below by the upper nappe of the cone z2 = x2 + y2. The
mass density at any point of the object is equal to its distance from the xy plane.
Set up a triple integral in rectangular coordinates for the total mass m of the
object.

Solution. Clearly
√
x2 + y2 ≤ z ≤

√
32− x2 − y2. By replacing z2 with x2+y2

in the equation of the ball, we obtain 2(x2 +y2) = 32. Hence the projection D of
Σ to the xy-plane is the disk centered at origin with radius 4. Using rectangular
coordinates, D : −

√
16− x2 ≤ y ≤

√
16− x2, −4 ≤ x ≤ 4. The integrand is

the distance from the xy-plane, which is z. Therefore, the answer is∫∫
D

∫ √32−x2−y2

√
x2+y2

zdzdA =

∫ 4

−4

∫ √16−x2

−
√

16−x2

∫ √32−x2−y2

√
x2+y2

zdzdydx,

which is B.
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Problem 35. Do Problem 34 in spherical coordinates.

Solution. z2 = x2 + y2 implies (ρcosφ)2 = (ρsinφ)2, hence φ = π
4 . Since the

region is above the cone, 0 ≤ φ ≤ π
4 . Clearly 0 ≤ ρ ≤

√
32 and 0 ≤ θ ≤ 2π.

Therefore the mass is∫∫∫
Ω

zdV =

∫ 2π

0

∫ π
4

0

∫ √32

0

ρcosφ · ρ2sinφdρdφdθ.

The answer is A.

Problem 36. Convert
∫ 1

0

∫√1−x2

0
y2(x2+y2)3dydx into polar coordinates form.

Solution. Noticing x, y ≥ 0, the domain D is part of the disk centered at
origin with radius 1 in the first quadrant, hence 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π

2 . Also,
y2(x2 + y2)3 = (rsinθ)2(r2)3 and dxdy = rdrdθ, therefore∫ 1

0

∫ √1−x2

0

y2(x2 + y2)3dydx =

∫ π
2

0

∫ 1

0

(rsinθ)2(r2)3 · rdrdθ,

which is E.

Problem 37. Convert the triple integrals∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

dzdydx

from rectangular to cylindrical coordinates.

Solution. Use
√
x2 + y2 = r we know r ≤ z ≤ 2. The projection of the

solid region to the xy plane is the disk centered at origin with radius 2, hence
0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π. Replacing dzdydx with rdzdrdθ, one can easily see the

answer is
∫ 2π

0

∫ 2

0

∫ 2

r
rdzdrdθ.

Problem 38. If D is the solid region above the xy-plane that is between z =√
4− x2 − y2 and z =

√
1− x2 − y2, then

∫∫∫
D

√
x2 + y2 + z2dV is

Solution. Clearly D is the shell between the balls centered at origin with radius
1 and 2 above xy plane, hence 1 ≤ ρ ≤ 2, 0 ≤ φ ≤ π

2 , 0 ≤ θ ≤ 2π. Use√
x2 + y2 + z2 = ρ and dV = ρ2sinφdρdφdθ, we obtain∫∫∫
D

√
x2 + y2 + z2dV =

∫ 2π

0

∫ π
2

0

∫ 2

1

ρ·ρ2sinφdρdφdθ =

(
ρ4

4

∣∣∣∣2
1

)
2π·
∫ π

2

0

sinφdφ =
15

2
π.

Problem 39. Determine which of the vector fields below are conservative, i.e.,
F = ∇f for some function f .

Solution. Just check one by one whether ∇× F = 0.
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Problem 40. Let F be any vector field whose components have continuous
partial derivatives up to second order, let f be any real valued function with
continuous partial derivatives up to second order, and let ∇ = i ∂∂x +j ∂

∂y +k ∂
∂z .

Find the incoorect statement.
A. curl(∇f) = 0 B. div(curlF ) = 0 C. ∇(divF ) = 0
D. F = ∇× F E. divF = ∇ · F

Solution. C is generally false.
D and E are definitions. A and B are important facts. Especially A implies if a
vector field is conservative, then by Stoke’s theorem and fundamental theorem of
line integrl, then the second type of line integral over the boundary of a surface
is zero. B implies the flux of the vector field curlF over a closed solid region is
always 0 as a result of the divergence theorem.

Problem 41. A wire lies on the xy-plane along the curve y = x2, 0 ≤ x ≤ 2.
The mass density (per unit length) at any point (x, y) of the wire is equal to x.
The mass of the wire is

Solution. The mass is∫
ρds =

∫ 2

0

x
√

1 + y2
xdx =

∫ 2

0

x
√

1 + 4x2dx =
2

3
· 1

8
(1 + 4x2)

3
2

∣∣∣∣2
0

=
17
√

17− 1

12
.

Problem 42. Evaluate
∫
C
F · dr where F (x, y) = yi+x2j and C is composed

of the line segments from (0, 0) to (1, 0) and from (1, 0) to (1, 2).

Solution. Let C1 be the horizontal segment and C2 be the vertical segments.
C1 can be parametrized by (x, 0), 0 ≤ x ≤ 1, and C2 can be parametrized by
(1, y), 0 ≤ y ≤ 2. Hence∫

C1

F · dr =

∫ 1

0

F (x, 0) · (1, 0)dx =

∫ 1

0

(0, x2) · (1, 0)dx = 0,

and ∫
C2

F · dr =

∫ 2

0

F (1, y) · (0, 1)dy =

∫ 2

0

(y, 1) · (0, 1)dy = 2.

Hence ∫
C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr = 2.

Problem 43. Evaluate the line integral∫
C

xdx+ ydy + xydz

where C is parametrized by r(t) = costi + sintj + costk for −π2 ≤ t ≤ 0.
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Solution. Since dr = r′(t)dt = (−sint, cost,−sint)dt,∫
C

xdx+ ydy + xydz =

∫ 0

−π
2

(cost, sint, costsint) · (−sint, cost,−sint)dt

=

∫ 0

−π
2

−costsin2tdt

= −sin
3t

3

∣∣∣∣0
−π

2

= 0−
(
−1

3
sin(
−π
2

)

)
= −1

3
.

Notice that the last step we have used sin(−π2 ) = −1. (It’s easy to make mistakes
here.)

Problem 44. Are the following statements true or false?
1. The line integral

∫
C

(x3 + 2xy)dx+ (x2 − y2)dy is independent of path in the
xy-plane.
2.
∫
C

(x3 + 2xy)dx + (x2 − y2)dy = 0 for every closed oriented curve C in the
xy-plane
3. There is a function f(x, y) defined in the xy-plane, such that (x, y) = (x3 +
2xy)i + (x2 − y2)j.

Solution. This problem tests the following four equivalent conditions for the
conservative vector field. A vector filed F (x, y) = P (x, y)i+Q(x, y)j is conser-
vative if and only if one of the four conditions hold:
1
∫
C
Pdx+Qdy is independent of path.

2
∫
C
Pdx+Qdy = 0 for every closed curve C in the xy-plane.

3 There is a function f(x, y) defined in the xy-plane, such that ∇f(x, y) =
F (x, y).
4 ∂Q

∂x = ∂P
∂y .

Problem 45. Evaluate
∫
C
y2dx+ 6xydy where C is the boundary curve of the

region bounded by y =
√
x, y = 0 and x = 4, in the counterclockwise direction.

Solution. Let D be the region enclosed by C, hence D is a type-I domain
0 ≤ y ≤

√
x, 0 ≤ x ≤ 4. Clearly, P = y2, Q = 6xy, hence ∂Q

∂x = 6y, ∂P∂y = 2y.
Considering the orientation of the curve and applying Green’s theorem, we have∫

C

y2dx+ 6xydy =

∫ 4

0

∫ √x
0

(
∂Q

∂x
− ∂P

∂y
)dydx

=

∫ 4

0

∫ √x
0

4ydydx

=

∫ 4

0

2y2
∣∣y=
√
x

y=0
dx

=

∫ 4

0

2xdx = 16.
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Problem 46. If C goes along the x-axis from (0, 0) to (1, 0), then along y =√
1− x2 to (0, 1), and then back to (0, 0) along the y-axis, then

∫
C
xydy =

Solution. Here P (x, y) = 0 and Q(x, y) = xy. Let D be the domain enclosed
by C, which is shown in the following picture:

x

y

0 1 2 3

−1

0

1

O(0, 0)
A(1, 0)

B(0, 1)

Applying the Green’s theorem, and since C is positively oriented(counterclockwise),∫
C

xydy =

∫∫
D

∂

∂x
(xy)dA =

∫ 1

0

∫ √1−x2

0

ydydx,

which is B.

Problem 47. Evaluate
∫
C
F dr, if F (x, y) = (xy2− 1)i+ (x2y− x)j and C is

the circle of radius 1 centered at (1, 2) and oriented counterclockwise.

Solution. Let D be the region enclosed by C, that is, the unit disk centered at
(1, 2). Hence the area A(D) of D is π. Considering the orientation (positive)
and Applying Green’s Theorem, we obtain∫
C

F dr =

∫∫
D

(
∂Q

∂x
− ∂P

∂y
)dA =

∫∫
D

((2xy − 1)− (2xy)) dA = −A(D) = −π.

Remark 7. Sometimes it’s convenient to use the formula of the area of some
common figures, for example triangles(A = 1

2ab), disks(A = πr2), ellipses(A =
πab), etc.

Problem 48. Green’s theorem yields the following formula for the area of a
simple region R in terms of a line integral over the boundary C of R, oriented
counterclockwise. Area of R =

∫
R
dA =

Solution. By Green’s theorem, we just need to check whether the P,Q’s in the
choices A− E satisfying ∂Q

∂x −
∂P
∂y = 1, whence∫

C

Pdx+Qdy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫
R

dA = R.

In A, P = −y and Q = 0, hence ∂Q
∂x −

∂P
∂y = 0− (−1) = 1, hence the answer is

A, that is, ∫∫
R

dA = −
∫
C

ydx.

Remark 8.
∫
R
dA can also be written as

∫
C
xdy, 1

2

∫
C

(−ydx + xdy), and so
forth. Generally,

∫∫
R
dA = α(−

∫
C
ydx)+β

∫
C
xdy for all α, β such that α+β =

1.
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Problem 49. Evaluate the surface integral
∫∫

Σ
xdS where Σ is part of the

plane 2x+ y + z = 4 in the first octant.

Solution. Clearly z = 4 − 2x − y and thus zx = −2, zy = −1. The projection
of Σ to the xy-plane is enclosed by x = 0, y = 0 and 2x + y = 4, that is
0 ≤ y ≤ −2x+ 4, 0 ≤ x ≤ 2. Therefore,∫∫

Σ

xdS =

∫ 2

0

∫ −2x+4

0

x
√

1 + z2
x + z2

ydydx =
√

6

∫ 2

0

x(4−2x)dx =
√

6 (2x2 − 2

3
x3)

∣∣∣∣2
0

=
8

3

√
6.

Problem 50. If Σ is part of the paraboloid z = x2 + y2 with z ≤ 4, n is the
unit normal vector on Σ directed upward, and F = xi + yj + zk, then evaluate∫∫

Σ
F · ndS.

Solution. Recall the formula that ndS = dS = (−zx,−zy, 1)dA. Since z =
x2+y2, zx = 2x and zy = 2y. Hence F ·ndS = (x, y, x2+y2)·(−2x,−2y, 1)dA =
−(x2 + y2)dA. The projection of Σ to the xy-plane is the disk D : x2 + y2 ≤ 4.
Therefore,∫∫

Σ

F · ndS =

∫∫
D

−(x2 + y2)dA =

∫ 2π

0

∫ 2

0

−r2 · rdrdθ = −8π.

Remark 9. Generally if the surface is parametrized by

r = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ D,

then dS = |ru × rv|dudv and dS = (ru × rv)dudv.
In particular, if the surface equation is given as z = g(x, y), then dS =√

1 + g2
x + g2

ydA, and dS = (−gx,−gy, 1)dA. This is better to be remembered.

For the second type of surface integral, one has to check whether the direction
of ru×rv matches the direction of the orentation of the surface. If not, one has
to add a negative sign to the final answer.

Problem 51. If F = coszi + sinzj + xyk, Σ is the complete boundary of the
rectangular solid region Ω bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0
and z = π

2 , and n is the outward unit normal on Σ, then find
∫∫

Σ
F · ndS.

Solution. Since divF = 0 and Σ is the complete boundary of Ω, applying the
divergence theorem we obtain∫∫

Σ

F · ndS =

∫∫∫
Ω

divF dV = 0.

Problem 52. Find
∫∫

Σ
F · ndS where Σ is the unit sphere x2 + y2 + z2 = 1

and n is the outward unit normal on Σ.

Solution. The outward unit normal n = (x, y, z), and dS = sinφdφdθ, hence∫∫
Σ

F · ndS =

∫ 2π

0

∫ π

0

(x, y, z) · (x, y, z)sinφdφdθ =

∫ 2π

0

∫ π

0

sinφdφdθ = 4π.
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Remark. Generally speaking, if the surface is part of the sphere x2 + y2 + z2 =

a2, then n = (x,y,z)
a and dS = a2sinφdφdθ.

Problem 53. Evaluate
∫∫
S
curlF · dS, where F = x2eyzi + y2exzj + z2exyk

and S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0, oriented upward.

Solution. Let C be the boundary of the hemisphere, thus C : x2 +y2 = 4, z = 0.
We can parametrize C by x = 2cost, y = 2sint, z = 0, 0 ≤ t ≤ 2π. Hence
r′(t) = (−2sint, 2cost, 0). Hence by Stoke s Theorem,

∫∫
S

curlF · dS =

∫
C

F · dr

=

∫ 2π

0

(4ecos2t, 4esin2t, 0) · (−2sint, 2cost, 0)dt

=

∫ 2π

0

8ecostsint(sint− cost)dt

= 8e
sin3t+ cos3t

3

∣∣∣∣2π
0

= 0.

Problem 54. Evaluate
∫
C
F · dr, where F = x2zi + xy2j + z2k and C is the

curve of intersection of the plane x + y + z = 1 and the cylinder x2 + y2 = 9
oriented counterclockwise as viewed from above.

Solution. Let S be the part of the plane z = 1 − x − y inside the cylinder
x2 + y2 = 9. Clearly the curve C is the boundary of the surface S, hence we
can safely apply Stoke’s theorem. One can easily calculate curlF = (0, x2, y2).
Moreover, from Remark 9, dS = (− ∂z

∂x ,−
∂z
∂y , 1)dxdy = (1, 1, 1)dA, and the

projection of S to the xy-plane is the disk enclosed by the circle x2 + y2 = 9.
Therefore, ∫

C

F · dr =

∫∫
S

curlF · dS

=

∫∫
D

(0, x2, y2) · (1, 1, 1)dA

=

∫∫
D

(x2 + y2)dA

=

∫ 2π

0

∫ 3

0

r2 · rdrdθ

= 2π
r4

4

∣∣∣∣3
0

=
81π

2
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