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1. A line l passes through the points A(1,−2, 1) and B(2, 3,−1). At what point does this
line intersect with the xy-plane?

A. (3
2
, −1

2
, 0)

B. (5
2
, −1

2
, 0)

C. (3
2
,−1, 0)

D. (5
2
, 1
2
, 0)

E. (3
2
, 1
2
, 0)

2. Given two planes x + y + z = 1 and x − 2y + 2z = 4. Which equations describe the
parametric equations of the line of intersections of those two planes?

A. x = 2 + 4t, y = 1− t, z = −3t;

B. x = 2 + 4t, y = −1− t, z = −3t;

C. x = 2 + t, y = −1− t, z = −2t;

D. x = 2 + 3t, y = −1− t, z = −2t;

E. x = 2 + 4t, y = 2− t, z = −3t;
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3. What does the equation x2 − 2y2 + z2 = −1 represent as surface in R3?

A. elliptic paraboloid

B. hyperboloid of one sheet

C. hyperboloid of two sheets

D. hyperbolic paraboloid

E. elliptic cone

4. If ~r(t) =< 1, 5t2, 4t >, find κ(0) (i.e., the curvature at t=0).

A. 0

B. 5
4

C. 5
8

D. 1

E. −5
4
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5. A particle has acceleration ~a(t) =< 0, 2t,
√

2 > with an initial velocity of < 1, 0, 0 > at
t = 0. Find the distance traveled for 0 ≤ t ≤ 3.

A. 3

B. 12

C. 2 cosh(3)− 1

D. 4 sinh(3)

E. 3π
2

6. A traveling particle has position vector at time t given by ~r(t) =< t cos t, t sin t, 9− t2 >.
Find its speed at t = 1.

A.
√

2π

B. 5

C. 3π

D.
√

6

E. tan(1)
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7. The level curves of f(x, y) =
√
x2 + y2 + 1 + x are

A. hyperbolas

B. ellipses

C. sometimes lines and sometimes ellipses

D. circles

E. parabolas

8. If

lim
(x,y)→(0,0)

x4 − 3a(x2 + y2)− y4

x2 + y2
= 12,

then the number a must be equal to

A. 4

B. 6

C. 12

D. −4

E. 3
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9. The tangent plane to the surface

z = x2 + xy + 2y2

at the point (1, 1, 4) intersects the x axis at the point (a, 0, 0). Find the number a

A. 2

B. 4

C. −2

D.
4

3

E.
5

4

10. If f is a differentiable function of x and y and g is a differentiable function of u and v
and g(u, v) = f((u+ 2v)3 + 1, euv − 1), use the table below to find the value of gv(−1, 0).

f g fx fy
(-1,0) 8 1 4 2
(0,0) 1 3 5 7

A. 15

B. 22

C. 23

D. 33

E. 47
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11. Find the directional derivative of the function f(x, y, z) = x2y + y2z at (1, 2, 3) in the
direction toward the point (3, 1, 5).

A. 1

B. 3

C. 1
3

D. −2

E. −1

12. Classify the critical points (2, 2) and (−3, 0) of g(x, y) if

gx(2, 2) = 0, gy(2, 2) = 0, gxx(2, 2) = −2, gyy(2, 2) = −2, gxy(2, 2) = −1

gx(−3, 0) = 0, gy(−3, 0) = 0, gxx(−3, 0) = 0, gyy(−3, 0) = −6, gxy(−3, 0) = −3

A. A local maximum at (2, 2) and a saddle point at (−3, 0)

B. A local minimum at (2, 2) and a saddle point at (−3, 0)

C. A local maximum at (2, 2) and a local minimum at (−3, 0)

D. A local minimum at (2, 2) and a local maximum at (−3, 0)

E. A saddle point at (2, 2) and a local minimum at (−3, 0)
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