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holds for all w € H*¢(K) with Aw € L?(K) and for all v € H'~¢(K) with 0 < e <
1/2. Let H™¢(K) be the dual of H§(K) which is the closure of C§°(K) in the H¢(K)
norm. Since H¢(K) is the same space as H§(K) for € € (0,1/2) (see, e.g., Theorem
1.4.2.4 in [24]), Vv is then in H~¢(K)% That is, the term (Vw, Vv)g in (2.7) can
be viewed as a duality pairing between H¢(K)? and H~¢(K)?. The validity of (2.7)
follows from the standard density argument and the fact that (2.7) holds for C*°(K)
functions.

By the trace theorem [24], v|ax is in H'/2-¢(8K). Hence, the formal boundary
integral in the left-hand side of (2.7) may be regarded as the duality pairing between
He1Y2(9K) and H'/?~¢(dK), which is defined by the right-hand side of (2.7). Since,
for each edge e C 8K, the trivial extension of functions in H/2-¢(e) by zero to all
of 8K belongs to H/2~¢(K) (see, e.g., Theorem 1.5.2.3 in [24]), this interpretation
enables us to define the duality pairing on each edge e of 4K,

/(V'w n)vds := (Vw - n,v),,

where (Vw - n)|. € H1/2(e) and v|, € HY?~%(e).
LEMMA 2.1. Letting K € T, e € 0K, and 0 < € < 1/2, for any ¢ € H'*¢(K)
with A¢ € L?(K), there exists a positive constant C independent of ¢ such that

(2.8) V6 nll—1/2,e < C (IVPlle,x + b 1 ABllo,x) -

Proof. Inequality (2.8) is contained in the proof of Corollary 3.3 on page 1384
of [10]. For the convenience of readers, we provide a proof here. For any g € H 1/2-¢(g),
there exists a lifting vy of g such that vy € H'~(K), vgle = g, vglox\e = 0, and

“v“g”#f,K i+ hfrc_] "'Ugl 0K < C[Ig”1/27e,e-

It then follows from the Green’s formula in (2.7), the Cauchy—Schwarz inequality, and
the definition of the dual norm that

(Vo -n,g)e = (Vo n,v5)ax = (Ad, vg)x + (V, Vug)k
< |Agllo,k llvgllo,xc + IV @lle,x | VUgll -, i
< C (|VBlle,xc + b N1Adllo.x) gl /2—e,es

which, combining with the definition of the dual norm

voh <V¢ ' n, g)e
" Vq/ * 1\ N E""'%-/(f Wl‘mdl/b,\@ = sup ALY _oadie

geH/2—¢(e) ”9"1/2——6,8 '

implies (2.8). This completes the proof of the lemma. O
Denote by H*(7) the broken Sobolev space of degree s > 0 with respect to 7,

H(T)={ve L*(Q) :v|]x € H(K) YK eT}
and denote its subspace by
(2.9) VI(T)={ve H}T) : V- (kVv) € L}(K) VKeT}

Let u be the solution of problem (1.1)—(1.2); then it is well known from the regularity
estimate [28, 24] that u € H!**(Q) for some positive o which could be very small.
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for any K € 7. The so-called DG norm is defined as follows:

1/2
1|U|1|DG—(”’C%VHU”%,Q+ > hQIWeII[{v]!Hﬁ,e) .

ecErUEn

LEMMA 2.3 (uniqueness and coercivity).
(i) The bilinewr form ai(-,-) is coercive in UPY with the coercivity constant

min{1,v}, provided that v, > 0, i.g,
(2.16) a1{v,v) > min{l,n}|v]3, Vwve ubre,

Thus the NIPG problem in (2.15) has a unique solution, provided that v > 0.

(ii) Let wS and w® be weights salisfying (2.1). They SIPG and IIPG problems
(2.15) have o unigue solution, provided that ~y, > 2(1 8Y2p,. Moreover, the sym-
metric/incomplete bilinear form a,(-,) for 8 = —1 or 0 is coercive in UPG with a
coercivity constant aq € (0,1) independent of the mesh size and the ratio kmax/ Kmin
ie.,

(2.17) a,(v,v) > oolol, Vv EUPT,

for 8 = =1 and 0, provided that v, > iqi-{g—iﬂt + g

Proof Let § be a positive constant to be determined. For any v € 4P and
for e € £ |J Ep, the Cauchy-Schwarz inequality and the inequality of arithmetic and
geometric means give

(2.18)
ok W,
2> 3 [tvendublass 3 GEETendulRot 3 iR
€ VVC 5116
ec&UED ecErUED ecErUED

For e € &, let e = QK NAK?. Since kVu is constant on each clement,

he
e 0 nduld,

© Yk
(e b,

Tk (Vo ne)z}

e Zk
S 2}13 {%W)“—-*-k.;’. (V'U+ . ne)z -+

(wg)?hs (we)%he
w, ' W,

< 2h? max{ } (ki (Vg -ne)? +k_(Vu_ - n.)?).

Similarly, for e € £p and e C JK, we have

he

W—l}{kV'u . ne]»w”?}‘e = k' W2 (kx Vg - ne)? = Rk (Vok “ng)%.
€

Summing up over all edges in £ U Ep and using (2.5) imply that

he
(2.19) > 5 1{6Vo nyol2 <23 > h2ki(Vuk -ne).
eCErUED € KeTecly

It is proved in (3] that

2 2 T a2 =
E ho(Vu - ng)® = 403 8 v,
ecfy
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where Uk is the vector of values of v at vertices of K. Since k](‘ﬁ?;SKUK = (kVv, Vu)k,
thus

Z hki (Vo - n.)? < dkptrS% Uk < 4p(Sk )k Sk K = 4p(Sk) (kVv, Vo),

ecEk
which, together with (2.19), leads to
hE 2
> Wu{wv n}yll2 < 8p,(kVhv, Viv).
ecEIUED e
Using (2.18), we now have

> / {kVv - n.}u[v] ds < 46p, (kVhv, Vav) + Y

e€EIUED ecETUED

Hence,

T NG -

(% 1/) We

a, (v, v) = (1 - 4(1 ";/9)5p,r)(kvhv, i)+ Y

6' e€EUED
6 . 1:'/
For any constf?a‘/ao € [0,1), ELSE‘;)DE that vy, > (—71 + ap; then there exists

& > 0 such that 2(%\39) o i(wll—r(Tl which is equlvalent to
- iy
1—4(1 7{9}6[37 >ap and 7y, — 2—{ > ag.

This implies the coercivity of a,(v,v) in (2.17) for any o € (0,1). When ap = 0, it
yields that a,(v,v) is positive and definite in 4P¢ and, hence, problem (2.15) has a
unique solution. This completes the proof of the lemma. ]

REMARK 2.4. The constant vy, that appears in [5] is chosen to be greater than
(1 4+ 0)2 maxgerk, p(Sk), which depends on k for § # —1, and, hence, it is not
optimal.

3. A priori error estimate. Let e = u—u_, where u and u, are the solutions of
(2.14) and (2.15), respectively. The difference of (2.14) and (2.15) yields the following
error equation:

(3.1) a,(e,v) =0 V velPs,
Let € > 0 be a very small constant, and define
[vllke.q = I1K'72V0]| 0.

Let P, H”f(ﬂ) — U, be the orthogonal projection operator from I]H () onto
U, w1th respect to the inner product associated with the norm || - ||x,¢,n. Then the
standard interpolation argument and an analysis similar to that for Proposition 2.4
in [11] give that for ¢ € Hgljg(ﬂ) NHY(T) with e <5< 1,

1/2
(3:2) &2V (¢ — Pro)llea < C (Z Ry ||k1/2V¢||s;<) ,

KeT
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where (' is a positive constant independent of the mesh size and the ratio kmax/Fmin-
For any v € H'**(T), 0 < s < 1, denote

1/2 1/2
Byl = (Zﬂ‘* C)nk‘/zwnﬁ) +(Zh%kglllf|t%,x) :

KeT KeT

LEMMA 3.1. Assume that the solution u € V(T of problem (2.14) belongs to
HYS(T) with 0 < e <s < 1. Then

63 Y /{kv 4 — ) ne}ulP,u— u,lds < C Bylh, )Py — urlnc,

e€EUED

where C' is a positive constant independent of the mesh size and the ratio kmax S

Proof. Let z = Ppu —u and z, = P,u — u,. By using the definition of the dual
norm, the triangle inequality, the inverse inequality, (2.5), Lemma 2.1, and (3.2), we
have

o f{kV(PTuﬁu)-ne}wﬂPTUqu}]ds: 3 f{sz-ne}w[[zT}]ds

ecErVUED L ecEUED H

< Y kY2 ntwlle-12.e Iz Ml /2ce

ecErUED

= |
< Y (wtlk-Valoo melloye + S lEe Vel - nelley,e) B Iz lo

ecErUED

< > (IKY2Vzlk nelloy e + 1K Valie, nelle—y, o) R 2, o

ecEfUED

7 1 1 v -
<c ) g SRl T2l + hKHk?AZ”U.k) Wh iz Hlo.

EEEIUSD Kew,
< CBs(h, v)||Pru— v |lpe-

This completes the proof of the lemma. O

THEOREM 3.2. Assume that the solution w € V(T of problem (2.14) belongs
1

to H1FPS(T) N HFE(Q) with 0 < e < s <1 and that v, > Qﬁ + o for 8 = +1,
0, and —1. Then we have the following a priori error bound
(3.4) lu = wyllpe < C Bs(h, u),

where C' is a positive constant independent of the mesh size and the ratio kmax/Emin.
Proof. The triangle inequality gives

|\|8|||Dc < e - P¢”|||ns + 1 Pre — vyl pe-
Since u — P, u is continuous and vanishes on I'p, thus
e = Prullpe = 1572V (u = Pru)llon < |62V (u - Pru)lcq.
Now, by (3.2) with ¢ = w it suffices to show that

(3.5) 1Pru = u < C(lu— Prull o + Bs(h, u)) .

e
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To this end, using the coercivity of a,(:,) in (2.17), the error equation in (3.1),
the Cauchy—Schwarz inequality, and the fact that [P, v — u]e,ue, = 0, we have

aol| Pru — uT|||2D(;- < ag(Pru—uy, Pru—u;) =a,(Pru—u, Pru—u;)

= (kVp(Pru—u), Va(Pru—u,))+ Z Yohe 'We[Pru — u][Pru — u, ] ds

e€&UER Y e
- Z ({kV(Pru —u) nebw[Pru — u,]
ecEJUEp v ¢

—{kV(Pru— u;) netw[Pru—u])ds

SC|Pru—ulye "IPTU — R ll e H Z {kv(P‘T'u —u}- ne}w[[PT“' i UT]] d

ecErUER Y €

which, together with Lemma 3.1, implies (3.5) and, hence, (3.4). This completes the
proof of the theorem. 0

4. Oswald- and Clément-type interpolations. Denote by N, Np, and Nx
the sets of all vertices of the triangulation 7, on the I'p, and of element X € T,
respectively. For any z € N, denote by ¢, the nodal basis function of 4, and let

w,={KeT : KCsupp(¢,)} and @, = {K Ew, : k= nax kKr}.
The number of elements in @, is denoted by cd(z). Also, denote by £k the set of
edges that share at least a vertex with I,

In this section and sections 5 and 7, assume that the distribution of the coeffi-
cients kg for all K € T is locally quasi-monotone [31], which is slightly weaker than
Hypothesis 2.7 in [11]. For the convenience of the readers, we restate it here.

DEFINITION 4.1. Given a vertezx z € N, the distribution of coefficients ky,
K € w,, is said to be quasi-monotone with respect to the vertex z if there exists a
subset Wy z qm of w, such that the union of elements in Wy , gm s a Lipschitz domain
and that the following hold:

o if z€ NM\Np, then {K}U®, C Ok s qm and ki < maxgrew, kir;

e 3fz € ND, then K € (:’K,z,qm) aa"K,z,qnl n I\D 7& @; and ky < Maxg’/ecw, kK‘ .
The distribution of coefficients ki, K € T, is said to be locally quasi-monotone if it
s quasi-monotone with respect to every verter z € N.

For a given function v € {PY, define the Oswald interpolation operator T :
uI)G oo L{g by

Tv = Z Tu(z) (),

ZEN

where the nodal value of the interpolant Zv at z is defined by

9p(2) if z € Np,
I —
v(z) cdtz) ng vi(z) if z e N\Np
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