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Highlights

• A novel a posteriori error estimator for H(curl) interface problem is invented.
• A new localized recovery procedure is proposed.
• The reliability is totally independent of the coefficients distribution.
• The estimator can handle irregular data that is not in H(div).

Abstract

In this paper, we introduce a novel a posteriori error estimator for the conforming finite element approximation to the H(curl )
problem with inhomogeneous media and with the right-hand side only in L2. The estimator is of the recovery type. Independent
with the current approximation to the primary variable (the electric field), an auxiliary variable (the magnetizing field) is recovered
in parallel by solving a similar H(curl ) problem. An alternate way of recovery is presented as well by localizing of the error flux.
The estimator is then defined as the sum of the modified element residual and the residual of the constitutive equation defining
the auxiliary variable. It is proved that the estimator is approximately equal to the true error in the energy norm without the
quasi-monotonicity assumption. Finally, we present numerical results for several H(curl ) interface problems.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Let Ω be a bounded and simply-connected polyhedral domain in R3 with boundary ∂Ω = Γ̄D ∪ Γ̄N and
ΓD ∩ ΓN = ∅, and let n = (n1, n2, n3) be the outward unit vector normal to the boundary. Denote by u the electric
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field, we consider the following H(curl ) model problem originated from a second order hyperbolic equation by
eliminating the magnetic field in Maxwell’s equations:∇ × (µ−1

∇ × u)+ β u = f , in Ω ,
u × n = gD , on ΓD,

(µ−1
∇ × u)× n = gN , on ΓN ,

(1.1)

where ∇× is the curl operator; the f , gD , and gN are given vector fields which are assumed to be well-defined on Ω ,
ΓD , and ΓN , respectively; the µ is the magnetic permeability; and the β depends on the electrical conductivity, the
dielectric constant, and the time step size. Assume that the coefficients µ−1

∈ L∞(Ω) and β ∈ L∞(Ω) are bounded
below

0 < µ−1
0 ≤ µ−1(x) and 0 < β0 ≤ β(x)

for almost all x ∈ Ω .
The a posteriori error estimation for the conforming finite element approximation to the H(curl ) problem in (1.1)

has been studied recently by several researchers. Several types of a posteriori error estimators have been introduced
and analyzed. These include residual-based estimators and the corresponding convergence analysis (explicit [1–7], and
implicit [8]), equilibrated estimators [9], and recovery-based estimators [10,11]. There are four types of errors in the
explicit residual-based estimator (see [1]). Two of them are standard, i.e., the element residual, and the interelement
face jump induced by the discrepancy induced by integration by parts associated with the original equation in (1.1).
The other two are also the element residual and the interelement face jump, but associated with the divergence of the
original equation: ∇ · (βu) = ∇ · f , where ∇· is the divergence operator. These two quantities measure how good the
approximation is in the kernel space of the curl operator.

Recently, the idea of the robust recovery estimator explored in [12,13] for the diffusion interface problem has
been extended to the H(curl ) interface problem in [10]. Instead of recovering two quantities in the continuous
polynomial spaces like the extension of the popular Zienkiewicz–Zhu (ZZ) error estimator in [11], two quantities
related to µ−1

∇ × u and βu are recovered in the respective H(curl )- and H(div)-conforming finite element spaces.
The resulting estimator consists of four terms similar to the residual estimator in the pioneering work [1] on this topic
by Beck, Hiptmair, Hoppe, and Wohlmuth: two of them measure the face jumps of the tangential components and the
normal component of the numerical approximations to µ−1

∇ × u and βu, respectively, and the other two are element
residuals of the recovery type.

All existing a posteriori error estimators for the H(curl ) problem assume that the right-hand side f is in H(div) or
divergence free. This assumption does not hold in many applications (e.g. the implicit marching scheme mentioned
in [14]). Moreover, two terms of the estimators are associated with the divergence of the original equation. In the
proof, these two terms come to existence up after performing the integration by parts for the irrotational gradient part
of the error, which lies in the kernel of the curl operator. One of the key technical tools, a Helmholtz decomposition,
used in this proving mechanism, relies on f being in H(div), and fails if f ∉ H(div). In [4], the assumption that
f ∈ H(div) is weakened to f being in the piecewise H(div) space with respect to the triangulation, at the same
time, the divergence residual and norm jump are modified to incorporate this relaxation. Another drawback of using
Helmholtz decomposition on the error is that it introduces the assumption of the coefficients’ quasi-monotonicity
into the proof pipeline. An interpolant with a coefficient independent stability bound is impossible to construct in
a “checkerboard” scenario (see [15] for diffusion case, and [10] for H(curl ) case). To gain certain robustness for
the error estimator in the proof, one has to assume the coefficients distribution is quasi-monotone. However, in an
earlier work of Chen, Xu, and Zou [3], it is shown that numerically this quasi-monotonicity assumption is more of
an artifact introduced by the proof pipeline, at least for the irrotational vector fields. As a result, we conjecture that
the divergence related terms should not be part of an estimator if it is appropriately constructed. In Section 5, some
numerical justifications are presented to show the unnecessity of including the divergence related terms.

The pioneering work in using the dual problems for a posteriori error estimation dates back to [16]. In [16],
Oden, Demkowicz, Rachowicz, and Westermann studied the a posteriori error estimation through duality for the
diffusion–reaction problem. The finite element approximation to a dual problem is used to estimate the error for the
original primal problem (diffusion–reaction). The result shares the same form to the Prager–Synge identity [17] for
diffusion–reaction problem. The method presented in this paper may be viewed as an extension of the duality method
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in [16] to the H(curl ) interface problem. The auxiliary magnetizing field introduced in Section 3 is the dual variable
resembling the flux variable in [16]. The connection is illustrated in detail in Section 4.1.

Later, Repin [18] proposes a functional type a posteriori error estimator of H(curl ) problem, which can be viewed
as an extension of the general approach in [16]. Repin et al. [19] improve the estimate by assuming that the data f
is divergence free and the finite element approximation is in H(div). In [18], the upper bound is established through
integration by parts by introducing an auxiliary variable in an integral identity for H(curl ). An auxiliary variable is
recovered by globally solving an H(curl ) finite element approximation problem and is used in the error estimator.
For the global lower bound, the error equation is solved globally in an H(curl ) conforming finite element space. Then
the solution is inserted into the functional as the error estimator of which the maximizer corresponds to the solution
to the error equation.

The purpose of this paper is to develop a novel a posteriori error estimator for the conforming finite element
approximation to the H(curl ) problem in (2.1) that overcomes the above drawbacks of the existing estimators, e.g. the
Helmholtz decomposition proof mechanism, restricted by the assumption that f ∈ H(div;Ω) or divergence free, which
brings in the divergence related terms. Specifically, the estimator studied in this paper is of the recovery type, requires
the right-hand side merely having a regularity of L2, and has only two terms that measure the element residual and the
tangential face jump of the original equation. Based on the current approximation to the primary variable u (the electric
field), an auxiliary variable σ (the magnetizing field) is recovered by approximating a similar auxiliary H(curl )
problem. To this end, a multigrid smoother is used to approximate this auxiliary problem, which is independent of
the primary equation and is performed in parallel with the primary problem. The cost is the same order of complexity
with computing the residual-based estimator, which is much less than solving the original H(curl ) problem.

An alternate route is illustrated as well in Section 3.2 by approximating a localized auxiliary problem. While
embracing the locality, the parallel nature using the multigrid smoother is gone. The recovery through approximating
localized problem requires the user to provide element residual and tangential face jump of the numerical magnetizing
field based on the finite element solution of the primary equation. The estimator is then defined as the sum of the
modified element residual and the residual of the auxiliary constitutive equation. It is proved that the estimator is equal
to the true error in the energy norm globally. Moreover, in contrast to the mechanism of the proof using Helmholtz
decomposition mentioned previously, the decomposition is avoided by using the joint energy norm. As a result, the
new estimator’s reliability does not rely on the coefficients distribution (Theorem 4.2).

Meanwhile, in this paper, the method and analysis extend the functional-type error estimator in [18] to a
more pragmatic context by including the mixed boundary conditions, and furthermore, the auxiliary variable σ is
approximated by a fast multigrid smoother, or by solving a localized H(curl ) problem on vertex patches, to avoid
solving a global finite element approximation problem.

Lastly, in order to compare the new estimator introduced in this paper with existing estimators, we present
numerical results for H(curl ) intersecting interface problems. When f ∉ H(div), the mesh generated by our indicator
is much more efficient than those by existing indicators (Section 5).

2. Primal problem and the finite element approximation

Denote by L2(Ω) the space of the square integrable vector fields in R3 equipped with the standard L2 norm:
∥v∥ω =

√
(v, v)ω, where (u, v)ω :=


ω

u · v dx denotes the standard L2 inner product over an open subset ω ⊆ Ω ,
when ω = Ω , the subscript is dropped for ∥v∥ := ∥v∥Ω and (u, v) = (u, v)Ω . Let

H(curl;Ω) := {v ∈ L2(Ω) : ∇ × v ∈ L2(Ω)},

which is a Hilbert space equipped with the norm

∥v∥H(curl ) =


∥v∥2

+ ∥∇ × v∥2
1/2

.

Denote its subspaces by

HB(curl ;Ω) := {v ∈ H(curl;Ω) : v × n = gB on ΓB}

and
◦

HB(curl ;Ω) := {v ∈ HB(curl ;Ω) : gB = 0}

for B = D or N .
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For any v ∈
◦

HD(curl ;Ω), multiplying the first equation in (1.1) by a suitable test function v with vanishing
tangential part on ΓD , integrating over the domain Ω , and using integration by parts formula for H(curl )-regular
vector fields (e.g. see [20]), we have

(f , v) =

∇ × (µ−1

∇ × u), v

+ (β u, v)

= (µ−1
∇ × u, ∇ × v)+ (β u, v)−


ΓN

gN · v d S.

Then the weak form associated to problem (1.1) is to find u ∈ HD(curl ;Ω) such that

Aµ,β(u, v) = fN (v), ∀ v ∈
◦

HD(curl ;Ω), (2.1)

where the bilinear and linear forms are given by

Aµ,β(u, v) = (µ−1
∇ × u,∇ × v)+ (β u, v) and fN (v) = (f , v)+


gN , v


ΓN
,

respectively. Here,

gN , v


ΓN

=

ΓN

gN · v d S denotes the duality pair over ΓN . Denote by

|||v|||µ,β =


Aµ,β(v, v)

the “energy” norm induced by the bilinear form Aµ,β(·, ·).

Theorem 2.1. Assume that f ∈ L2(Ω), gD ∈ X//(ΓD), and gN ∈ H1/2
⊥
(ΓN ). Then the weak formulation of (1.1) has

a unique solution u ∈ HD(curl ;Ω) satisfying the following a priori estimate

|||u|||µ,β ≤ ∥β−1/2f∥ +
gD


−1/2,µ,β,ΓD

+
gN


1/2,µ,β,ΓN

. (2.2)

Proof. For the notations and proof, see the Appendix. �

2.1. Finite element approximation

For simplicity of the presentation, only the tetrahedral elements are considered. Let T = {K } be a finite element
partition of the domain Ω . Denote by hK the diameter of the element K . Assume that the triangulation T is regular
and quasi-uniform.

Let Pk(K ) = Pk(K )3 where Pk(K ) is the space of polynomials of degree less than or equal to k. Let Pk+1(K ) andPk+1(K ) be the spaces of homogeneous polynomials of scalar functions and vector fields. Denote the first or second
kind Nédélec elements (e.g. see [21,22])

NDk
= {v ∈ H(curl;Ω) : v


K ∈ NDk,i (K ) ∀ K ∈ T } ⊂ H(curl;Ω),

for i = 1, 2, respectively, where the local Nédélec elements are given by

NDk,1(K ) = {p + s : p ∈ Pk(K ), s ∈Pk+1(K ) such that s · x = 0}

and NDk,2(K ) = {p + ∇s : p ∈ NDk,1(K ), s ∈ Pk+2(K )}.

For simplicity of the presentation, we assume that both boundary data gD and gN are piecewise polynomials, and the
polynomial extension (see [23]) of the Dirichlet boundary data as the tangential trace is in NDk . Now, the conforming
finite element approximation to (1.1) is to find uT ∈ NDk

∩ HD(curl ;Ω) such that

Aµ,β(uT , v) = fN (v), ∀ v ∈ NDk
∩

◦

HD(curl ;Ω). (2.3)

Assume that u and uT are the solutions of the problems in (1.1) and (2.3), respectively, and that u ∈ Hk+1(Ω), ∇×u ∈

Hk+1(Ω) (when the regularity assumption is not met, one can construct a curl-preserving mollification, see [24]), by
the interpolation result from [21] Chapter 5 and Céa’s lemma, one has the following a priori error estimation:u − uT


µ,β

≤ C hk+1

∥u∥

Hk+1(Ω)
+ ∥∇ × u∥

Hk+1(Ω)


, (2.4)

where C is a positive constant independent of the mesh size h = maxK∈T hK .
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3. Auxiliary problem of magnetizing field

3.1. Recovery of the magnetizing field

Introducing the magnetizing field

σ = µ−1
∇ × u, (3.1)

then the first equation in (1.1) becomes

∇ × σ + β u = f , in Ω . (3.2)

The boundary condition on ΓN may be rewritten as follows

σ × n = gN , on ΓN .

For any τ ∈
◦

HN (curl ;Ω), multiplying Eq. (3.2) by β−1
∇×τ , integrating over the domain Ω , and using integration

by parts and (3.1), we have

(β−1f , ∇ × τ ) = (β−1
∇ × σ , ∇ × τ )+ (u, ∇ × τ )

= (β−1
∇ × σ , ∇ × τ )+ (∇ × u, τ )+


ΓD

(u × n) · τ ds −


ΓN

u · (τ × n) ds

= (β−1
∇ × σ , ∇ × τ )+ (µ σ , τ )+


ΓD

gD · τ ds. (3.3)

Hence, the variational formulation for the magnetizing field is to find σ ∈ HN (curl ;Ω) such that

Aβ,µ(σ , τ ) = fD (τ ), ∀ τ ∈
◦

HN (curl ;Ω), (3.4)

where the bilinear and linear forms are given by

Aβ,µ(σ , τ ) = (β−1
∇ × σ ,∇ × τ )+ (µ σ , τ ) and fD (τ ) = (β−1f ,∇ × τ )−


gD , τ


ΓD
,

respectively. The natural boundary condition for the primary problem becomes the essential boundary condition for
the auxiliary problem, while the essential boundary condition for the primary problem is now incorporated into the
right-hand side and becomes the natural boundary condition. Denote the “energy” norm induced by Aβ,µ(·, ·) by

|||τ |||β,µ =


Aβ,µ(τ , τ ).

Theorem 3.1. Assume that f ∈ L2(Ω), gD ∈ H1/2
⊥
(ΓD), and gN ∈ X//(ΓN ). Then problem (3.4) has a unique solution

σ ∈ HN (curl ;Ω) satisfying the following a priori estimate

|||σ |||β,µ ≤ ∥β−1/2f∥ +
gD


1/2,µ,β,ΓD

+
gN


−1/2,β,µ,ΓN

. (3.5)

Proof. The theorem may be proved in a similar fashion as Theorem 2.1. �

Similarly to that for the essential boundary condition, it is assumed that the polynomial extension of the Neumann
boundary data as the tangential trace is in NDk as well. Now, the conforming finite element approximation to (3.4) is
to find σ T ∈ NDk

∩ HN (curl ;Ω) such that

Aβ,µ(σ T , τ ) = fD (τ ), ∀ τ ∈ NDk
∩

◦

HN (curl ;Ω). (3.6)

Assume that σ and σ T are the solutions of the problems in (3.1) and (3.6), respectively, and that σ ∈ Hk+1(Ω),
∇ × σ ∈ Hk+1(Ω), one has the following a priori error estimation similar to (2.4)σ − σ T


µ,β

≤ C hk+1

∥σ∥

Hk+1(Ω)
+ ∥∇ × σ∥

Hk+1(Ω)


. (3.7)
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The a priori estimate shows that heuristically, for the auxiliary magnetizing field σ , using the same order H(curl )-
conforming finite element approximation spaces with the primary variable u may be served as the building blocks for
the a posteriori error estimation.

3.2. Localization of the recovering procedure

The localization of the recovery of σ T for this new H(curl ) recovery shares similar methodology with the one
used in the equilibrated flux recovery (see [9,25]). However, due to the presence of the L2-term, exact equilibration
is impossible due to several discrepancies: ∇ × σ T + βuT ≠ f if σ T and uT are in Nédélec spaces of the same
order; If NDk+1 is used for σ T and NDk for uT , the inter-element continuity conditions come into the context in
that ∇ × NDk+1

⊂ RT k , which has different inter-element continuity requirement than NDk . Due to these two
concerns, the local problem is approximated using a constraint H(curl )-minimization.

Let σ∆ be the correction from µ−1
∇ × uT to the true magnetizing field: σ∆

:= σ − µ−1
∇ × uT . Now σ∆ can

be decomposed using a partition of unity: let λz be the linear Lagrange nodal basis function associated with a vertex
z ∈ N , which is the collection of all the vertices,

σ∆
=


z∈Nh

σ∆
z , with σ∆

z := λzσ
∆. (3.8)

Denote ez := λze. Let the vertex patch ωz := ∪{K∈T : z∈NK } K , where NK is the collection of vertices of element
K . Then the following local problem is what the localized magnetizing field correction satisfies:

µσ∆
z − ∇ × ez = −∇λz × e, in K ⊂ ωz,

∇ × σ∆
z + βez = λzrK + ∇λz × (µ−1

∇ × e), in K ⊂ ωz,
(3.9)

with the following jump condition on each interior face F ∈ Fz := {F ∈ F : F ∈ FK for K ⊂ ωz, F ∩ ∂ωz = ∅},
and boundary face F ⊂ ∂ωz:

[[σ∆
z × nF ]]F = −λzjt,F , on F ∈ Fz,

σ∆
z × nF = 0, on F ⊂ ∂ωz.

(3.10)

The element residual is rK :=

f −βuT −∇ × (µ−1

∇ × uT )


K , and the tangential jump is jt,F := [[(µ−1
∇ × uT )×

nF ]]F .
To find the correction, following piecewise polynomial spaces are defined:

NDk
−1(ωz) = {τ ∈ L2(ωz) : τ


K ∈ NDk(K ), ∀K ⊂ ωz},

Wk(Fz) = {τ ∈ L2(Fz) : τ

F ∈ RT k(F), ∀F ∈ Fz;

τ

Fi

· (ti j × ni ) = τ

F j

· (ti j × n j ),∀Fi , F j ∈ Fz, ∂Fi ∩ ∂F j = ei j },

Hz = {τ ∈ NDk
−1(ωz) : [[τ × nF ]]F = −jF,z ∀ F ∈ Fz},

and H0,z = {τ ∈ Hz : τ × nF

F = 0, ∀ F ⊂ ωz}.

(3.11)

Here RT k(F) is the planar Raviart–Thomas space on a given face F , of which the degrees of freedom can be defined
using conormal of an edge with respect to the face normal nF . For example, ti j is the unit tangential vector of edge
ei j joining face Fi and F j , then the conormal vector of ei j with respect to face Fi is ti j × ni . Wk(Fz) can be viewed
as the trace space of the broken Nédélec space NDk

−1(ωz). For details please refer to Sections 4 and 5 in [26].
To approximate the local correction for magnetizing field, λzrK and λzjt,F are projected onto proper piecewise

polynomial spaces. To this end, let

rK ,z :=


K


λzrK


, and jF,z :=


F


λzjt,F


, (3.12)

where


K is the L2 projection onto the space RT k−1(K ), and


F is the L2 projection onto the space RT k(F).
Dropping the uncomputable terms in (3.9), and using (3.10) as a constraint, the following local H(curl )-minimization
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problem is to be approximated:

min
σ∆

z,T ∈H0,z

µ1/2σ∆
z,T − µ−1/2

∇ × ez

2

ωz
+

β−1/2(∇ × σ∆
z,T + βez − rK ,z)

2

ωz


. (3.13)

The hybridized problem associated with above minimization is obtained by taking variation with respect to σ∆
z,T of

the functional by the tangential face jump as a Lagrange multiplier:

J ∗
z (σ

∆
z,T , ξ) :=

1
2

µ1/2σ∆
z,T − µ−1/2

∇ × ez

2

ωz
+

1
2

β−1/2(∇ × σ∆
z,T + βez − rK ,z)

2

ωz

+


F∈Fz


[[σ∆

z,T × nF ]]F +jF,z, ξ


F . (3.14)

For any τ ∈ NDk
−1(ωz), using the fact that ez ∈ H(curl ;ωz), and ez = 0 on ∂ωz

0 =

µ1/2σ∆

z,T − µ−1/2
∇ × ez, µ

1/2τ

ωz

+

β−1/2

∇ × σ∆
z,T + β1/2ez − β−1/2rK ,z, β

−1/2
∇ × τ


ωz

+


F∈Fz


[[τ × nF ]]F , ξ


F

=

µσ∆

z,T , τ

ωz

+

β−1

∇ × σ∆
z,T , ∇ × τ


ωz

+


F∈Fz


[[τ × nF ]]F , ξ − ez


F −


β−1rK ,z, ∇ × τ


ωz
. (3.15)

As a result, the local approximation problem is:
Find (σ∆

z,T , θ z) ∈ NDk
−1(ωz)× Wk(Fz) such that:

Aβ,µ;z

σ∆

z,T , τ

+ Bz


τ , θ z


=

β−1rK ,z, ∇ × τ


ωz
, ∀ τ ∈ NDk

−1(ωz),

Bz

σ∆

z,T , γ


= −


F∈Fz


jF,z, γ


F , ∀ γ ∈ Wk(Fz),

(3.16)

wherein the local bilinear forms are defined as follows:

Aβ,µ;z(σ , τ ) :=

β−1

∇ × σ , ∇ × τ

ωz

+

µσ , τ


ωz
,

and Bz(τ , γ ) :=


F∈Fz


[[τ × nF ]]F , γ


F .

(3.17)

Proposition 3.2. Problem (3.16) has a unique solution.

Proof. For a finite dimensional problem, uniqueness implies existence. It suffices to show that letting both the right
hand sides be zeros result trivial solution. First by [[τ ×nF ]] ∈ Wk(Fz) for any τ ∈ NDk

−1(ωz) (direct implication of
Proposition 4.3 and Theorem 4.4 in [26]), setting γ


F = [[σ∆

z,T × nF ]]F in the second equation of (3.16) immediately

implies that [[σ∆
z,T × nF ]]F = 0. As a result, σ∆

z,T ∈ H(curl ;ωz). Now let τ = σ∆
z,T in the first equation of (3.16),

since Aβ,µ;z(·, ·)
1/2 induces a norm in H(curl ;ωz), σ∆

z,T = 0. For θ z, it suffices to show that θ z = 0 on each F if
F∈Fz


[[τ × nF ]]F , θ z


F = 0, ∀τ ∈ NDk

−1(ωz)\H(curl ;ωz).

Using Theorem 4.4 in [26], if θ z ∈ Wk(Fz) is non-trivial and satisfies above equation, there always exists a
τ θ ∈ NDk

−1(ωz) such that [[τ θ × nF ]]F = θ

F . As a result,


F∈Fz

∥θ z∥
2
F = 0, which is a contradiction. Thus,

the local problem (3.16) is uniquely solvable. �

With the local correction to the magnetizing field, σ∆
z,T for all z ∈ N , computed above, let

σ∆
K ,T =


z∈N (K )

σ∆
z,T , and σ∆

T =


z∈N

σ∆
z,T , (3.18)
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then the recovered magnetizing field is

σ T = σ∆
T + µ−1

∇ × uT . (3.19)

4. A posteriori error estimator

In this section, we study the following a posteriori error estimator:

η =


K∈T

η2
K

1/2

where the local indicator ηK is defined by

ηK =

µ−1/2 µ σ T − ∇ × uT

2

K
+

β−1/2 
∇ × σ T + β uT − f

2

K

1/2

. (4.1)

It is easy to see that

η =

µ−1/2 µ σ T − ∇ × uT

2
+

β−1/2 
∇ × σ T + β uT − f

2
1/2

. (4.2)

The uT and σ T are the finite element approximations in problems (2.3) and (3.6) respectively.
With the locally recoveredσ T , the local error indicatorηK and the global error estimatorη are defined in the same

way as (4.1) and (4.2):

ηK =

µ−1/2 µσ T − ∇ × uT

2

K
+

β−1/2 
∇ ×σ T + β uT − f

2

K

1/2

, (4.3)

and

η =

µ−1/2 µσ T − ∇ × uT

2
+

β−1/2 
∇ ×σ T + β uT − f

2
1/2

. (4.4)

Remark 4.1. In practice, σ T does not have to be the finite element solution of a global problem. In the numerical
computation, the Hiptmair–Xu multigrid preconditioner in [27] is used for discrete problem (3.6) with two V (1, 1)
multigrid V-cycles for each component of the vector Laplacian, and two V (2, 2)multigrid V-cycles for the kernel part
of the curl operator. The σ T used to evaluate the estimator is the PCG iterate. The computational cost is the same
order with computing the explicit residual based estimator in [1].

Generally speaking, to approximate the auxiliary problem, the same black-box solver for the original H(curl )
problem can be applied requiring minimum modifications. For example, if the BoomerAMG in hypre [28,29] is used
for the discretizations of the primary problem, then the user has to provide exactly the same discrete gradient matrix
and vertex coordinates of the mesh, and in constructing the HX preconditioner, the assembling routines for the vector
Laplacian and scalar Laplacian matrices can be called twice with only the coefficients input switched.

Theorem 4.2. Locally, the indicators ηK andηK both have the following efficiency bound

ηK (orηK ) ≤

u − uT

2
µ,β,K +

σ − σ T

2
β,µ,K

1/2
(4.5)

for all K ∈ T . The estimators η andη satisfy the following global upper boundu − uT

2
µ,β

+
σ − σ T

2
β,µ

1/2
= η ≤η. (4.6)

Proof. Denote the true errors in the electric and magnetizing fields by

e = u − uT , and E = σ − σ T ,
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respectively. It follows from (3.1), (3.2), and the triangle inequality that

η2
K =

µ1/2E − µ−1/2
∇ × e

2

K
+

β−1/2
∇ × E + β1/2e

2

K

≤

µ1/2E
2

K
+

µ−1/2
∇ × e

2

K
+

β−1/2
∇ × E

2

K
+

β1/2e
2

K


=


|||e|||2µ,β,K + |||E|||

2
β,µ,K


, (4.7)

which implies the validity of (4.5) for ηK . ForηK , the exact same argument follows except by switching E = σ − σ T
by locally recoveredE = σ −σ T . To prove the global identity in (4.6), summing (4.7) over all K ∈ T gives

η2
=

µ1/2E − µ−1/2
∇ × e

2
+

β−1/2
∇ × E + β1/2e

2

= |||e|||2µ,β + |||E|||
2
β,µ − 2(E, ∇ × e)+ 2(∇ × E, e).

Now, (4.6) follows from the fact that

−(E, ∇ × e)+ (∇ × E, e) = 0.

Lastly, the global upper bound for the locally recovered η follows from the fact that uT and σ T are the solutions to
the following global problem:

inf
τ∈HN (curl ;Ω)∩NDk

v∈HD (curl ;Ω)∩NDk

µ−1/2 (µ τ − ∇ × v)
2

+

β−1/2 (∇ × τ + βv − f )
2

. (4.8)

As a result,η ≥ η which is the global minimum achieved in the finite element spaces. This completes the proof of the
theorem. �

Remark 4.3. In Theorem 4.2 it is assumed that the boundary data are admissible so that they can be represented as
tangential traces of the finite element space NDk . If this assumption is not met, it can be still assumed that divergence-
free extension ugD of its tangential trace gD to each boundary tetrahedron K on ΓD is at least H1/2+δ-regular (δ > 0),
and ∇ × ugD ∈ Lp(K ) as well (p > 2), so that the conventional edge interpolant is well-defined (e.g. see [21]
Chapter 5). When the same assumption is applied to σ and ∇ × σ , the reliability bound derived by (4.7) still holds
(for notations please refer to Appendix):

η2
= |||e|||2µ,β + |||E|||

2
β,µ +


e × n, π⊤,DE


ΓD

+

π⊤,N e,E × n


ΓN
.

Using the fact that u and σ are approximated by the conventional edge interpolants I u on ΓD and Iσ on ΓN
respectively yields:

e × n, π⊤,DE

ΓD

+

π⊤,N e,E × n


ΓN

≤
γ⊤,D(u − I u)


1/2,µ,β,ΓD

π⊤,DE


−1/2,β,µ,ΓD

+
π⊤,N e


−1/2,µ,β,ΓN

γ⊤,N (σ − Iσ )


1/2,β,µ,ΓN
.

By the interpolation estimates for boundary elements together with the weighted trace inequalities (A.14) from the
Appendix, the reliability constant is not harmed if the interface singularity does not touch the boundary.

4.1. Relation to duality method

A posteriori error estimation by the duality method for the diffusion–reaction problem was studied by Oden,
Demkowicz, Rachowicz, and Westermann in [16]. In this section, we describe the duality method for the H(curl )
problem and its relation with the estimator η defined in (4.2).

To this end, define the energy and complimentary functionals by

J (v) =
1
2

Aµ,β(v, v)− fN (v)

and J ∗(τ ) = −
1
2
(µ τ , τ )−

1
2


β−1(f − ∇ × τ ), f − ∇ × τ


−

gD , τ


ΓD
,
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respectively. Then problems (2.1) and (3.4) are equivalent to the following minimization and maximization problems:

J (u) = inf
v∈HD(curl ;Ω)

J (v) and J ∗(σ ) = sup
τ∈HN (curl ;Ω)

J ∗(τ ),

respectively. By the duality theory for a lower semi-continuous convex functional (see e.g. [30]), we have

J (u) = J ∗(σ ) and σ = µ−1
∇ × u.

A simple calculation gives that the true errors of the finite element approximations in the “energy” norm can be
represented by the difference between the functional values as follows:u − uT

2
µ,β

= 2


J (uT )− J (u)


and
σ − σ T

2
β,µ

= 2


J ∗(σ )− J ∗(σ T )

. (4.9)

Hence, the “energy” error in the finite element approximation is bounded above by the estimator η defined in (4.2)
(and the locally-recoveredη as well):u − uT

2
µ,β

= 2


J (uT )− J (u)


= 2


J (uT )− J ∗(σ )


≤ 2


J (uT )− J ∗(σ T )


= η2,

where the last equality is obtained by evaluating 2


J (uT ) − J ∗(σ T )


through integration by parts. Note that the

above calculation indicates

η2
=
u − uT

2
µ,β

+
σ − σ T

2
β,µ

= 2


J (uT )− J ∗(σ T )

,

which leads us back to the identity on the global reliability in (4.6).

5. Numerical examples

In this section, we present numerical results for interface problems, i.e., the problem parametersµ and β in (1.1) are
piecewise constants with respect to a partition of the domain Ω = ∪

n
i=1 Ω i . Assume that interfaces I = {∂Ωi ∩ ∂Ω j :

i, j = 1, . . . , n} do not cut through any element K ∈ T . The uT is solved in ND0, and the σ T is recovered in ND0

as well.
The numerical experiments are prepared using delaunayTriangulation in MATLAB for generating meshes,

L. Chen’s iFEM [31] for the adaptively refining procedure, the matlab2hypre interface in BLOPEX [32] for
converting sparse matrices, and MFEM [33] to set up the serial version of Auxiliary-space Maxwell Solver (AMS)
in hypre [28] as preconditioners. We compare numerical results generated by adaptive finite element method using
following error estimators:

(i) The new indicator ηNew,K defined in (4.1), and its locally-recovered siblingηNew,K defined in (4.3).
(ii) The residual-based indicator ηRes,K introduced in [1] with the appropriate weights for piecewise constant

coefficients defined in [10]:

η2
Res,K

= µK h2
K

f − βuT − ∇ × (µ−1
∇ × uT )

2

L2(K )
+ β−1

K h2
K

∇ · (βuT − f )
2

L2(K )

+


F∈Fh(K )

hF

2


β−1

F

[[βuT · nF ]]F
2

L2(F) + µF

[[(µ−1
∇ × uT )× n ]]F

2

L2(F)


.

(iii) The recovery-based indicator ηRec,K presented in [10]:

ηRec,K = µK h2
K

f − βuT − ∇ × (µ−1
∇ × uT )

2

L2(K )
+

β−1/2τ T − β1/2uT

2

L2(K )

+

µ1/2σ T − µ−1/2
∇ × uT

2

L2(K )
,

where σ T ∈ ND0 and τ T ∈ BDM1 are the L2 recoveries of µ−1
∇ × uT and βuT , respectively.
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Fig. 1. Initial mesh of Example 1.

In our computation, the energy norms

|||v|||µ,β and |||(v, τ )||| =


|||v|||2µ,β + |||τ |||

2
β,µ

1/2

are used for the estimators ηRes and ηRec and the estimator ηNew , respectively. The respective relative errors and
effectivity indices are computed at each iteration by

rel-error :=

u − uT ,#Iter


µ,β

|||u|||µ,β

and eff-index :=
η#Iteru − uT ,#Iter


µ,β

for the estimators ηRes and ηRec and by

rel-error :=
ξ

|||(u, σ )|||
and eff-index :=

η#Iter

ξ

for the estimator ηNew and ηNew , where ξ =
(u − uT ,#Iter , σ − σ T ,#Iter)

. In all the experiments, the lowest order
Nédélec element space is used, and, hence, the optimal rate of convergence for the adaptive algorithm is O(#DoF−1/3).

Example 1. This is an example similar to that in [3,10] with a few additions and tweaks, in which the Kellogg
intersecting interface problem is adapted to the H(curl )-problem. The computational domain is a slice along z-
direction: Ω = (−1, 1)2 × (−δ, δ) with δ = 0.25. Let α be a piecewise constant given by

α =


R in (0, 1)2 × (−δ, δ) ∪ (1, 0)2 × (−δ, δ),

1 in Ω\


(0, 1)2 × (−δ, δ) ∪ (1, 0)2 × (−δ, δ)


.

The exact solution u of (1.1) is given in cylindrical coordinates (r, θ, z):

u = ∇ψ = ∇

rγφ(θ)


∈ Hγ−ϵ(Ω) for any ϵ > 0,

where φ(θ) is a continuous function defined by

φ(θ) =


cos

(π/2 − σ)γ


· cos


(θ − π/2 + ρ)γ


, for 0 ≤ θ ≤ π/2,

cos(ργ ) · cos

(θ − π + σ)γ


, for π/2 ≤ θ ≤ π,

cos(σγ ) · cos

(θ − π − ρ)γ


, for π ≤ θ ≤ 3π/2,

cos

(π/2 − ρ)γ


· cos


(θ − 3π/2 − σ)γ


, for 3π/2 ≤ θ ≤ 2π.

Here we set parameters to be

γ = 0.5, R ≈ 5.8284271247461907, ρ = π/4, and σ ≈ 2.3561944901923448.

The initial mesh is depicted in Fig. 1 which is aligned with four interfaces.

It is easy to see that the exact solution of the auxiliary problem in (3.1) for this example is σ = µ−1
∇ × u = 0.

Hence, the true error for the finite element approximation to (3.1) is simply the energy norm of the finite element
solution σ T defined in (3.4)σ − σ T

2
µ,β

=
σ T

2
µ,β

=

β−1/2
∇ × σ T

2
+

µ1/2σ T

2
.
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(a) Refined mesh based on ηRes,K cut on
z =0.

(b) Refined mesh based on ηNew,K cut on
z =0.

Fig. 2. Mesh results of Example 1, ∇ · f = 0.

Table 1
Estimators comparison, Example 1, ∇ · f = 0.

# Iter # DoF Error Rel-error η Eff-index

ηRes 27 181 324 0.0428 0.0494 0.0953 2.226
ηRec 27 187 287 0.0421 0.0486 0.0428 1.041
ηNew 24 127 857 0.0411 0.0473 0.0405 0.985ηNew 25 129 564 0.0418 0.0482 0.0479 1.147

In the first experiment, we choose the coefficients µ = 1 and β = α. This choice enables that ∇ · f = 0,
i.e., f ∈ H(div;Ω), and that u satisfies the β-weighted normal continuity:

[[βu · n ]]F = 0 (5.1)

for any surface F in the domain Ω . This is the prerequisite for establishing efficiency and reliability bounds in [1]
and [10] and the base for recovering τ h in BDM1 ⊂ H(div;Ω) in [10]. The quasi-monotonicity assumption is not
met in this situation (for the analysis of the quasi-monotonicity affects the robustness of the estimator for H(curl )
problems, please refer to [10]).

The meshes generated by ηNew,K , ηRes,K , and ηRec,K are almost the same (see Fig. 2). In terms of the convergence,
we observe that the error estimator ηNew exhibits asymptotical exactness. This is impossible for the error estimators in
[1] and [10] because of the presence of the element residuals. Table 1 shows that the number of the DoF for the ηNew

is about 30% less than those of the other two estimators while achieving a better accuracy. As the reliability of the
estimator does not depend on the quasi-monotonicity of the coefficient, the rate of the convergence is not hampered
by checkerboard pattern of the β.

In the second experiment, we choose that µ = β = 1. Due to the fact that the normal component of u = ∇ψ is
discontinuous across the interfaces, the exact solution u does not satisfy the usual β-weighted normal continuity (5.1),
i.e.,

[[βu · n ]]F ≠ 0.

This leads to a right-hand side f = βu = ∇ψ that is not in H(div;Ω) in the primary problem. Even though the H(div)-
continuity is required for establishing the reliability and efficiency of the existing residual-based and recovery-based
estimators, the old residual-based and recovery-based estimators may still be used if ∇ · f


K ∈ L2(K ) for all K ∈ T .

Therefore, we implement all three estimators in this experiment as well.
For the new estimator ηNew , it is shown in Fig. 4 that the rate of convergence is optimal and that the relative true

error and the relative estimator is approximately equal.
Table 2 indicates that the number of the degrees of freedom using the ηNew is less than half of those using the other

two estimators. This is confirmed by the meshes depicted in Fig. 3 where both the ηRes and ηRec over-refine meshes
along the interfaces, where there are no errors. Such inefficiency of the estimators ηRes and ηRec is also shown in
Fig. 4 through the non-optimal rate of convergence. Moreover, Fig. 4 shows that both the ηRes and ηRec are not reliable
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(a) Refined mesh based on ηRes,K cut on
z = 0.

(b) Refined mesh based on ηRec,K cut on
z = 0.

(c) Refined mesh based on ηNew,K cut on
z = 0.

Fig. 3. Mesh result of Example 1, f ∉ H(div;Ω).

Table 2
Estimators comparison, Example 1, f ∉ H(div;Ω).

# Iter # DoF Error Rel-error η Eff-index

ηRes 31 247 003 0.0337 0.0507 0.115 3.420
ηRec 24 218 497 0.0355 0.0534 0.0559 1.577
ηNew 22 99 215 0.0342 0.0514 0.0329 0.964ηNew 24 103 419 0.0338 0.0508 0.0434 1.283

because the slopes of the relative error and the relative estimator are different. The main reason for this failure is due
to the normal jump term h1/2

F

[[βuT · n ]]F


F along the interfaces, which is bigger than the true error.

Example 2. In this example, the performance of the estimators for solenoidal vector field is investigated. Like the first
example, the coefficients distribution across the computational domain is in a checkerboard pattern, not satisfying the
quasi-monotonicity either. The computational domain Ω = [−1, 1]

3
= Ω1 ∩ Ω0, and µ is given by:

µ =


a in Ω1,

1 in Ω0

where Ω1 = {(x, y, z) ∈ R3
: xyz > 0} ∩ Ω and Ω0 = {(x, y, z) ∈ R3

: xyz ≤ 0} ∩ Ω .
The true solution is given by

u = µ

sin(πyz), sin(πxz), sin(πxy)


.

In the first experiment, the β is given as follows:

β =


a−1 in Ω1,

1 in Ω0,

where a = 10−3. This choice makes ∇ · f = 0, and the true solution u satisfies both the tangential continuity and
the normal continuity (5.1). Similarly to the first example, the meshes refined using three error estimators exhibit no
significant difference. Yet, the new estimator again shows the asymptotically exactness behavior as Example 1 (see
Fig. 5), and requires much less degrees of freedom to achieve the same level of relative error. For the results please
refer to Table 3.

In the second experiment, the β is chosen to be:

β =


1 in Ω1,

a−1 in Ω0.

We test the case where a = 10−3. Similar to Example 1, the necessary tangential jump conditions across the interfaces
for the primary problem are satisfied. Yet the choice of β implies that the right hand side f ∉ H(div;Ω). Using the
residual-based or recovery-based estimator will again lead to unnecessary over-refinement along the interfaces (see
Fig. 6), and the order of convergence is sub-optimal than the optimal order for linear elements (see Table 4 and Fig. 5).
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(a) Convergence of ηRes . (b) Convergence of ηRec . (c) Convergence of ηNew .

Fig. 4. Convergence results of Example 1, f ∉ H(div;Ω).

(a) Convergence of ηRes . (b) Convergence of ηRec . (c) Convergence of ηNew .

Fig. 5. Convergence results of Example 2, f ∉ H(div;Ω).

Table 3
Estimators comparison, Example 2, ∇ · f = 0.

# Iter # DoF Error Rel-error η Eff-index

ηRes 34 118 740 0.368 0.0699 0.793 2.157
ηRec 22 120 550 0.365 0.0677 0.644 1.762
ηNew 25 50 080 1.500 0.0681 1.490 0.993ηNew 26 51 745 1.526 0.0693 1.763 1.155

Table 4
Estimators comparison, Example 2, f ∉ H(div;Ω).

# Iter # DoF Error Rel-error η Eff-index

ηRes 31 153 352 4.495 0.0699 18.165 4.041
ηRec 29 159 194 4.538 0.0664 9.857 2.172
ηNew 24 49 894 5.263 0.0684 5.254 0.998ηNew 25 57 338 4.945 0.0642 6.087 1.231

The new estimator in this paper shows convergence in the optimal order no matter how we set up the jump of the
coefficients. The conclusion of comparison with the other two estimators remains almost the same with Example 1.
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(a) Adaptively refined mesh based on
ηRes,K .

(b) Adaptively refined mesh based on
ηRec,K .

(c) Adaptively refined mesh based on
ηNew,K .

Fig. 6. Mesh result of Example 2, f ∉ H(div;Ω).

In this example, the differences are more drastic: 1/3 the degrees of freedom for the new estimator to get roughly the
same level of approximation with the other two.
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Appendix

In this appendix, an a priori estimate for the mixed boundary value problem with weights is studied following
the arguments and notations mainly from [20,34]. In our study, it is found that, due to the duality pairing on the
Neumann boundary and the nature of the trace space of H(curl ), a higher regularity is needed for the Neumann
boundary data gN than those for elliptic mixed boundary value problem. First we define the tangential trace operator
and tangential component projection operator, and their range acting on the HB(curl ;Ω). Secondly we construct a
weighted extension of the Dirichlet boundary data to the interior of the domain. Lastly the a priori estimate for the
solution of problem (2.1) is established after a trace inequality is set up for the piecewise smooth vector field.

A.1. The tangential trace and tangential component space

On either Dirichlet or Neumann part of the boundary, the tangential trace operator γ⊤,B and the tangential
component operator π⊤,B are defined as follows:

γ⊤,B : v →


v × n on ΓB,

0 on ∂Ω\Γ B,
and π⊤,B : v →


n × (v × n) on ΓB,

0 on ∂Ω\Γ B,
(A.1)

respectively, where ΓB is either ΓD or ΓN .
Define the following spaces as the trace spaces of H(curl;Ω):

X//(ΓB) := γ⊤,BH(curl;Ω) and X⊥(ΓB) := π⊤,BH(curl;Ω). (A.2)

For the H1-regular vector fields, define the trace spaces H1/2
// (ΓB) and H1/2

⊥
(ΓB) as:

H1/2
// (ΓB) = π⊤,BH1(Ω) and H1/2

⊥
(ΓB) = γ⊤,BH1(Ω). (A.3)
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It is proved in [20] that the tangential trace space and the tangential component space can be characterized by

X//(ΓB) ⊂ H−1/2
// (ΓB) and X⊥(ΓB) ⊂ H−1/2

⊥
(ΓB). (A.4)

The spaces H−1/2
// (ΓB) and H−1/2

⊥
(ΓB) are defined as the dual spaces of H1/2

// (ΓB) and H1/2
⊥
(ΓB).

Now we move on to define the weighted divergence integrable space

H(div;Ω , α) := {v ∈ L2(Ω) : ∇ · (αv) ∈ L2(Ω) in Ω},

and H(div 0 ;Ω , α) := {v ∈ L2(Ω) : ∇ · (αv) = 0 in Ω},
(A.5)

and the piecewise regular field space X(Ω , α,ΓB) as follows:

X(Ω , α,ΓB) :=
◦

HB(curl ;Ω) ∩ H(div;Ω , α),

and X0(Ω , α,ΓB) :=
◦

HB(curl ;Ω) ∩ H(div 0 ;Ω , α).
(A.6)

The piecewise H1 vector field space is defined as:

PH1(Ω ,P) =


v ∈ L2(Ω) : v


Ω j

∈ H1(Ω j ), j = 1, . . . ,m

. (A.7)

Assumption A.1 (Boundary Requirement). Let the Dirichlet or Neumann boundary ΓB (B = D or N ) be decomposed
into simply-connected components: ΓB = ∪i ΓB,i . For any ΓB,i , there exists a single j ∈ {1, . . . ,m}, such that
ΓB,i ⊂ ∂Ω j ∩ ∂Ω .

Remark A.2. Assumption A.1 is to say, each connected component on the Dirichlet or Neumann boundary only
serves as the boundary of exactly one subdomain. Assumption A.1 is here solely for the a priori error estimate.
The robustness of the estimator in Section 5 does not rely on this assumption if the boundary data are piecewise
polynomials.

Due to Assumption A.1, the tangential trace and tangential component of a H1(Ω) vector field are the same space
as those of a PH1(Ω ,P) vector field on ΓD or ΓN respectively. With slightly abuse of notation, define

H1/2
// (ΓB) := π⊤,B PH1(Ω ,P), and H1/2

⊥
(ΓB) := γ⊤,B PH1(Ω ,P). (A.8)

Now we define the weighted 1/2-norm for the value of any v ∈ PH1(Ω ,P) ∩ X(Ω , β,ΓB) on boundary as:

∥v∥1/2,β,µ,ΓB
:= inf

v

β−1/2
∇ × v

2
+

µ−1/2
∇ · (µv)

2
+

µ1/2v
2
1/2

. (A.9)

Now thanks to the embedding results from [10], ∥·∥1/2,β,µ,ΓB
is equivalent to the unweighted ∥·∥1/2,ΓB

which can be
defined as:

∥v∥1/2,ΓB
:= inf

v


m

j=1

∥v∥2
1,Ω j

+ ∥v∥2

1/2

.

Naturally, the weighted −1/2-norm of any distribution on the boundary can be defined as

∥g∥−1/2,µ,β,ΓB
:= sup

v∈PH1(Ω ,P)∩X(Ω ,β,ΓB )

⟨g, v⟩ΓB

∥v∥1/2,β,µ,ΓB

. (A.10)

A.2. Extension of the Dirichlet boundary data

After the preparation, we are ready to construct the extension operator for any gD ∈ X//(ΓD) := γ⊤,DH(curl;Ω).
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Lemma A.3. For any gD ∈ X//(ΓD), there exists an extension uD ∈ HD(curl ;Ω) such that γ⊤,DuD = gD , and the
following estimate holdsuD


µ,β

≤
gD


−1/2,µ,β,ΓD

. (A.11)

Moreover, for any v ∈
◦

HD(curl ;Ω), there holds

Aµ,β(uD , v) = 0.

Proof. The fact that gD ∈ X//(ΓD) ⊂ H−1/2
// (ΓD) implies the following problem is well-posed:

Find w ∈ PH1(Ω ,P) ∩ X0(Ω , µ,ΓN ) such that:
Aβ,µ(w, v) = ⟨gD, v⟩ , ∀ v ∈ PH1(Ω ,P) ∩ X0(Ω , α,ΓN ),

(A.12)

where the bilinear form Aβ,µ(·, ·) is given as

Aβ,µ(w, v) :=

β−1

∇ × w, ∇ × v

+

µ−1

∇ · (µw), ∇ · (µv)

+

µw, v


.

On this weighted divergence free subspace PH1(Ω ,P) ∩ X0(Ω , µ,ΓN ):

Aβ,µ(w, v) =

β−1

∇ × w, ∇ × v

+

µw, v


.

With slightly abuse of notation, the zero extension of gD to the Neumann boundary is denoted as gD itself. Now the
trial function space and the test function space in problem (A.12) are the same, letting w = v leads to

|||w|||
2
β,µ =


gD ,w


.

Together with their tangential traces vanish on the Neumann boundary, this implies

|||w|||β,µ =


gD ,w


|||w|||β,µ

≤ sup
v


gD , v


|||v|||β,µ

≤ sup
v


gD , v


ΓD

∥v∥1/2,β,µ,ΓD

=
gD


−1/2,µ,β,ΓD

.

The extension is now letting uD = β−1
∇ × w. To prove the estimate, we first notice that the problem (A.12) is a

consistent variational formulation for the following PDE:∇ × (β−1
∇ × w)+ µw = 0, in Ω ,

∇ · (µw) = 0, in Ω ,
(µ−1

∇ × w)× n = gD , on ΓD.

(A.13)

Therefore, the energy norm of uD isuD

2
µ,β

=

µ−1/2
∇ × uD

2
+

β1/2uD

2

=

µ1/2w
2

+

β−1/2
∇ × w

2

= |||w|||
2
β,µ ≤

gD


−1/2,µ,β,ΓD

.

For the second equality in the Lemma, it is straightforward to verify that for any v ∈
◦

HD(curl ;Ω), with w is from the
above construction, the following identity holds

Aµ,β(uD , v) =

µ−1

∇ × uD , ∇ × v

+

βuD , v


=

−w, ∇ × v


+

∇ × w, v


= ⟨n × w, v⟩ = 0.

The last equality follows from the fact that w × n = 0 on ΓN and v × n = 0 on ΓD . �
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A.3. A trace inequality

In this section we want to establish a trace inequality for the tangential component space of HN (curl ;Ω). For any

v ∈
◦

HD(curl ;Ω), consider the tangential component space X⊥(ΓN ) defined in (A.2) that contains all the tangential

components of v ∈
◦

HD(curl ;Ω) on the Neumann boundary and zero on the Dirichlet boundary.

Lemma A.4 (Trace Inequality for the Tangential Component). For v ∈
◦

HD(curl ;Ω), the tangential component of v
on ΓN is π⊤,N v ∈ X⊥(ΓN ) and satisfies the following estimate:π⊤,N v


−1/2,µ,β,ΓN

≤ |||v|||µ,β . (A.14)

Proof. First we notice that X⊥(ΓN ) ⊂ H−1/2
⊥

(ΓN ) which is the dual space of γ⊤,B PH1(Ω ,P). For any ξ ∈

H1/2
⊥
(ΓN ), there existsξ ∈ PH1(Ω ,P) such thatξ × n


ΓN

= ξ andβ−1/2
∇ ×ξ2

+

µ−1/2
∇ · (µξ)2

+

µ1/2ξ2
1/2

≤ ∥ξ∥1/2,β,µ,ΓN
.

By the integration by parts formula from [20] and Cauchy–Schwarz inequality, we have

⟨ξ , v⟩ΓN
=

ξ , π⊤,N v


∂Ω

=

∇ × v, ξ−


∇ ×ξ , v


=

µ−1/2
∇ × v

 µ1/2ξ−

β−1/2
∇ ×ξ β1/2v


≤ |||v|||µ,β

ξ 
β,µ

≤ |||v|||µ,β ∥ξ∥1/2,β,µ,ΓN
.

Hence by definition (A.10) the Lemma follows. �

A.4. An a priori estimate for the H(curl) mixed boundary value problem

Theorem A.5. Assume that f ∈ L2(Ω), gD ∈ X//(ΓD), and gN ∈ H1/2
⊥
(ΓN ). Then the weak formulation of (1.1) has

a unique solution u ∈ HD(curl ;Ω) satisfying the following a priori estimate

|||u|||µ,β ≤ ∥β−1/2f∥ +
gD


−1/2,µ,β,ΓD

+
gN


1/2,β,µ,ΓN

. (A.15)

Proof. Let uD ∈ HD(curl ;Ω) be the extension of the gD to the domain Ω from Lemma A.3 such that

uD × n

ΓD

= gD , uD × n

ΓN

= 0,

Aµ,β(uD , v) = 0, and
uD


µ,β

≤
gD


−1/2,µ,β,ΓD

.
(A.16)

Now let u = u0 + uD , then u0 ∈
◦

HD(curl ;Ω) satisfies

Aµ,β(u0, v) = fN (v), ∀ v ∈
◦

HD(curl ;Ω). (A.17)

The triangle inequality and (A.16) give

|||u|||µ,β ≤ |||u0|||µ,β +
uD


µ,β

≤ |||u0|||µ,β +
gD


−1/2,µ,β,ΓD

.

Now, to show the validity of the theorem, it suffices to prove that problem (A.17) has a unique solution

u0 ∈
◦

HD(curl ;Ω) satisfying the following a priori estimate

|||u0|||µ,β ≤

β−1/2f
+

gN


1/2,β,µ,ΓN

. (A.18)
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To this end, for any v ∈
◦

HD(curl ;Ω), we have from trace Lemma A.4π⊤,N v


−1/2,µ,β,ΓN
≤ |||v|||µ,β ,

which, together with the Cauchy–Schwarz inequality, implies

| fN (v)| ≤

β−1/2f
 β1/2v

+
gN


1/2,β,µ,ΓN

π⊤,N v


−1/2,µ,β,ΓN

≤

β−1/2f
+

gN


1/2,β,µ,ΓN


|||v|||µ,β .

By the Lax–Milgram lemma, (A.17) has a unique solution u0 ∈
◦

HD(curl ;Ω). Taking v = u0 in (A.17), we have

|||u0|||
2
µ,β = fN (u0) ≤

β−1/2f
+

gN


1/2,β,µ,ΓN


|||u0|||µ,β .

Dividing |||u0|||µ,β on the both sides of the above inequality yields (A.18). This completes the proof of the theorem. �
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[5] E. Creusé, S. Nicaise, A posteriori error estimation for the heterogeneous Maxwell equations on isotropic and anisotropic meshes, Calcolo 40
(4) (2003) 249–271.

[6] S. Cochez-Dhondt, S. Nicaise, Robust a posteriori error estimation for the Maxwell equations, Comput. Methods Appl. Mech. Engrg. 196
(2007) 2583–2595.
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