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set of p2. so named in honor of G. Julia, a French mathematician who published an
important memoir on this subject in 1918, If all roots of p are simple. then the basins
of attraction are open sels in the complex plane. and the Julia set is the boundary of
each basin ol atraction.

The basins of atteuction for the polynomial p(z) = :* + | are shown in Figure
3.8. The five roots of p are:

@, = cos (Fmk) + isin {Ixk) k=0.1.231

We took a square region in the complex plane and generated a large number of lattice
points i that square. For cach lattice point, we ran a rough (est o determine to which
basin of attractton it belonged. This test consisted of monttoring the tirst 20 Newton
iterates and checking whether any of them was within distance 0.25 of a root. If so.
then subsequent iteration would produce quadratic convergence to that rool. This
fact was established by use of the standard convergence theory of Newton's method
in the complex plane. In this way. a list of lattice points befonging to cach basin of
attraction was generated. The basin of attraction for root wy was assigned one color,
and the basins for roots w. w>. ws. and wy were assigned (our other colors. These
five basins ot atiraction (actually just the lattice points in them) were displayed on
the color screen of a workstation, and then a color plot was produced from it. The
five color sets fit together in an incredible way that Jisplays a fractal appearance.
That is, on magnifying a portion of the plane where two sets meet, we see the same
general patterns repeated. This persists on repeated magmification. Furthermore,
eich boundary point of any one of these hive sets is also a boundary point of the
other three sets!

Recently. a number of articles and books have been published on fractals and
chaos. Additional information can be found, for example, in Barnsicy [1988]. Curry,
Garnett, and Suiflivan [1983], Dewdney | 1988]. Glieck [1987]. Mundelbrot [1982],
Peitgen and Richier [1986], Peilgen. Saupe. and Haeseler [1984]. Pickaver [1988),
and Sunder [1987).

PROBLEMS 3.5

@ Use Horner's algorithm 1o find pi), where

1

Py =370 s h 8o+

2. (Continualion) For the polynomial of preceding preblem, find its expansion in a Taylor
series about the point 7y = 4.

3. (Continuationy For the polynomial of Problem 3.5.1 (ubove), start Newlon's method at
the point 7, = 4. Whatis 7,7

J iContinvation} Fer the polynomiat of Problem 3.5.1 (above). apply Bairstow's methad

with the initial point (1. 1) = (3. [}. Compute the corrections 81 and Sr.

5. (Continuation) For the polynomaal of Problem 3.5.1 {above). find a disk centered at the
origin that contains all the roots.

6. (Continuation) For the polynomial of Problem 3.5.1 (above). tind a disk centered at the
arigin that contains none of the rools.

7. Daoes Theorem 3 sometimes give the radius of the smallest circle ventered at the origin
that contains all the roots of a given polynomial?
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Prove that every polynomial having reai coefficients can be factored into a product of
linear and quadratic factors having real coefficients.

Verify the recurrence relations and starting values given for ¢; and d; in the discussion of
Bairstow's method.

For the polynomial p(z) = 9z% — 7z + z* — 2z + 5, compute p(6), p'(6), and the next
point in the Newton iteration starting at z = 6.

Using the definition of multiplicity adopted in the text, prove that if z is a root of multi-
plicity m of a polynomial p, then p(z) = p'(z) = --- = p" " "{(z) = O and p*(z) #0.
(Coentinuation) Prove the converse of the assertion in the preceding problem.

Does Bairstow’s method yield a guadratically convergent sequence (ug, vy)7

Write an algorithm that deflates p(z) when a root zo is known, but computes the coeffi-

- cients of the reduced polynomial in ascending order—-that is, constant term first.

15,

&,

Derive Equation (4) in the discussion of Bairstow’s method.

Concerning the polynomial p(x) =ap+a;x + - +a,x", prove the following result. For
a given x, we set (¢, Ba. ¥a) = (a,, 0, 0) and define inductively

(o, Bj yp) ={a; + xaip, 0y + 2B, B +xyp)

for j=n—1,n—2,...,0. Then p{x) = ay, p'(x) = By, and p"{x) = 2y,.

In the analysis of Laguerre’s method, prove that

Crer—DD =3 ul
=1

1

In the description of Laguerre's method, the quantities A and B are functions of z and
depend on the given polynomial p. Let r be a root of p. Show that the corresponding
functions A and B for p(z)/(z — r) are, respectively,

A+(@z-r"" and B-(z—r)

. Prove that if p is a polynomial of degree n having real coefficients, then

tn—1 [19'(x)]2 > nplx)p”(x)

Assume that the roots are real.

COMPUTER
PROBLEMS 3.5

. Write a program that takes as input the coefficients of a polynomtial p and a specific point

zp and produces as output the values p(zo), p'(z0). and p”(z¢). Write the pseudocode
with only one loop. Test on the polynomial in Problem 3.5.1 (p. 128), taking zo = 4.

Write a complex Newton method for a polynomial having complex coefficients, with a
given starting point in the complex plane and a given number of iterations. Test your
program on the polynomial of Problem 3.5.1 (p. 128), starting with 79 =3 — 2i.

Experiment with Laguerre’s method coded in complex arithmetic. Find all four roots of
the polynemial used in the examples of this section.

. Using Newton's method and the polynomial p(z) = z* — 1, find three nearby starting

points (within 0.01 of each other) so that the resulting sequences converge to different
roots. Using a plotter, show the paths of these sequences of points within a square con-
taining the roots by connecting successive points with line segments.
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PROBLEMS 3.6

@

Solve the system of equations
P4 U B VA R y+2y —1=0

by the homotopy method used in Example 2, starting with the point (0, 0). (All the
calculations can be performed without recourse to numerical methods.)

- Consider the homotopy A (1. x} = tf(x) + {l — 1)g(x). in which

flr=x"—3x+6 gx)=x"—|

Show that there ts no path connecting a rost of g to a root of f.

- Let y = y(s5) be a differentiable function from R to R” satisfying the differential equation

{9). Assume that A(y(0y) = 0. Prove that h(x(s)) = 0.

- if the homotopy method of Example 2 is Lo be used on the system

sinc+cosvte =tan 'x+v)—xv=0

starting at (G 0). what system of differential equations will govern the path? A computer
program to seek the solution will be instructive.

- Prove that homotopy is an equivalence relation ameong the continuous maps from one

iopological space 1o another.

6. Are the functions f{x) = sinx and g(x) = cos x homotopic?

. Consider these maps of [0. 1] into (0, 1] J[2. 3):

fley=0 glxy =12

Are they homotopic?




