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ABSTRACT 

In this paper, we consider norm estimates for operators of the product form 
E = (I - TI)...(I - T,)(I - To) m an abstract Hilbert space. By imposing appropri- 

ate assumptions on I;, explicit norm estimates for E are established. We then apply 
the abstract theory to convergence analysis of domain decomposition for nonsymmet- 
ric and indefinite second order elliptic problems. 

1. INTRODUCTION 

In [6], Bramble, Pasciak, Wang, and Xu considered a multiplicative itera- 

tive method for the solution of symmetric positive definite problems on an 
abstract finite dimensional Hilbert space that are defined in terms of product 
operators based on a number of subspaces. They developed a technique to 

estimate the norm of the error propagation operator of the form E = (I - 
Tr> 0-s (I - T,X Z - T,) for the multiplicative iterative method. Their as- 
sumptions were that the operators Tj are symmetric, semidefinite, and 
bounded above by a constant less than two, and that the smallest eigenvalue 
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of the sum of these operators I; is bounded below by a constant greater than 
zero. Applications of their results include convergence analysis for domain 
decomposition and multigrid methods for the second order selfadjoint elliptic 
boundary value problems. Based on this technique with slight modification, 
Bramble, Pasciak, Wang, and Xu in [5] and Wang in [19] provided conver- 
gence estimates for certain multigrid algorithms without full regularity as- 
sumptions, and Bramble and Pasciak in [2] analyzed smoothing operators for 
use in multigrid algorithms. These analyses strongly depend upon symmetry 
and semidefiniteness of the operators. 

In this paper, we develop norm estimates of the product operator E in a 
finite dimensional abstract Hilbert space under different assumptions. Essen- 
tially, we assume that the linear operators ?; are nonnegative definite up to a 
small perturbation and bounded above by a constant less than 2, and we 
require the smallest eigenvalue of the sum of the Tj”T. to be bounded below 
by a constant greater than zero. Applications of our a b stract analysis include 
convergence analysis for domain decomposition and multigrid methods for 
nonsymmetric and indefinite second order elliptic boundary value problems. 

The outline of the remainder of this paper is as follows. Section 2 provides 
an abstract analysis for estimating the norms of the product operator E under 
appropriate assumptions. Nonsymmetric and indefinite second order elliptic 
problems are briefly described in Section 3. In Section 4, we apply the 
abstract theory developed in Section 2 to domain decomposition methods 
with exact and inexact subproblem solvers whose uniform convergence are 
established provided the coarse grid mesh size is sufficiently small. 

2. NORM ESTIMATES OF PRODUCT OPERATOR IN 
HILBERT SPACE 

Let 2 be an abstract Hilbert space with inner product (0; 1, and let II . II 
denote its induced norm. For each j = 1,2, . . . , J, let Z be a closed 
subspace of G%?’ with inner product (*,a , 1. and induced norm II * ij. Assume that 
llnllj < 11011 for any v Eland Ilu!lj = /lull for any o ET. Let TJ be a linear 
operator mapping z into 5. In this section, we will give explicit upper 
bounds for the norm of the product operator 

E = (I - T,)( I - l’_l) *** (1 - T,). (2.1) 

To do this, we will make assumptions imposed upon the family of linear 
operators {Tj} and closed subspaces q}. A fundamental assumption for our 
analysis in this section is Assumption 2.2, which involves an inequality 
regarding the sum of the operators {q}. Th e main results consist of the norm 
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estimates of the product operator E defined in (2.1) in the case that the 
family of linear operators {TJ is either nonnegative definite or ‘almost’ 
negative definite (see Theorems 2.1 and 2.3). When the family of subspaces 
{q) is band orthogonal (see Definition 2.1>, these norm estimates of the 
product operator E are improved (see Theorems 2.2 and 2.4 as well as 
Remarks 2.2 and 2.3). 

The most important application of the results in this section is to the 
computation of the solutions of the discrete equations that arise from the 
numerical approximation of elliptic partial differential equations. In the case 
of finite element approximations, the inner products (.; > and (.; jj can be 
the bilinear forms associated with the symmetric positive definite part of the 
differential operator, and A? the finite element approximation space. The 
family of subspaces &) can be related either to subdomains in overlapping 
domain decomposition applications or to coarser grids in multigrid applica- 
tions. 

To begin our analysis, for each j = 1,2,. . . , J, set 

Ej = (Z - ?;)(Z - ?;._,)...(I - T,). 

For convenience, let 

E, = I, 

where Z is the identity operator on 2 Evidently, 

El = E. 

It is easy to see (see [6]) that, for any j E {I, 2;**, J), 

Ej-l - Ej = ?;Ej_l, 

from which follows 

I = Ei + i ljEj_l 
j=l 

(2.2) 

(2.3) 

(2.4 

i = 1,2,. . . ) J. 
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ASSUMPTION 2.1. There exists a constant w E (0,2) such that 

forany v EZandj = I,2 ,..., J. 

Essentially, Assumption 2.1 means that the family of linear operators {T,} is 
nonnegative definite and bounded above by w. The proof of our first lemma 
is slightly different from one in [19]. 

LEMMA 2.1. Under Assumption 2.1, we have 

(2 - w) f: (TjEj_p, Ej_p) < b/l2 - llEv112. (2.5) 
j=l 

PROOF. For any v ~2, it follows from (2.3) and Assumption 2.1 that 

llEj-Pll’ - IIEjoIl’ = II~Ej_,vll” + 2(qEj_,v, E,u) 

> (2 - w)(T,Ej-Iv, Ej-Iv). 

(2.5) now follows from summing the above inequality. 

Next, we introduce nonnegative symmetric matrice 

where cij, 8; E [0, l] are the cosines of the angle between the subspaces q 
and q with respect to the inner products (a; ) and (a; )k, respectively, i.e., 
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gij and ~~5 are the smallest constants satisfying the respective inequalities 

(‘i, 'j> 
< EijIJZ)ill IIUjlI, (Di,2ij)k < E~ll”illkllvjlIk~ ‘Oi E&> “3 E H]’ 

(2.6) 

These are known as the strengthened Cauchy-Schwarz inequalities. Clearly, 
Eii = &;i = 1, and cij = EI; = 0 if & is orthogonal to q with respect to the 
inner products (e; > and (.; Ik, respectively. The relevant quantity for these 
matrice E and E k are their 2-norms, ( E I and ( E k 1. 

LEMMA 2.2. Under Assumption 2.1, we have 

f: (qv,1;.~) < w max(1, o}l&l” i (qEj_,u, Ej_,u). (2.7) 
j=l j=l 

PROOF. ForanyjE[1,2 ,..., J}andvEZ,let 

bj = (qEj_,u, Ellz$” 2 0 

so that 

f: (?;Ej_lu, Ej_p) = f: b;. 
j=l j=l 

By (2.4) and the Cauchy-Schwarz inequality, we have 

j-l 

IIT,Ej_1~Il + C IIqT,Ei-luII 
i=l 

bj + ‘~1(~T,Ei_,v,l:$~,v)L’2 
i=l 
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The last inequality follows from Assumption 2.1, which also implies that the 
linear operator ?; is bounded by w. Cancelling ]]?;u]] from both sides of the 
above inequality and squaring, it thus follows from (2.6) and Assumption 2.1 
again that 

(. .) [ j-l 
2 

lp’zp d 0 bj + c E~‘211T,T,Ei_1u111’211~iEi_1ul11’2 
i=l I 

j-l 2 

c EI:/~(T~E,_,u,T,E,_,~)‘/~ 
i=l 

The lemma now follows from summing the above inequality and using the 
fact that 

2 = f: (cb); < 1~1~ f: b;. 
j=l _j=l 

n 

The strengthened Cauchy-Schwarz inequality was used by Widlund [ZO] 
and Xu [21] to bound CjJTjv, v) in terms of ~jj’=l<~Ej_lu, E._ ,v> in the 
case that the family of linear operators {TJ is symmetric, semi efimte, and 4 
bounded above by a constant less than two. Their analyses, and a similar 
approach by Bramble, Pasciak, Wang, and Xu in [6], strongly depend upon 
symmetry and semidefiniteness of the linear operators. They do, however 
lead to simpler upper bounds and possibly better results when the family of 
subspaces @} satisfy certain properties. For other uses of the strengthened 
Cauchy-Schwarz inequality, see also [15] and [X3]. 

A fundamental assumption for the analysis in this section involves an 
inequality regarding the sum of the operators {T,). 
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ASSUMPTION 2.2. There exists a positive constant C, satisfying 

llv112 < c, f: (?;v,?;v), vv Es%?. 
j=l 

This inequality was used by Cai and Widlund [7] in their treatment of 
additive overlapping domain decomposition methods for nonsymmetric and 
indefinite elliptic problems. See also [5, 6, 11, 12, 18, 19, 211. 

REMARK 2.1. Suppose I; is the orthogonal projection operator q from X 
onto ZJ, defined by 

(pjv,u) = (v,u), vv EZ vu ‘q. 

Then the verification of Assumption 2.2 reduces to the construction of a 
decomposition of every v E Z of the form 

I 
v= cvj 

j=l 

where vj l 3 satisfies 

f: Ilwjl12 < c~llv112~ 
j=l 

This observation is due to Lions [13] (see also [6]). 

As a direct result of (2.5), (2.7), and Assumption 2.2, we have 

THEOREM 2.1. Under Assumptions 2.1 and 2.2, we have 

2-w 

C,w max{l,c0}lE12 
(2.9) 

PROOF. For any u EZ, (2.5), (2.7), and Assumption 2.2 immediately 
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2-w 

C,w max{ 1, ~}lEl~ 
11fA2> 

which established the theorem. W 

The above theorem has applications to convergence analysis without 
regularity assumptions for multigrid methods that use nonsymmetric 
smoothers (see [2] and [19]). 

The bound on the norm of the product operator E provided in the 
Theorem 2.1 approaches one as 1~1, the 2-norm of the matrix E, increases. 
The worst case is that 1~1 is order of J, which is the number of subspaces in 
the family {q}. H owever, the norm estimate of the product operator E may 
be improved when the family of subspaces {q} satisfies the following orthog- 
onality property. 

DEFINITION 2.1. The family of subspaces {q} is called band orthogonal if 
there exists a positive integer m < J independent of J such that, for any fixed 

j E 11,2,. . ,]I> q 1s orthogonal to at least J - m other subspaces in the 
family with respect to the inner products (.; > and (a; Ii (i = 1,2, . . . , ]I. 

THEOREM 2.2. Assume that the family of subspaces {q} is band orthogo- 

nal and that Assumptions 2.1 and 2.2 hold. Then 

2-w l/2 

C,m’w max{ 1, w) 
(2.10) 

PROOF. (2.10) follows from Theorem 2.1 and the fact that 1~1 < m when 
the family of subspaces {ZJ is band orthogonal. W 

REMARK 2.2. Assume that ZO is a closed subspace of Xand that T, is a 
linear operator mapping 3 to ZO that satisfies Assumption 2.1. Then, under 
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i 

2-w 

1 

l/2 

llE( I - T,)ll G I - 
C,(m + l)“max{l, w} 

(2.11) 

Theorem 2.2 can be applied to convergence analysis of overlapping 
domain decomposition with inexact subproblem solvers; band orthogonality of 
the family of linear subspaces, defined as in the Definition 2.1, would 
correspond to the intersection property of the subdomains for this applica- 
tion. 

The above discussions are based on the assumption that the family of 
linear operators (T,} is nonnegative definite and bounded above by a constant 
less than two. In order to discuss the applications to overlapping domain 
decomposition and multigrid methods for nonsymmetric and indefinite ellip- 
tic problems, we make the following assumption on the linear operators ?;, 
which amounts to assuming that these operators are nonnegative definite and 
bounded above by a constant less than 2 up to a small perturbation. 

ASSUMPTION 2.3. There exists a constant 
fixed j E {1,2,. . . , J}, we have 

w E (0,2) such that, for any 

where {T.) are (nonnegative) real numbers for which there exist constants C 
indepen LL nt of ] and r’, r” > 0 such that 

1. E,li:jrj+i =G C; 

2. q=17-jll~ll; =G r’llvl12 Vu EZ 

3. ~~=,7,11oll~ G r”llvll~ Vi E {1,2,. , J} and VU ET. 

For any j E {l, 2, . . , J}, it is easy to see that Assumption 2.3 implies that 

IlTjll =G 51 = ; + 
w2 

i--- 
7+ - 

4 
(2.12) 

with T = maxrGjG,rj. 
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(2 - w) f: (7;Ej_ 1v, Ej_,v) G llVf + c 7,iiEj_& - iiEvii2. (2.13) 
j=l j=l 

PROOF. (2.13) follows from the proof of Lemma 2.1, but using Assump- 
tion 2.3 instead of Assumption 2.1. W 

LEMMA 2.4. Under Assumption 2.3, we have 

c (?;v,T,v) =z Cl f: (?;Ej_lv,~Ej_lv), 
j=l j=l 

where 

C, = 2max{l, w51}l&12 + C. 

(2.14) 

(2.15) 

PROOF. Foranyj E {l,Z,...,J} and v EZ let 

bj = ll?;E,_,vlI 

so that 

f: (?;E~_~v,T,E,_,V) = f: b,?. 
j=l j=l 

By (2.4), the Cauchy-Schwarz inequality, Assumption 2.3, and (2.61, we have 

(‘I;u, ?v) = (TV, ?;Ej_lv) + I< (?;v> ?;‘iEi-Iv) 

j-l 

G IIqvII bj + C 
i=l 
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j-l 

bj + c [w(ZjT’jEi_,v,Z’iE,_lv) + Tjb$‘2 
i=l 

j-l 

Cancelling llqvll f rom both sides of the above inequaliq, squaring it, and 
using (2.121, it then follows that 

(?;.v, ?;u) Q (bj + -&oqj& + #'b,i' 
i=l 

j-l 

< bj + d/y:/2 c .+‘2bi + r;‘2 c bi 
i=l 

By summing the above inequality, (2.15) now follows from (2.8) and the fact 
that 

j=l “\ i=l / 

This completes the proof of the lemma. 

< C E b,?. 
j=l 

LEMMA 2.5. Under Assumption 2.3, we have 

f: (TjEj-10, TjEj_lu) < C,(( w + ~T’)IIvII~ - ~/lE~ll~) (2.16) 
j=l 

where 

1 
c, = 

2 - w - 4&T” 
and t2 = max IdI. 

l<j<] 
(2.17) 
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PROOF. It follows from Assumption 2.3 and Lemma 2.3 that 

f: (~E~_,u,~E~-~~I) < o i (TJEj_,v, Ej-1~) + C T(Ej-,vtEj-,o)j 
j=l j=l j=l 

- ~~lEvll”. 

By (2.4), (2.61, A ssumption 2.3, and the fact that llT,w/lf = llZ’wl12 VW E% 
we have 

C ~j(Ej_l~, Ej-1~)~ < 2 f: T~IIvIIT + 2 f: ~3 
2 

j=l j=l j=l j 

< ~T’I(vII~ + 2 f: ~j ‘2 E~~II~iEi-IvIIjIITkEk-lvIIj 
j=l i,k=l 

,< ~T'((v((' + 2.5, f: ~j</,TiEi_lv/(; 
j=l i=l 

= ~T’~~v~~~ + 2t~27” 6 (?j.Ej-,v, ?Ej-lv). 

j=l 

The above two inequalities imply (2.16). n 

The inequalities in Lemmas 2.4 and 2.5 and Assumption 2.2 can be 
combined to establish the following result,. 
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THEOREM 2.3. Assume that Assumptions 2.2 and 2.3 hold. Then there 
exists a positive constant r,, such that, if r’, r” < rO, then 

IIEII < (1 - S)“2, (2.18) 

where 

S= 
1 - 4r’C,C,C, 

OJ 

E (2.19) 

PROOF. Assume r,, is so small that S E (0, 1) for r’, r” < rO. (If ra < 2 
- o/4t2 then C, in (2.17) is defined. From the following argument we can 

then conclude that 6 < 1. In order to guarantee S > 0, we must choose ra 

possibly smaller so that 4r’C,C,C, < 1 when r’, r” < ra.) For any o ~2, 

Lemmas 2.4 and 2.5 imply that 

f: IIT,vII’ d C,C,(( 0 + 4r’)llv112 - wllEvl12), 
j=l 

which, together with Assumption 2.2 yields 

lIEdI < (1 - 6)llvl12. n 

THEOREM 2.4. Assume that the family of subspaces &} is band orthogo- 
nal and that Assumptions 2.2 and 2.3 hold. Then there exists a positive 
constant rO such that, if r’, r” < rO, then 

IIEII Q (1 - 6)i”, (2.20) 

where 

s’= 
1 - 4r’C,6,6, 

c&C, w 
E (O,l>> (2.21) 
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and 

6, = 2m2max(l, w5J + C and d2 = 2 _ w y 4m7,, . (2.22) 

PROOF. This theorem follows from Theorem 2.3 and the fact that t2 < m 

when the family of subspaces &} is band orthogonal. W 

REMARK 2.3. As in Remark 2.2, let X0 be a closed subspace of sand let 
To be a linear operator mapping Z? to X0 that satisfies Assu_mption 2.3. Then, 
under the assumptions of Theorem 2.4, (2.20) holds with 6 defined in (2.21) 
and 

c’, = 2(m + l)“max{l, wtr} + C, (52 = 
1 

2 - w - 4(m + 1)r” ’ 

3. ELLIPTIC BOUNDARY VALUE PROBLEMS 

For simplicity, assume that the domain IR is an open, bounded, and 
polygonal subset in R 2. Extensions of the results in subsequent sections to 
higher dimensions are straightforward. Consider the elliptic boundary value 
problem 

-V.(DVu) +g.Vu +du =f, ina, 

u = 0, on aS1. 
(3.1) 

It is convenient to write (3.1) in the weak form: Find u E H,‘(0) such that 

a(u,v) = (f,v) Vv E H,‘(a). (3.2) 

Here, (.,a ) denotes the inner product in L’(a) whose induced norm is 
denoted by II . 11, and, for any u, v E H,‘(R), 

a(u,v) = a’(u,v) + b(u,v) (3.3) 
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where 

d(u, u) = / ( mqTVudx and 
n 

b(u,u) = _/ (6. Vu + du)udx. 
n 

(3.4) 

We make the standard assumption that a’(~, v) is bounded and uniformly 
elliptic in H;(Q), so the energy norm 111 * 111 = dm is equivalent to the 
H1 seminorm. Also, we assume that, for any U, 2, E H,‘(S1), 

(3.5) 

and 

Ill u Ill ’ - cllvl12 < a( vfi, u) Vu E ff,‘( a), (3.6) 

which is G&ding’s inequality. Here and henceforth, we use c to denote 
generic positive constant independent of the number of the subspaces J and 
the mesh parameter h. We also assume the following regularity result: Given 
g E L2(CI>, then the solution u E H,‘(O) of the adjoint problem of (3.2) 

a(u,u) = (g,u) Vu E H,‘(a) 

satisfies 

IM+a G cllgll, (3.7) 

where cx E (0,l) is independent of the data g but dependent on the shape of 
the domain. Here, (I- Ill+a is the usual H’+“(R) norm. 

Let Ph be the piecewise linear finite element space associated with a 
regular triangulation sh (see [lo]). Th e ml e element approximation to the f ‘t 
solution of problem (3.2) . IS now defined as the solution of the following 
problem: Find u •9~ such that 

a(u,u) = (f,u) vu E.Yh. (3.8) 

In general, the existence and uniqueness of the solution u in (3.8) does not 
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immediately follow. It turns out, however, that if h is sufficiently small, then 
the above problem does have an unique solution. 

4. APPLICATION TO SCHWARZ ALTERNATINC PROCEDURE 

In this section, we apply the abstract theory developed in Section 2 to the 
Schwarz alternating procedure (see [8, 9, 13, 171) (also called the overlapping 
domain decomposition method). The iterative operators for the Schwarz 
alternating procedure may be written in the form of the product operator of 
Section 2. Therefore, the results of Section 2 show that, in order to bound the 
convergence rate of Schwarz alternating procedure, it suffices to verify 
Assumption 2.2 and either Assumption 2.1 or 2.3, and apply either Theorem 
2.2 or 2.3, or Remark 2.2 or 2.3. The verification of Assumption 2.2 is given 
by Cai and Widlund [7] for appl’ ica ion of the Schwarz alternating procedure t’ 
using exact subproblem and coarse problem solvers. The main results of this 
section include uniform convergence of the Schwarz alternating procedure 
with both exact and inexact subproblem solvers (see Propositions 4.1 and 4.2). 

To define the Schwarz alternating procedure, assume that we are given a 
regular coarse triangulation SH = { Kj>J_ i, and a regular fine triangulation 
sh obtained by further partitioning al i- of the elements in SH. Associated 
with the coarse triangulation p, we construct a set of overlapping subdo- 
mains {fij)/= i by extending each element Kj E F to a laser subdomain 
Klj, whose diameter is denoted by Hj, such that fi = lJ != ,Rj. Assume that 
the maximum number of subdomain overlaps is bounde d , so that the associ- 
ated family of subdomain spaces will be band orthogonal with fmed m. 
Assume further that the distance between the boundaries dKj and aSl, is 
bounded below by ti H and above by c2 H, i.e., for all j E (1,2, . , 
exist constants fi, > 0 that 

Also that the of the do not through any in 
sfi, they must with boundaries elements of 

Let pH ph be respective piecewise finite element 
associated with and sh, denote the YH and 

equipped with energy norm - by V, 7. With set of 
subdomains {a,)!_ 

I’, 

we the family the finite 
approximation subspaces j = by 

T {u E o c 
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for all j E {1,2,. . . , J}, where supp v means the support of v. The norm for 

q is defined by 111 * lllj = a$*,* ), w h ere uJ(*; > is a bilinear form defined 

on?XT by 

qu,v> = / (DVu)TVvdx vu,v E 3. 
4 

For any v E 7, we define linear operators q and Py from Y onto Z;; by 

a(~v,~)=a(u,cp) VP’?, jE{O,l,...,J} (4.1) 

and 

~(Tv, 'p) = U(V, 9) VP E T, j E {1~2,...,_/)~ (4.2) 

respectively. Associated with these subspaces { %$),J= a, we consider the follow- 
ing Schwarz alternating procedure for solving problem (3.8). 

ALGORITHM 4.1. Given un approximation u1 E IT to the solution u of 
(3.81, d&e the next approximation u’+l E ‘9’” us follows: 

1. Set W_, = u’. 
2. Forj = 0, 1, . , J in turn, define Wj by 

wj = wj_l + qu - Wj_& 

3. Set u’+’ = W I’ 

This algorithm requires exact solution of each nonsymmetric and indefinite 
subproblem on q (j = 1,2, . . . , J> and the coarse grid problem on TO. 
Alternatively, we may replace the linear operators 5 in the above algorithm 
by linear operators Pi”, which means that the symmetric positive definite part 
of the nonsymmetric indefinite operator is used as a preconditioner for each 
subproblem. 

A simple calculation implies that the error propagation or iteration opera- 
tor for Algorithm 4.1 is 

E, = (I - P,)...(Z - P,)(Z - PO). (4.3) 
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Alternatively, we have iteration operator 

E, = (I - PI”) . ..( Z - P,“)( Z - I’,) (4.4) 

for Algorithm 4.1 with y replacing 5. 
By noting that the family of subspaces {Y#= r is generally band orthogo- 

nal, the results of Section 2 show that, in order to bound the rate of 
convergence for Algorithm 4.1 and its alternative, it suffices to verify Assump- 
tions 2.2 and 2.3 for the operators Pi and q?, and apply Remark 2.3. To do 
this, we first note the following three lemmas that were stated and proved in 
[ll] and [7]. 

LEMMA A. For any u E 7, there exists a decomposition of u with 
u = CjCOuj and uj E Yj such that 

f: aS(uj,uj) < COaS(u,u), 
j=O 

(4.5) 

where C, is a constant independent of h and H. 

This lemma was proved by Dryja and Widlund [9]. See also [ll]. 

LEMMA B. There exists a constant Ho > 0 such that, if H < H,, then 

III P,u III G c Ill u Ill and II( I - PO)ull < cH” Ill u Ill VV E 7. (4.6) 

This is a straightforward consequence of Schatz’s work [14], which is 
obtained by replacing the exact solution and finite element approximation by 
the fine and coarse grid finite element approximation, respectively. Assump- 
tion 2.2 follows from 

LEMMA C. There exists a constant H, > 0 such that, if H < H,, then 

I 
c Ill v Ill 2 < C aS( qv, qu) 

j=O 
(4.7) 
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and 

clllu((12 <a"(P,u,P,u)+ f:as(~~u,~u) 
j=l 

(4.8) 

for any v E 7. 

This lemma may be proved by perturbation argument using G&ding’s 
inequality and Lemmas A and B. Next, we need to verify Assumption 2.3. 

LEMMA 4.1. For any v E T, we have 

4 
a”(P,v, POv) < ~a”(P,v,v) + cHeaaS(v,u), (4.9) 

a”(P,v, Pjv) < zaS(l;v,v) + cH2aj”(v,v), (4.10) 

and 

as( pj”v, pi”v) Q :a’( Pjsv, v) + CH2aj( V, V), (4.11) 

for allj E {1,2, . , J}. 

PROOF. For any v E 7, by inequality (3.5), we have 

a’( P,v, P,v) = a( P,v, POv) - b( POv, Pp) 

= a( 0, P,v) - b( Pp, P(p) 

= a’(v, P,v) + b(( Z - P,)v, POv) 

< aS( P,v, v) + cII( I - P,)vll Ill P,u III. 

It follows from Lemma B that 

aS( P,u, P,v) 6 aS( P,u , u) + cH a III 2) Ill III P,v Ill 

Q a’( P,v, 0) + f Ill P,u Ill ’ + (da Ill 0 Ill)“, 
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which certainly implies (4.9). For any j E {1,2, . . . ,I) and any u E 7, since 
support of Pju is fij whose diameter is H., an elementary estimate shows 
that 11 Pjull < cHj 111 pju 111. H ence, by (3.3), 4.1) and (3.5) we have 

d( pju, pju) = a(u, Pp) - PJU, pju) 

= uyu, pju) + b(( z - pj)u, 

G a’( pj”, U) + C III (I - pj)U Ill jllpjUll 

=G a’( pju, U) + CH Ill 0 IIIj Ill 50 Ill 

G a”(Pju, Q) + i III pju III 2 + (cH Ill u lllj)‘. 

(4.10) follows. An analogous argument leads to (4.11). W 
Lemma 4.1 and the definitions of the subspaces q guarantee Assumption 

2.3 with an appropriate constant C and r’ = rn = cH 2. As a straightforward 
consequence of Remark 2.3, we have 

PROPOSITION 4.1. There exists a constant H, > 0 such that, if H < H,, 
then Algorithm 4.1 and its alternative are uniformly convergent, i.e., 

Ill E, 111 G ~1 (4.12) 

and 

III E, III G -YZ (4.13) 

where y1 < 1 and y2 < 1 are constants that do not depend on the number of 
sub&mains], the maximum size of the subdomains H, or the mesh size of the 
$ne triangulation h. 
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Fix j E (0, 1, , J} and define the L2 projection Qi from M onto q 

and the linear operator Ai: y -+ 5 by 

(Qju, ‘P) = (u, cp), Vu E T, b E 3, (4.14) 

and 

(A+ p) = a(~> ‘p) vu, P E q~ 

respectively. Fix j E {1,2, . . , J) and define the linear operators Aj”: 5 + T 

and A: Y”+ 7 by 

(A;v, ‘P) = d(v, ‘p) E b’ 

and 

‘P) a(~, vV> l y, (4.17) 

respectively. It is easy to see that, for any j E {O, 1, . , J), 

and 

pj A,:‘QjA 

pj” = (4.19) 

Thus, to avoid solving either nonsymmetric indefinite or symmetric positive 
definite subproblems in Algorithm 4.1 and its alternative, we introduce a 
scaled preconditioner Rj 
for any 27 E 7, either 

for either Aj or AT that satisfies the property that, 

a”(RjAjv, RjAj u) < a’( Rj Ajv, v) + C,$Zjau”( 0, v)( /3 > 1) 

C,a”(u,v) Q d(v, RjAju) (4.20) 
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or 
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C,a”( v, U) < a,‘( v, RjA;v), (4.21) 

j = 1,2 ,..., J. Th e d evelopment of preconditioners has been the subject of 
intensive research (cf. [l-3, 11, 121). Let T, = P, and Tj = R.Q,A and 
consider the following Schwarz alternating procedure applied to (’ 3.8) using 
inexact subproblem solvers. 

ALGORITHM 4.2. Given an approximation u1 E T to the solution u of 
(3.8), define the next approximation ul+ ’ E 7 as follows: 

1. Set W_, = ul. 
2. Forj = 0, 1, . . , J in turn, define Wj by 

wj = wj_l + qu - wj_l). 

3. Set u’+l = W I’ 

The following lemma establishes Assumption 2.3 for an appropriate con- 
stant C and either r’ = 7” = cH p or r’ = r” = cH ‘. 

LEMMA 4.2. For any u E T for all j E {I, 2, . . , J), if (4.20) holds, 
then 

as(?;u,?;u) < ia’(qv,v) + cHPuj(v,u), 

and if (4.21) holds, then 

4 

(4.22) 

(4.23) 

PROOF. Fix j E {l, 2,. . . , J) and v E 5. Then by (4.181, (4.20), the 
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definitions of the linear operators 5, Qj, and A, and (3.5) we have 

a”(Z& 2;.u) = aS( Rj Ajpju, RjAjpjv) 

< as(RjAjF'p,Pj~) + C,-H,pa"(pjv,pjv) 

= as(?;v,v) + b(Tjv,(Z - Pj)v) + c~Hj%"(pjv,Fp) 

<aS(qV,V) +Cll~UllIII(Z~~)UIllj +C,HjPU”(+,PjV) 

Q u”(Tjv, V) + fus(Tp, 2;.V) + qq u, v) 

+ cgj%zs( lp, Pjv), 

which implies (4.22). (4.23) f o 11 ows from the above proof by replacing Ai by 
A; and setting C,- = 0. 

Assumption 2.2 follows from 

LEMMA 4.3. Zf either (4.20) or 
Ho > 0 such that, if H < H,, then 

c III f.2 Ill 2 < 

for any v E 7. 

n 

(4.21) holds, then there exists a constant 

f: d(?;v, ?;v) 
j=O 

(4.24) 

PROOF. Without loss of generality, we only prove inequality (4.24) by 
assuming (4.20). Fix j E { 1,2, . . . , J} and v E Y. Then by (4.20) we have 

uS( pju, pjv) d $P( pju, Tj”) 
A 

G ; Ill pjv III Ill ?;v Ill . 
R 
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III piu Ill =s g Ill Tju Ill . 
R 

By the inequalities (3.5) and Lemma B, for any E we have 

a( p,u, 00) - b( u, 00) = aS( p,u, uo> + b(( PO - Z)u, 00) 

G Ill pip Ill Ill 00 Ill + cll( PO - +I1 Ill 00 III 

< Ill P,u Ill III 00 Ill + cH” III u III Ill 00 Ill . 

It follows from the above inequalities and Lemma A that 

d(u,u) = c U”(U,Uj) 
j=O 

G cjco Ill pju Ill III uj Ill + c H” Ill 00 III + f: H Ill uj Ill Ill 21 Ill 
j=l 

< $ ,$ Ill ?;u Ill Ill uj Ill + C( Hz” + JH2)1’z III.0 III 
1/ 

R J-0 

< F( ~olll~ulll~)l” lllu Ill + cC,"~(H~~ +JH2f2 111 u iii2. 

The proof is completed by using Ho smaller enough so that cCA'~(H~* + 
JH 2, is bounded above by a constant less than one. n 

Letting 

E, = (I - T&(Z -To), 
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then as a direct result of Remark 2.3 we have 

275 

PROPOSITION 4.2. Unokr the assumptions of Lemma 4.3, there exists a 
constant Ho > 0 such that, if H < H,, then Algorithm 4.2 is uniformly 
convergent, i.e., 

III E, III Q ~3 (4.25) 

where y3 < 1 is a constant that does not depend on the number of subdo- 
mains J, the maximum size of the subdomains H, and the mesh size of the fine 
triangulation h. 
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