Study Guide # 2

- 1. Relative/local extrema; critical points (points where $\nabla f = \vec{0}$ or ∇f does not exist).
- **2.** $\underline{2^{nd}}$ Derivatives Test: Suppose the 2^{nd} partials of f(x,y) are continuous in a disk with center (a,b) and $\nabla f(a,b) = \tilde{\mathbf{0}}$. Let $D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}_{(a,b)}$.
 - (a) If D > 0 and $f_{xx}(a, b) > 0 \implies f(a, b)$ is a local minimum value.
 - (b) If D > 0 and $f_{xx}(a, b) < 0 \implies f(a, b)$ is a local maximum value.
 - (c) If $D < 0 \Longrightarrow f(a,b)$ is a not a local min or local max value. So (a,b) is a **saddle point** of f.

If D = 0 (or if $\nabla f(a, b)$ does not exist or f has more than 2 variables) the test gives no information and you need to do something else to determine if a relative extremum exists.

- 3. Absolute extrema; Max-Min Problems.
- **4.** Constrained extreme values via Lagrange Multipiers: Max/min -ize $f(\mathbf{v})$ subject to constraint $g(\mathbf{v}) = C$, solve the system $\nabla f = \lambda \nabla g$ and $g(\mathbf{v}) = C$.
- **5.** Double integrals; Double Riemann sums: $\iint_R f(x,y) dA \approx \sum_{i=1}^m \sum_{j=1}^n f(x_i^*, y_j^*) \Delta A;$
- **6.** Type I region $R: \left\{ \begin{array}{l} g_1(x) \leq y \leq g_2(x) \\ a \leq x \leq b \end{array} \right. ; \text{ Type II region } R: \left\{ \begin{array}{l} h_1(y) \leq x \leq h_2(y) \\ c \leq y \leq d \end{array} \right. ;$

iterated integrals over Type I and II regions: $\iint_R f(x,y)\,dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)\,dy\,dx \text{ and }$

 $\iint_{R} f(x,y) dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x,y) dx dy, \text{ respectively; Reversing Order of Integration (regions that are both Type I and Type II); properties of double integrals.}$

7. Polar: $r^2 = x^2 + y^2$, $x = r \cos \theta$, $y = r \sin \theta$, $\tan \theta = \frac{y}{x}$ (make sure θ in correct quadrant).

Change of Variables Formula in Polar Coordinates: if $R: \begin{cases} h_1(\theta) \leq r \leq h_2(\theta) \\ \alpha \leq \theta \leq \beta \end{cases}$, then

$$\iint\limits_R f(x,y) \, dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r\cos\theta, \ r\sin\theta) \, r \, dr \, d\theta.$$

8. Applications of double integrals:

(a) Area of region
$$R$$
 is $A(R) = \iint_R dA$

- (b) Volume of solid under graph of z = f(x, y), where $f(x, y) \ge 0$, is $V = \iint_{\mathbb{R}^n} f(x, y) dA$
- (c) Mass of R is $m = \iint_{\mathbb{R}} \rho(x, y) dA$, where $\rho(x, y) = \text{density (per unit area)}$.
- (d) Moment about the x-axis $M_x = \iint_{\mathcal{B}} y \, \rho(x,y) \, dA$; moment about the y-axis $M_y = \iint_{\mathcal{B}} x \, \rho(x,y) \, dA$.

(e) Center of mass
$$(\overline{x}, \overline{y})$$
, where $\overline{x} = \frac{\displaystyle \iint_{R} x \, \rho(x,y) \, dA}{\displaystyle \iint_{R} \rho(x,y) \, dA}$, $\overline{y} = \frac{\displaystyle \iint_{R} y \, \rho(x,y) \, dA}{\displaystyle \iint_{R} \rho(x,y) \, dA}$

9. Elementary solids
$$D \subset \mathbb{R}^3$$
 of Type 1, Type 2, Type 3; triple integrals over solids D :
$$\iiint_D f(x,y,z) \, dV = \iint_R \int_{u(x,y)}^{v(x,y)} f(x,y,z) \, dz \, dA \text{ for } D = \{(x,y) \in R, \ u(x,y) \leq z \leq v(x,y)\};$$

volume of solid D is $V(D) = \iiint dV$; applications of triple integrals, mass of a solid, moments about the coordinate planes M_{xy} , M_{xz} , M_{yz} , center of mass of a solid $(\overline{x}, \overline{y}, \overline{z})$.

10. Cylindrical Coordinates (r, θ, z) :

From CC to RC :
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

Going from RC to CC use $x^2 + y^2 = r^2$ and $\tan \theta = \frac{y}{x}$ (make sure θ is in correct quadrant).

11. Spherical Coordinates (ρ, θ, ϕ) , where $0 \le \phi \le \pi$:

From SC to RC:
$$\begin{cases} x = (\rho \sin \phi) \cos \theta \\ y = (\rho \sin \phi) \sin \theta \\ z = \rho \cos \phi \end{cases}$$

Going from RC to SC use $x^2 + y^2 + z^2 = \rho^2$, $\tan \theta = \frac{y}{x}$ and $\cos \phi = \frac{z}{\rho}$.

12. Triple integrals in Cylindrical Coordinates: $\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}, \quad dV = r dz dr d\theta$

$$\iiint\limits_{D} f(x, y, z) \ dV = \iiint\limits_{D} f(r \cos \theta, r \sin \theta, z) r \, dz \, dr \, d\theta$$

13. Triple integrals in Spherical Coordinates: $\begin{cases} x = (\rho \sin \phi) \cos \theta \\ y = (\rho \sin \phi) \sin \theta \end{cases}, \quad dV = \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta \\ z = \rho \cos \phi \end{cases}$ $\iiint_D f(x, y, z) \ dV = \iiint_D f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta \\ \uparrow \qquad \qquad \uparrow$

$$\iiint_D f(x, y, z) \ dV = \iiint_D f(\rho \sin \phi \cos \theta, \ \rho \sin \phi \sin \theta, \ \rho \cos \phi) \ \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta$$

14. Vector fields on \mathbb{R}^2 and \mathbb{R}^3 : $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ and $\mathbf{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle;$ **F** is a conservative vector field if $\mathbf{F} = \nabla f$, for some real-valued function f (potential). **15.** Line integral of a function f(x,y) along C, parameterized by x=x(t), y=y(t) and $a \le t \le b$, is

$$\int_C f(x,y) \ ds = \int_a^b f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \ dt \ .$$

(independent of orientation of C, other properties and applications of line integrals of f)

Remarks:

(a) $\int_C f(x,y) ds$ is sometimes called the "line integral of f with respect to arc length"

(b)
$$\int_C f(x,y) dx = \int_a^b f(x(t), y(t)) x'(t) dt$$

(c)
$$\int_C f(x,y) dy = \int_a^b f(x(t), y(t)) y'(t) dt$$

16. Line integral of a vector field $\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{\tilde{k}}$ along an oriented curve C, parameterized by $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ and $a \leq t \leq b$, is

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} (\mathbf{F} \cdot \mathbf{T}) \ ds = \int_{C} P \, dx + Q \, dy + R \, dz = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \ dt$$

where $\mathbf{T}(t) = \mathbf{r'}/|\mathbf{r'}|$ is the unit tangent vector. (dependent of orientation of C, other properties and applications of line integrals of \mathbf{F})

17. Fundamental Theorem of Calculus for Line Integrals: $\int_C \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$:

18. A vector field $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is conservative (i.e. $\mathbf{F} = \nabla f$) if $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$; a vector field $\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{\tilde{k}}$ is conservative if

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y};$$

how to determine a potential function f if $\mathbf{F} = \nabla f$.