some interval, from calculus to x, remem-

nplicitly by the

ussed in Section

se that $x_n \to x$ as

ously differentiable

an interval of length

4. a. Consider the series

$$e^{\tan x} = 1 + x + \frac{x^2}{2!} + \frac{3x^3}{3!} + \frac{9x^4}{4!} + \dots$$
 $(|x| \le \pi/2)$

1.2 Oraers of Convergence and Additional S

Retaining three terms in the series, estimate the remaining series using ϕ -notation with the best integer value possible, as $x \to 0$.

b. Repeat the problem using \mathcal{O} -notation and the series

$$\ln \tan x = \ln x + \frac{x^2}{3} + \frac{7x^4}{90} + \frac{62x^6}{2835} + \dots \qquad (0 < |x| < \pi/2)$$

5. Establish the range of integer values of γ and δ for which the $+\cdots$ in the series

$$\ln(1+x) = \sum_{k=1}^{n-1} (-1)^{k-1} \frac{x^k}{k} + \cdots$$

can be replaced with either $\mathcal{O}(x^{\gamma})$ or $\sigma(x^{\delta})$ as $x \to 0$.

6. For the pair (x_n, α_n) , is it true that $x_n = \mathcal{O}(\alpha_n)$ as $n \to \infty$?

a.
$$x_n = 5n^2 + 9n^3 + 1$$
, $\alpha_n = n^2$

b.
$$x_n = 5n^2 + 9n^3 + 1$$
, $\alpha_n = 1$

c.
$$x_n = \sqrt{n+3}$$
, $\alpha_n = 1$

d.
$$x_n = 5n^2 + 9n^3 + 1$$
, $\alpha_n = n^3$

e.
$$x_n = \sqrt{n+3}, \quad \alpha_n = 1/n$$

7. Choose the correct assertions (in each, $n \to \infty$).

a.
$$(n+1)/n^2 = o(1/n)$$

b.
$$(n+1)/\sqrt{n} = O(1)$$

c.
$$1/\ln n = O(1/n)$$

d.
$$1/(n \ln n) = O(1/n)$$

e.
$$e^n/n^5 = \mathcal{O}(1/n)$$

8. The expressions e^h , $(1 - h^4)^{-1}$, $\cos(h)$, and $1 + \sin(h^3)$ all have the same limit as $h \to 0$. Express each in the following form with the best integer values of α and β .

$$f(h) = c + \mathcal{O}(h^{\alpha}) = c + \mathcal{O}(h^{\beta})$$

(Continuation) What are the limit and the rate of convergence of the following expression $\frac{1}{2}$

$$\frac{1}{h^2}\left[(1+h)-e^h\right]$$

Express the limit in the form given in the preceding problem.

10. Show that these assertions are not true.

a.
$$e^x - 1 = \mathcal{O}(x^2)$$
 as $x \to 0$

b.
$$x^{-2} = \mathcal{O}(\cot x) \text{ as } x \to 0$$

c.
$$\cot x = \phi(x^{-1})$$
 as $x \to 0$

11. Let $[a_n] \to 0$ and let $\lambda > 1$. Show that $\sum_{k=0}^n a_k \lambda^k = o(\lambda^n)$ as $n \to \infty$.

12. Explain why the least upper bound axiom does not apply to the empty set.

13. Find two functions in explicit form that are defined implicitly by the equation

$$(x^3 - 1)y + e^x y^2 + \cos x - 1 = 0$$

14. In solving differential equations, one often obtains solutions in implicit form. Show that the equation

$$2x^3y^2 + x^2y + e^x = c$$

defines a solution of the differential equation

$$\frac{dy}{dx} = -(6x^2y^2 + 2xy + e^x)/(4x^3y + x^2)$$

- 15. Kepler's equation in astronomy is $x y + \varepsilon \sin y = 0$, where ε is a parameter in the range $0 \le \varepsilon \le 1$. Show that for each real x there is a real y that makes the equation true. Show that if $0 \le \varepsilon < 1$, then dy/dx is continuous everywhere. Hint: Write $x = y \varepsilon \sin y$ and consider the behavior of $y \varepsilon \sin y$ as $y \to +\infty$ and as $y \to -\infty$. Use the Implicit Function Theorem for the second part of this problem.
- 16. Find the points x at which the equation

$$y - \ln(x + y) = 0$$

defines y implicitly as a function of x. Compute dy/dx.

- 17. Give an example to show why the least upper bound axiom does not apply to the set of all rational numbers.
- 18. Does the least upper bound axiom apply to the set of all integers?
- 19. What are the values of the following?
 - $\mathbf{a}_{\bullet} \sup_{x \in \mathbb{R}} \arctan x$
 - **b.** $\sup_{i \ge 0} e^{-i}$
 - c. $\inf_{x \in \mathbb{R}} e^{-x}$
 - **d.** $\sup_{x \in \mathbb{R}} (x^2 + 1)^{-1}$
- 20. Use the Mean-Value Theorem for Integrals to prove that

$$\int_0^{\pi/2} e^x \cos x \, dx = e^x$$

for some y in $(0, \pi/2)$.

21. Give an example to show why the continuity of *u* cannot be dropped from the hypotheses in Theorem 1.

Prove that if
$$0 < \theta < 1$$
, then $(1 + a\theta^n)/(1 + a\theta^{n-1})$ converges to 1 linearly.

- 23. Are the following equivalent?
 - **a.** $|f(x)| = \mathcal{O}(|x|^{-n-\epsilon})$ for some $\epsilon > 0$ as $|x| \to \infty$

b.
$$|f(x)| = \phi(|x|^{-n})$$

- **24.** Prove that the set of upper bounds for a set S in \mathbb{R} is either \mathbb{R} , the empty set, or an interval of the form $[a, \infty)$.
- 25. Prove by induction that the Horner algorithm is correct.
- **26.** When the sequence $x_n = (1 + 1/n)^n$ is computed, it appears to be monotone increasing. Prove that this is so. *Hints*: First, if $\ln f(x)$ is increasing, then so is f(x). Second, if f'(x) > 0, then f is increasing. Finally, $\ln x$ is defined to be $\int_1^x t^{-1} dt$.
- **27.** (Continuation) Show that the elements of the sequence in the preceding problem remain less than 3.
- **28.** Prove that $x_n = x + \phi(1)$ if and only if $\lim_{n \to \infty} x_n = x$.

An example of a difference equation that has nonconstant coefficients arises in the theory of Bessel functions. The Bessel functions J_n are defined by the formula

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta - n\theta) d\theta$$

It is obvious from the definition that $|J_n(x)| \leq 1$. Not so obvious, but true, is the recurrence formula

$$J_n(x) = 2(n-1)x^{-1}J_{n-1}(x) - J_{n-2}(x)$$

If (for a certain x) we know $J_0(x)$ and $J_1(x)$, then the recurrence relation can be used to compute $J_2(x), J_3(x), \ldots, J_n(x)$. This procedure becomes unstable and useless when 2n > |x| because roundoff errors that inevitably occur will be multiplied by the factor $2nx^{-1}$. This factor eventually becomes very large. (See Computer Problem **1.3.2**, p. 36.)

For further information on computing functions by means of recurrence relations, see Abramowitz and Stegun [1964, p. xiii], Cash [1979], Gautschi [1961, 1967, 1975], and Wimp [1984].

PROBLEMS 1.3

- 1. For the sequences following Equation (2), express the first as a linear combination of the second and third.
- 2. Let p be a polynomial of degree m. Is the solution space of p(E)x = 0 necessarily of dimension m?
- 3. Let p be a polynomial of degree m, with $p(0) \neq 0$. Prove that if a sequence x contains m consecutive zeros and p(E)x = 0, then x = 0.
- 4. Is the operator E injective (one to one)? Does it have a right or left inverse? Is it surjective (onto)? Define an operator F by $(Fx)_n = x_{n-1}$, with $(Fx)_1 = 0$, and answer the same questions for F. Explore the relationship between E and F. Suppose that Vwere redefined as the space of all functions on the set $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ and suppose that F were defined simply by $(Fx)_n = x_{n-1}$. How are the answers to the previous questions affected?
- 5. What are the eigenvalues and eigenvectors of the operator E?
- **6.** Consider the infinite series $\sum_{n=1}^{\infty} x_n v^{(n)}$. What can you say about the question of convergence? Prove that $x = \sum_{n=1}^{\infty} x_n v^{(n)}$ in the pointwise sense.
- 7. If $\{v^{(1)}, v^{(2)}, \dots\}$ is adopted as a basis for V, show that $\sum_{i=0}^{m} c_i E^i$ can be represented by an infinite matrix.
- 8. (Continuation) Prove that any two operators of the form described in the preceding problem commute with each other.
- 9. Prove that if L_1 and L_2 are linear combinations of powers of E, and if $L_1x=0$, then $L_1L_2x=0.$
- Develop a complete theory for the difference equation $E^r x = 0$.
- Give bases consisting of real sequences for each solution space. $(4E^0 3E^2 + E^3)x = 0$ **b.** $(3E^0 2E + E^2)x = 0$

$$(4E^0 - 3E^2 + E^3)x = 0$$

b.
$$(3E^0 - 2E + E^2)x = 0$$

ficients arises in by the formula

but true, is the

ation can be used table and useless be multiplied by Computer Prob-

irrence relations, chi [1961, 1967,

combination of the

0 necessarily of

tence x contains m

ieft inverse? Is it j = 0, and answer Suppose that $V = \{1,0,1,2,3,...\}$, the answers to the

cuestion of conver-

be represented by

receding prob-

 $u_1x = 0$, then

d.
$$(2E^6 - 9E^5 + 12E^4 - 4E^3)x = 0$$

d. $(\pi E^2 - \sqrt{2}E + \log 2 \cdot E^0)x = 0$

12. Prove that if p is a polynomial with real coefficients, and if $z \equiv [z_1, z_2, ...]$ is a (complex solution of p(E)z = 0, then the conjugate of z, the real part of z, and the imaginary par of z are also solutions.

13. Solve.

a.
$$x_{n+1} - nx_n = 0$$

b.
$$x_{n+1} - x_n = n$$

c.
$$x_{n+1} - x_n = 2$$

Define an operator Δ by putting

$$\Delta x = [x_2 - x_1, x_3 - x_2, x_4 - x_3, \dots]$$

Show that $E = I + \Delta$. Show that if p is a polynomial, then

$$p(E) = p(I) + p'(I)\Delta + \frac{1}{2}p''(I)\Delta^{2} + \frac{1}{3!}p'''(I)\Delta^{3} + \dots + \frac{1}{m!}p^{(m)}(I)\Delta^{m}$$

- 15. (Continuation) Prove that if $x = [\lambda, \lambda^2, \lambda^3, ...]$ and p is a polynomial, then $p(\Delta)x = p(\lambda 1)x$. Describe how to solve a difference equation written in the form $p(\Delta)x = 0$.
- 16. (Continuation) Show that

$$\Delta^{n} = (-1)^{n} \left[E^{0} - nE + \frac{1}{2}n(n-1)E^{2} - \frac{1}{3!}n(n-1)(n-2)E^{3} + \dots + (-1)^{n}E^{n} \right]$$

- 17. Give a complete proof of Theorem 2.
- 18. Let p be a polynomial such that p(0) = 0. Describe the null space of p(E).
- 19. For $\lambda \in \mathbb{C}$, define $x(\lambda) = [\lambda, \lambda^2, \lambda^2, \dots]$. Prove that if $\lambda_1, \lambda_2, \dots, \lambda_m$ are distinct nonzero complex numbers, then $\{x(\lambda_1), x(\lambda_2), \dots, x(\lambda_m)\}$ is a linearly independent set in V.
- **20.** Prove that if λ is a nonzero root of p having multiplicity k, then the equation p(E)x = 0 has solutions $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ in which $u_n^{(j)} = n^{j-1} \lambda^n$.
- **21.** Prove that if $\mu \in (0, \infty)$ and $|\lambda| < 1$, then $\lim_{n \to \infty} n^{\mu} \lambda^n = 0$.
- 22. Prove in detail that a convergent sequence is bounded.
- **23.** Prove Theorem 3 without the hypothesis that $p(0) \neq 0$.
- **24.** Define a sequence inductively by the equation $x_{n+1} = x_n + x_n^{-1}$, where $x_0 > 0$. Determine the behavior of x_n as $n \to \infty$.
- **25.** Determine whether the difference equation $x_n = x_{n-1} + x_{n-2}$ is stable.
- **26.** Prove that if x is a solution of the difference equation p(E)x = 0, then so is Ex.
- Consider the recurrence relation $x_n = 2(x_{n-1} + x_{n-2})$. Show that the general solution is $z_n = \alpha (1 + \sqrt{3})^n + \beta (1 \sqrt{3})^n$. Show that the solution with starting values $x_1 = 1$ and $x_2 = 1 \sqrt{3}$ corresponds to $\alpha = 0$ and $\beta = (1 \sqrt{3})^{-1}$.

COMPUTER PROBLEMS 1.3

1. Consider the difference equation $x_{n+2} - 2x_{n+1} - 2x_n = 0$. One of its solutions is $x_n = (1 - \sqrt{3})^{n-1}$. This solution oscillates in sign and converges to 0. Compute and print out the first 100 terms of this sequence by use of the equation $x_{n+2} = 2(x_{n+1} + x_n)$ starting with $x_1 = 1$ and $x_2 = 1 - \sqrt{3}$. Explain the curious phenomenon that occurs.