PROBLEMS 6.8

- 1. Find the best approximation to $\sin x$ by a function $u(x) = \lambda x$ on the interval $[0, \pi/2]$ using the supremum norm. *Hint:* Draw a sketch. The function $\sin t \lambda t$ should have a maximum at a point ξ in $(0, \pi/2)$, and it should have a minimum of the same magnitude at $\pi/2$. These conditions should determine ξ and λ .
- 2. (Continuation) Solve the preceding problem using the usual quadratic norm.
- 3. Suppose that we wish to approximate an even function by a polynomial of degree $\leq n$ using the norm $||f|| = \{\int_{-1}^{1} |f(x)|^2 dx\}^{1/2}$. Prove that the best approximation is also even. Generalize.
- **4.** Let p_0, p_1, p_2, \ldots be a sequence of polynomials such that (for each n) p_n has exact degree n. Show that the sequence is linearly independent.
- 5. Prove the Parseval identity:

$$\langle f, g \rangle = \sum_{i=1}^{n} \langle f, u_i \rangle \langle g, u_i \rangle$$

which is valid if f and g are in the span of the orthonormal set $[u_1, u_2, \ldots, u_n]$.

Show that the notorious **Hilbert matrix**, with elements

$$a_{ij} = (1+i+j)^{-1}$$
 $(0 \le i, j \le n)$

is a Gram matrix for the functions $1, x, x^2, \ldots, x^{n-1}$.

In a vector space with basis $\{v_1, v_2, \dots, v_n\}$, any other basis is obtained by a linear transformation

$$u_j = \sum_{i=1}^n a_{ij} v_i \qquad (1 \le j \le n)$$

in which the coefficient matrix is nonsingular. Show that the matrix that arises in this way from the Gram-Schmidt process is upper triangular.

- 8. In the three-term recurrence relation for the orthogonal polynomials, assume that the inner product is $\langle f, g \rangle = \int_{-a}^{a} f(x)g(x)w(x)dx$, where w is an even function. Prove that $a_n = 0$ for all n. Prove that p_n is even if n is even and that p_n is odd if n is odd.
- 9. Let $\{v_1, v_2, \dots, v_n\}$ be an orthogonal set of vectors in an inner-product space. What choice of coefficients produces a minimum value in $||f \sum_{i=1}^{n} c_i v_i||$? Don't overlook the possibility that some of the v's may be 0.
- 10. In the algorithm for computing a linear combination of orthogonal polynomials, show that at most 2n 1 multiplications are required. In the case of the Chebyshev polynomials, n multiplications suffice.
- 11. In the three-term recurrence formula for orthogonal polynomials, prove that b_n is positive by establishing that $b_n = \|p_{n-1}\|^2 / \|p_{n-2}\|^2$.
- 12. Prove that for the Legendre polynomials, the coefficients in the three-term recurrence are $a_n = 0$ and $b_n = (n-1)^2/[(2n-1)(2n-3)]$.
- 13. How would the three-term recurrence formula for orthogonal polynomials have to be changed if we desired to produce an *orthonormal* system?
- 14. Using the inner product $\langle u, v \rangle = \int_{-1}^{1} u(x)v(x)dx$, let the Gram-Schmidt process be applied to the sequence of functions $x \mapsto (x^2 1)x^k$, $k = 0, 1, 2, \dots$ Prove that if the resulting orthonormal sequence is renormalized to form a sequence of *monic* polynomials, then the latter satisfy a three-term recurrence relation of the form

$$q_{n+1}(x) = xq_n(x) - b_nq_{n-1}(x)$$

Give a formula for b_n . Determine the first three q-polynomials.

405

- 15. Prove that an orthogonal set of nonzero elements is necessarily linearly independent.
- 16. Let A be a linear transformation on an inner-product space. Assume that A is self-adjoint, which means that $\langle Af, g \rangle = \langle f, Ag \rangle$ for all f and g. Prove that the solutions of the equation $Af = \lambda f$, corresponding to different values of λ , are mutually orthogonal.
- 17. Let $[u_1, u_2, \dots]$ be an orthonormal sequence in an inner-product space. Prove that for any f in the space, the Fourier coefficients $\langle f, u_n \rangle$ are square summable:

$$\sum_{n=1}^{\infty} \langle f, u_n \rangle^2 < \infty.$$

- 18. Prove Theorem 7. Suggestion: Ordering the properties 1, 4, 3, 2, 5 is quite efficient.
- 19. Let \widetilde{T}_n be the monic multiple of T_n . Find the three-term recurrence relation satisfied by $\widetilde{T}_0, \widetilde{T}_1, \ldots$
- **20.** Find a formula for dist(f, G), where G is the subspace spanned by an orthonormal set $[g_1, g_2, \ldots, g_n]$.
- 21.) Derive these Legendre polynomials:

$$p_3(x) = x^3 - \frac{3}{5}x$$

$$p_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}$$

$$p_5(x) = x^5 - \frac{10}{9}x^3 + \frac{5}{21}x$$

- Using Theorem 5 directly, find p_0 , p_1 , p_2 , p_3 for [a, b] = [0, 1] and w(x) = 1.
 - 23. (Continuation) Determine p_3 in the form $p_3 = x^3 + Bx^2 + Cx + D$ by making p_3 orthogonal to \prod_2 . Verify your results by the use of the preceding problem.
 - **24.** Devise an algorithm for computing $\sum_{i=0}^{n} c_i p_i$ that computes, in order, each partial sum, $\sum_{i=0}^{k} c_i p_i$, for k = 0, 1, 2, ..., n. Assume that the coefficients a_k and b_k in Theorem 5 are known.

6.9 Best Approximation: Chebyshev Theory

In this section, we work with the space C(X) of all continuous real-valued functions defined on a given topological space X. We assume that X is a compact Hausdorff space. The reader who wishes to avoid considerations of general topology may take X to be a closed and bounded set in the real space \mathbb{R}^k , for example, an interval [a, b] in \mathbb{R} .

The space C(X) becomes a normed space (indeed, a Banach space) if we define the norm to be

$$||f|| = \max_{x \in X} |f(x)|$$

This norm is used throughout this section.

ıe

An important problem of best approximation in the space C(X) is as follows: An element f is given in C(X), and a finite-dimensional subspace G is given in C(X). We want to approximate f as well as possible by an element of G. Hence (as in the preceding section) we define

$$\operatorname{dist}(f, G) = \inf_{g \in G} \|f - g\|$$

In Corollary 1, the choice of words suggests that the exponential polynomial described there is unique. To verify this, suppose that $\sum_{k=0}^{N-1} a_k E_k$ is an exponential polynomial that interpolates f at $x_0, x_1, \ldots, x_{N-1}$ (where $x_j = 2\pi j/N$). Then

$$\sum_{k=0}^{N-1} a_k E_k(x_j) = f(x_j) \qquad (0 \le j \le N-1)$$

If we multiply both sides of this equation by $E_n(-x_j)$ and sum with respect to j, the result is

$$\sum_{k=0}^{N-1} a_k \sum_{j=0}^{N-1} E_k(x_j) E_n(-x_j) = \sum_{j=0}^{N-1} f(x_j) E_n(-x_j)$$

By Equation (12), this implies that

$$\sum_{k=0}^{N-1} a_k \langle E_k, E_n \rangle_N = \langle f, E_n \rangle_N$$

Since $\langle E_k, E_n \rangle_N = \delta_{kn}$, we conclude that

$$a_n = \langle f, E_n \rangle_N = c_n$$

PROBLEMS 6.12

Using the notation of Theorem 3 and Corollary 1, show that if an exponential polynomial $g(x) = \sum_{k=0}^{N-1} a_k E_k(x)$ assumes the value 0 at each node x_j , then the coefficients a_k are all 0.

2. (Continuation) Use the result of the preceding problem to give another proof that the interpolating function in Corollary 1 is unique.

3. Prove that $E_k E_n = E_{k+n}$ and that $\overline{E}_k = E_{-k}$.

Prove that if f and g are functions such that

$$f(x_j) = \langle g, E_j \rangle_n$$
 $(x_j = 2\pi j/n)$

then $g(x_j) = n \langle f, E_j \rangle_n$.

By taking real and imaginary parts in a suitable exponential equation, prove that

$$\frac{1}{n} \sum_{j=0}^{n-1} \cos \frac{2\pi jk}{n} = \begin{cases} 1 & \text{if } k \text{ divides } n \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{n}\sum_{i=0}^{n-1}\sin\frac{2\pi jk}{n}=0$$

6. Show that the inner product defined in Equation (12) satisfies the three Properties 1, 2, and 3 following that equation. Why is $\|\cdot\|_N$ not a norm?