PROBLEMS 3.4

- 1. If F is contractive from $\{a, b\}$ to [a, b] and $x_{n+1} = F(x_n)$, with $x_0 \in [a, b]$, then $|x_n s| \le C\lambda^n$ for an appropriate C. Prove this and give an upper bound for C. Here s is the fixed point of F.
- 2. Prove that if $F: [a, b] \to \mathbb{R}$, if F' is continuous, and if |F'(x)| < 1 on [a, b], then F is a contraction. Does F necessarily have a fixed point?
- 3. Prove that if F is a continuous map of [a,b] into [a,b], then F must have a fixed point. Then determine whether this assertion is true for functions from \mathbb{R} to \mathbb{R} .
- 4. Show that these functions are contractive on the indicated intervals. Determine the best values of λ in Equation (2).
 - **a.** $(1 + x^2)^{-1}$ on an arbitrary interval
 - **b.** $\frac{1}{5}x$ on $1 \le x \le 5$
 - c. $tan^{-1}x$ on an arbitrary closed interval excluding 0
 - **d.** $|x|^{\frac{3}{2}}$ on $|x| \leq \frac{1}{3}$
- 5. Kepler's equation in astronomy reads $x = y \varepsilon \sin y$, with $0 < \varepsilon < 1$. Show that for each $x \in [0, \pi]$, there is a y satisfying the equation. Interpret this as a fixed-point problem.
- Consider an iteration function of the form F(x) = x + f(x)g(x), where f(r) = 0 and $f'(r) \neq 0$. Find the precise conditions on the function g so that the method of functional iteration will **converge cubically** to r if started near r.
- If you enter a number into a handheld calculator and then repeatedly press the cosine button, what number will eventually appear? Provide a proof.
- 8. Prove that the sequence generated by the iteration $x_{n+1} = F(x_n)$ will converge if $|F'(x)| \le \lambda < 1$ on the interval $[x_0 \rho, x_0 + \rho]$, where $\rho = |F(x_0) x_0|/(1 \lambda)$.
- **9.** What special properties must a function f have if Newton's method applied to f converges cubically to a zero of f?
- 10. If we attempt to find a fixed point of F by using Newton's method on the equation F(x) x = 0, what iteration formula results?
- 11. If f' is continuous and positive on [a, b], and if f(a)f(b) < 0, then f has exactly one zero in (a, b). Prove this, and show that with a suitable parameter λ , the zero can be obtained by applying the method of functional iteration, with $F(x) = x + \lambda f(x)$.
- Let p be a positive number. What is the value of the following expression?

$$x = \sqrt{p + \sqrt{p + \sqrt{p + \cdots}}}$$

Note that this can be interpreted as meaning $x = \lim_{n \to \infty} x_n$, where $x_1 = \sqrt{p}$, $x_2 = \sqrt{p + \sqrt{p}}$, and so forth. *Hint:* Observe that $x_{n-1} = \sqrt{p + x_n}$.

(Continuation) Let p > 1. What is the value of the following continued fraction?

$$x = \frac{1}{p + \frac{1}{p + \frac{1}{p + \cdots}}}$$

Use the ideas of the preceding problem to solve this one. Prove that the sequence of values converges by using the Contractive Mapping Theorem.

- 15. Let F be a contractive mapping of an interval [a, b] into itself, and let s be the fixed point of F. If $a \le x \le b$ and $|F(x) x| < \varepsilon$, does it follow that $|x s| < \varepsilon$? Prove that $|x s| < \varepsilon (1 \lambda)^{-1}$, where λ is the constant in Equation (2).
- **16.** Prove the statement at the end of this section in the text concerning the order of convergence in the method of functional iteration.
- 17. Most iterative processes are not as simple as the one expressed by $x_{n+1} = F(x_n)$, with $F: \mathbb{R} \to \mathbb{R}$. For example, we might have a map $F: \mathbb{R}^2 \to \mathbb{R}^2$. Show that the bisection method and the secant method are of this type. In each case, define F explicitly.
- 18. Prove that if F' is continuous and if |F'(x)| < 1 on the interval [a, b], then F is contractive on [a, b]. Show that this is not necessarily true for an open interval.
- 19. If the method of functional iteration is applied to the function $F(x) = 2 + (x 2)^4$, starting at x = 2.5, what order of convergence results? Find the range of starting values for which this functional iteration converges. Note that 2 is a fixed point.
- 20. Show that the following functions are contractive on the given domains, yet they have no fixed point on these domains. Why does this not contradict the Contractive Mapping Theorem?

a.
$$F(x) = 3 - x^2$$
 on $\left[-\frac{1}{4}, \frac{1}{4} \right]$

b.
$$F(x) = -x/2$$
 on $[-2, -1] \cup [1, 2]$

- 21. Prove that if f is continuous on [a, b] and satisfies $a \le f(a)$ and $f(b) \le b$, then f has a fixed point in the interval [a, b]. Note that we do not assume $a \le f(x) \le b$ for all x in [a, b].
- **22.** What is the weakest condition that can be put on the interval [c, d] so that each continuous map of [a, b] into [c, d] shall have a fixed point?
- 23. Find the order of convergence of these sequences.

a.
$$x_n = (1/n)^{\frac{1}{2}}$$

b.
$$x_n = \sqrt[n]{n}$$

c.
$$x_n = (1 + 1/n)^{\frac{1}{2}}$$

d.
$$x_{n+1} = \tan^{-1} x_n$$

- **24.** To find a zero of the function f, we can look for a fixed point of the function F(x) = x f(x)/f'(x). To find a fixed point of F, we can solve F(x) x = 0 by Newton's method. When this is done, what is the formula for generating the sequence x_n ?
- 25. Prove that the function F defined by F(x) = 4x(1-x) maps the interval [0, 1] into itself and is not a contraction. Prove that it has a fixed point. Why does this not contradict the Contractive Mapping Theorem?
- **26.** If the method of functional iteration is used on $f(x) = \frac{1}{2}(1+x^2)^{-1}$ starting at $x_0 = 7$, will the resulting sequence converge? If so, what is the limit? Establish your answers rigorously.
- 27. Prove or disprove: If $F: \mathbb{R} \to [a, b]$, and if F is contractive on [a, b], then F has a unique fixed point, which can be obtained by the method of functional iteration, starting at any real value.
- 28. Give examples of functions that do not have fixed points but do have these characteristics:

a.
$$f: [0, 1] \rightarrow [0, 1]$$

されていた。

- **b.** $f:(0,1)\to(0,1)$ and is continuous
- c. $f: A \to A$ and is continuous, with $A = [0, 1] \bigcup [2, 3]$
- **d.** $f: \mathbb{R} \to \mathbb{R}$ and is continuous
- 29. Prove that the function $f(x) = 2 + x \tan^{-1} x$ has the property |f'(x)| < 1. Prove that f does not have a fixed point. Explain why this does not contradict the Contractive Mapping Theorem.
- 30. This problem concerns the function F(x) = 10 2x. Prove that F has a fixed point. Let x_0 be arbitrary, and define $x_{n+1} = F(x_n)$ for $n \ge 0$. Find a nonrecursive formula for x_n . Prove that the method of functional iteration does not produce a convergent sequence unless x_0 is given a particular value. What is this special value for x_0 ? Why does this not contradict the Contractive Mapping Theorem?
- 31. Let F be continuously differentiable in an open interval, and suppose that F has a fixed point s in this open interval. Prove that if |F'(s)| < 1, then the sequence defined by functional iteration will converge to s if started sufficiently close to s. Hint: Select λ so that $|F'(r)| < \lambda < 1$, and consider an interval centered at r in which $|F'(x)| < \lambda$.
- 32. Let $\frac{1}{2} \le q \le 1$, and define $F(x) = 2x qx^2$. On what interval can it be guaranteed that the method of iteration using F will converge to a fixed point? (This problem is related to Problem 3.2.5, p. 90.)
- 33. Write down two different fixed-point procedures for finding a zero of the function $f(x) = 2x^2 + 6e^{-x} 4$.
- **34.** On which of these intervals $[\frac{1}{2}, \infty]$, $[\frac{1}{8}, 1]$, $[\frac{1}{4}, 2]$, [0, 1], $[\frac{1}{5}, \frac{3}{2}]$ is the function $f(x) = \sqrt{x}$ contractive?
- 35. A function F is called an iterated contraction if

$$|F(F(x)) - F(x)| \le \lambda |F(x) - x| \qquad (\lambda < 1)$$

Show that every contraction is an iterated contraction. Show that an iterated contraction need not be a contraction nor continuous.

- 36. If the method of functional iteration is used on $F(x) = x^2 + x 2$ and produces a convergent sequence of positive numbers, what is the limit of that sequence and what was the starting point?
- 37. Consider a function of the form F(x) = x f(x)f'(x), where f(r) = 0 and $f'(r) \neq 0$. Find the precise conditions on the function f so that the method of functional iteration will converge at least **cubically** to r if started near r.
- **38.** Analyze Steffensen's method (Problem **3.2.4**, p. 90) as an example of functional iteration. Determine its order of convergence.
- **39.** A student incorrectly recalls Newton's method and writes $x_{n+1} = f(x_n)/f'(x_n)$. Will this method find a zero of f? What is the order of convergence?
- $\widehat{f 40}$ Show that the following method has third-order convergence for computing \sqrt{R} :

$$x_{n+1} = \frac{x_n(x_n^2 + 3R)}{3x_n^2 + R}$$

41. Consider an iterative method of the form $x_{n+1} = x_n - f(x_n)/g(x_n)$. Assume that it converges to a point ξ that is a simple zero of the function f but not a zero of the function g. Establish the relationship between f and g so that the order of convergence of the method is 3 or greater.