
Applied Numerical Mathematics 174 (2022) 163–176
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Least-squares ReLU neural network (LSNN) method for scalar

nonlinear hyperbolic conservation law ✩

Zhiqiang Cai a,∗, Jingshuang Chen a, Min Liu b

a Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, United States of America
b School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 May 2021
Received in revised form 30 October 2021
Accepted 7 January 2022
Available online 24 January 2022

Keywords:
Least-squares method
ReLU neural network
Scalar nonlinear hyperbolic conservation
law

In [7], we introduced the least-squares ReLU neural network (LSNN) method for solving
the linear advection-reaction problem with discontinuous solution and showed that the
method outperforms mesh-based numerical methods in terms of the number of degrees of
freedom. This paper studies the LSNN method for scalar nonlinear hyperbolic conservation
law. The method is a discretization of an equivalent least-squares (LS) formulation in the
set of neural network functions with the ReLU activation function. Evaluation of the LS
functional is done by using numerical integration and conservative finite volume scheme.
Numerical results of some test problems show that the method is capable of approximating
the discontinuous interface of the underlying problem automatically through the free
breaking lines of the ReLU neural network. Moreover, the method does not exhibit the
common Gibbs phenomena along the discontinuous interface.

© 2022 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let � be a bounded domain in Rd (d = 1, 2, or 3) with Lipschitz boundary, consider the scalar nonlinear hyperbolic
conservation law⎧⎪⎪⎨

⎪⎪⎩
ut(x, t) + ∇x · f(u) = 0, in � × I,

u = g, on �−,

u(x,0) = u0(x), in �,

(1.1)

where ut is the partial derivative of u with respect to temporal variable t; ∇x· is a divergence operator with respect to
spatial variable x; f(u) = (f1(u), ..., fd(u)) is the spatial flux vector field; I = (0, T) is temporal interval; �− is the part of
the boundary ∂� × I where the characteristic curves enter the domain � × I; and the boundary data g and the initial data
u0 are given scalar-valued functions.

Numerical methods for (1.1) have been intensively studied during the past several decades by many researchers and
many numerical schemes have been developed. A major difficulty in simulation is that the solution of a scalar hyperbolic
conservation law is often discontinuous due to the discontinuous initial/boundary condition or shock formation; moreover,

✩ This work was supported in part by the National Science Foundation under grant DMS-2110571.

* Corresponding author.
E-mail addresses: caiz@purdue.edu (Z. Cai), chen2042@purdue.edu (J. Chen), liu66@purdue.edu (M. Liu).
https://doi.org/10.1016/j.apnum.2022.01.002
0168-9274/© 2022 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2022.01.002&domain=pdf
mailto:caiz@purdue.edu
mailto:chen2042@purdue.edu
mailto:liu66@purdue.edu
https://doi.org/10.1016/j.apnum.2022.01.002

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
there is no a priori knowledge of the location of the discontinuities. It is well-known that traditional mesh-based numer-
ical methods often exhibit oscillations near a discontinuity (called the Gibbs phenomena). Such spurious oscillations are
unacceptable for many applications (see, e.g., [18]). To eliminate or reduce the Gibbs phenomena, finite difference and fi-
nite volume methods often use numerical techniques such as limiters and filters and conservative schemes such as Roe,
ENO/WENO, etc. have been developed [14,17,18,23]; and finite element methods usually employ discontinuous finite ele-
ments [3,8,11] and/or adaptive mesh refinement (AMR) to generate locally refined elements along discontinuous interfaces
(see, e.g., [4,19,20]).

Recently, there has been increasing interests in using neural networks (NNs) to solve partial differential equations (see,
e.g., [1,5,12,26,30]). NNs produce a large class of functions through compositions of linear transformations and activation
functions. One of the striking features of NNs is that this class of functions is not subject to a hand-crafted geometric mesh
or point cloud as are the traditional, well-studied finite difference, finite volume, and finite element methods. The physical
partition of the domain �, formed by free hyper-planes, can automatically adapt to the target function. To make use this
powerful approximation property of NNs, in [7], we studied least-squares neural network (LSNN) method for solving linear
advection-reaction problem with discontinuous solution. The LSNN method is based on a direct application of the lease-
squares principle to the underlying problem studied in ([2,9]) and on the ReLU neural network as the approximation class
of functions. Compared to various AMR methods that locate the discontinuous interface through local mesh refinement, the
LSNN method is much more effective in terms of the number of the degrees of freedom.

The purpose of this paper is to study the space-time LSNN method for solving the scalar hyperbolic conservation law.
For the nonlinear hyperbolic conservation law, the differential equation is not generally sufficient to determine the solution.
An additional constraint the so-called Rankine-Hugoniot (RH) jump condition [13,23,31], is needed at where the solution
is not continuous. To enforce this condition weakly, [10] introduced an independent variable, the spatial-temporal flux, for
the inviscid Burgers equation and applied the least-squares principle to the resulting equivalent system. A variant of this
method was also studied in [10,21] by using the Helmholtz decomposition of the flux.

Due to the training difficulty of the least-squares method of [10], in this paper we employ the naive least-squares method
used for the linear advection-reaction problem [7], i.e., a direct application of least-squares principle to the PDE, initial and
inflow boundary conditions. To ensure that the numerical solution enforces the RH jump condition, we introduce implicit
discrete finite difference operators in section 3 by following ideas of the explicit conservative schemes such as Roe, ENO,
etc.

Based on our numerical experience, it is difficult to train the network for problems with sharp changes when the LSNN
method is applied to the entire computational domain �. This is due to the nature of nonlinear hyperbolic conservation
laws since information is transported from initial and inflow boundary to the rest of the domain along the flow direction.
To overcome this training difficulty, we propose the block space-time LSNN method in section 4. Basically, we partition the
computational domain into a number of blocks based on the “inflow” boundary and initial conditions, then the method
solves problems on these blocks sequentially. The trained parameters of the NN model for the previous block is used as an
initial for the current block.

NN-based numerical methods for solving scalar nonlinear hyperbolic conservation laws have been studied recently by
many researchers (see, e.g., [1,25]). The most popular one is the so-called the physics informed neural network (PINN)
method proposed in [25]. Basically, the PINN is a archaic version of the NN method of LS type; it employs a primitive form
of least-squares formulation and uses the automatic differentiation method to differentiate the neural network. This is why
the PINN and other NN-based methods are only applicable to problems with smooth solution such as the viscous Burgers
equation but not the inviscid one studied in this paper.

The paper is organized as follows. The ReLU neural network and the space-time LSNN method are introduced in section 2.
Conservative finite difference operators are discussed in section 3. The block LSNN method is explained in section 4. Finally,
implementation and numerical results for various one dimensional benchmark test problems are presented in section 5.

2. Space-time least-squares neural network method

In this section, we describe least-squares neural network method for the scalar hyperbolic conservation law.
A deep neural network (DNN) defines a scalar-valued function

N : z = (x, t) ∈Rd+1 −→ N (z) ∈ R.

A DNN function N (z) is typically represented as compositions of many layers of functions:

N (z) = ω(L)
(
N (L−1) ◦ · · ·N (2) ◦N (1)(z)

)
− b(L), (2.1)

where ω(L) ∈ RnL−1 , b(L) ∈ R, the symbol ◦ denotes the composition of functions, and L is the depth of the network. For
l = 1, · · · , L − 1, the N (l) :Rnl−1 →Rnl is called the lth hidden layer of the network defined as follows:

N (l)(z(l−1)) = σ(ω(l)z(l−1) − b(l)) for z(l−1) ∈Rnl−1 , (2.2)

where ω(l) ∈ Rnl×nl−1 , b(l) ∈ Rnl , z(0) = z, and σ is the activation function and its application to a vector is defined
component-wisely. This paper will use the popular rectified linear unit (ReLU) activation function defined by
164

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
σ(s) = max{0, s} =
{

0, if s ≤ 0,

s, if s > 0.
(2.3)

Denote the set of NN functions by

M(θ, L) = {
N (z) = ω(L)

(
N (L−1) ◦ · · ·N (2) ◦N (1)(z)

)
− b(L) : ω(l) ∈Rnl×nl−1 , b(l) ∈Rnl

}
,

where N (l)(z(l−1)) is defined in (2.2) and θ denotes all parameters: ω(l) and b(l) for l = 1, ..., L. It is easy to see that M(θ, L)

is a set, but not a linear space.
Applying the least-squares principle directly to the problem in (1.1), we have the following least-squares (LS) functional

L(v; g) = ‖vt + ∇x · f(v)‖2
0,�×I + ‖v − g‖2

0,�− + ‖v(x,0) − u0(x)‖2
0,�. (2.4)

Then the least-squares approximation is to find uN (x, t; θ∗) ∈M(θ , L) such that

L
(
uN (·; θ

∗); f
) = min

v∈M(θ,L)
L

(
v(·; θ); g

) = min
θ∈RN

L
(

v(·; θ); g
)
, (2.5)

where N is the total number of parameters in M(θ , L) given by

N = Md(L) =
L∑

l=1

nl × (nl−1 + 1).

Similar to [7,5], the integral in the LS functional is evaluated by numerical integration. To do so, let

T = {K : K is an open subdomain of � × I}
be a partition of the domain �. Then

E− = {E = ∂ K ∩ �− : K ∈ T } and E0 = {E = ∂ K ∩ (� × {0}) : K ∈ T }
are partitions of the boundary �− and � × {0}, respectively. Let zK = (xK , tK) and zE = (xE , tE) be the centroids of K ∈ T
and E in E− or E0, respectively. Define the discrete LS functional as follows:

LT

(
v(·; θ); g

)
=

∑
K∈T

(
δτ v + ∇h · f(v)

)2
(zK ; θ) |K | +

∑
E∈E−

(
v − g

)2
(zE ; θ)|E| +

∑
E∈E0

(
v − u0

)2
(zE ; θ)|E|, (2.6)

where |K | and |E| are the d and d − 1 dimensional measures of K and E , respectively; δτ and ∇h· are finite difference
operators to be defined in the subsequent section. Then the discrete least-squares approximation is to find uT (z, θ∗) ∈
M(θ , L) such that

LT
(
uT (·, θ

∗); g
) = min

v∈M(θ,L)
LT

(
v(·; θ); g

) = min
θ∈RN

LT
(

v(·; θ); g
)
. (2.7)

3. Conservative finite volume operator

How to discretize the differential operator is critical for the success of the LSNN method. Using finite difference quotient
along coordinate directions to approximate the differential operator usually results in very poor numerical approximation.
To overcome this difficulty, we employ conservative finite volume schemes to evaluate the derivatives in the least-squares
functional in (2.6). There are many conservative schemes such as Roe’s scheme, ENO, and WENO, etc. (see, e.g., [27–29]).
For simplicity, we briefly describe the finite volume operator using the idea of either Roe’s scheme or second-order accurate
ENO in this section. Note that the finite volume operators described in this section are implicit in time.

For any K ∈ T , let (xK , tK) be the centroid of K . Let (h, τ) = (h1, ..., hd, τ) be a step size such that (xK ± h/2, tK ± τ/2) ∈
K . For i = 1, ..., d, let hi = hiei , where ei is the unit vector in the xi -coordinate direction. Then the finite volume operator of
the least-squares functional in (2.6) at the point (xK , tK) is given by(

δτ v + ∇h · f(v)
)
(xK , tK)

= v
(
xK , tK

) − v
(
xK , tK − 1

2τ
)

τ
+

d∑
i=1

f̂ i
(

v(xK + 1
2 hi, tK)

) − f̂ i
(

v(xK − 1
2 hi, tK)

)
hi

, (3.1)

where f̂ i
(

v(xK ± 1
2 hi, tK)

)
are the ith component of the numerical flux at (xK ± 1

2 hi, tK). Various conservative schemes are
more or less on how to reconstruct proper numerical flux.
165

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
Below, we describe the numerical fluxes by Roe and ENO. To this end, we introduce the Roe speed at point (xK ± 1
2 hi, tK)

in the ei direction

ai

(
xK ± 1

2
hi, tK

)
=

⎧⎪⎨
⎪⎩

f i
(

v(xK ± hi, tK)
) − f i

(
v(xK , tK)

)
v
(
xK ± hi, tK

) − v(xK , tK)
, if v

(
xK ± hi, tK

)
= v(xK , tK),

f ′
i

(
v(xK , tK)

)
, if v

(
xK ± hi, tK

) = v(xK , tK).

(3.2)

Then the ith components of the Roe numerical flux at (xK ± 1
2 hi, tK) are given by

f̂ i

(
v
(
xK ± 1

2
hi, tK

))

= f i
(

v(xK , tK)
) + f i

(
v(xK ± hi, tK)

)
2

∓
∣∣∣∣ai

(
xK ± 1

2
hi, tK

)∣∣∣∣ v
(
xK ± hi, tK

) − v(xK , tK)

2
. (3.3)

The key idea of the Roe’s scheme is to use only grid points, if possible, on one side of the interface for constructing
a finite volume scheme so that the RH condition is not violate. This is done through the signs of the Roe speed ai at
midpoints. This key idea was further explored for developing higher order schemes, e.g., the ENO schemes introduced in
[16] (see also [28,29]), by employing extra grid points. To make sure all used grid points locate on one side of the interface,
it requires additional decisions and, hence, the ENO schemes are generally sophisticated.

For simplicity, we describe the second order ENO numerical flux here. The ENO uses the sign of the Roe speed to build
up upwind scheme. Specifically,

f̂ i

(
v(xK + 1

2
hi, tK)

)
=

⎧⎨
⎩

f̂ −
i

(
v(xK + 1

2 hi, tK)
)
, if ai

(
xK + 1

2 hi, tK

) ≥ 0,

f̂ +
i

(
v(xK + 1

2 hi, tK)
)
, if ai

(
xK + 1

2 hi, tK

)
< 0.

(3.4)

Additionally, the ENO uses the magnitudes of the finite difference quotient of the ith component of the flux with respect
to xi over the neighboring intervals to determine which side of grid points are used. In this way, the ENO again tries to use
grid points on one side of the discontinuity if possible. More precisely, let

f i(xK , tK ;hi) := f i
(

v(xK + hi, tK)
) − f i

(
v(xK , tK)

)
hi

and f i(xK , tK ;−hi) := f i
(

v(xK , tK)
) − f i

(
v(xK − hi, tK)

)
hi

.

In the case that ai
(
xK + 1

2 hi, tK

) ≥ 0, combining with (3.4), the ENO numerical flux is given by

f̂ −
i

(
v(xK + 1

2
hi, tK)

)

=
⎧⎨
⎩

− 1
2 f i

(
v(xK − hi, tK)

) + 3
2 f i

(
v(xK , tK)

)
, if

∣∣ f i(xK , tK ;−hi)
∣∣ <

∣∣ f i(xK , tK ;hi)
∣∣,

1
2 f i

(
v(xK , tK)

) + 1
2 f i

(
v(xK + hi, tK)

)
, if

∣∣ f i(xK , tK ;−hi)
∣∣ ≥ ∣∣ f i(xK , tK ;hi)

∣∣. (3.5)

If ai
(
xK + 1

2 hi, tK

)
< 0, then the numerical flux is reconstructed by

f̂ +
i

(
v(xK + 1

2
hi, tK)

)

=
⎧⎨
⎩

1
2 f i

(
v(xK , tK)

) + 1
2 f i

(
v(xK + hi, tK)

)
, if

∣∣ f i(xK + hi, tK ;−hi)
∣∣ <

∣∣ f i(xK + hi, tK ;hi)
∣∣,

3
2 f i

(
v(xK + hi, tK)

) − 1
2 f i

(
v(xK + 2hi, tK)

)
, if

∣∣ f i(xK + hi, tK ;−hi)
∣∣ ≥ ∣∣ f i(xK + hi, tK ;hi)

∣∣.
In a similar fashion, f̂ i

(
v(xK − 1 hi, tK)

)
may be defined accordingly.
2

166

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
Fig. 1. Sketch of domains {�i}m0
i=1 for m0 = 4.

4. Block space-time least-squares neural network method

Our numerical results show that it is difficult to train the space-time LSNN method for problems with shock formation
when the computational domain � is relatively large, even though the NN model we used is relatively small for approx-
imating the solution of the underlying problem well. This is due to the nature of nonlinear hyperbolic conservation laws
since information is transported from initial and inflow boundary to the rest of the domain along the flow direction. To
overcome this training difficulty, we propose the block space-time LSNN method.

For clarity of exposition, let us consider one-dimensional problem defined on � = (a, b) × (0, T). Without loss of gener-
ality, assume that �̃− = {(a, t)| t ∈ (0, T)} is the part of the boundary where the characteristic curves enter the domain �.
Hence,

�− = �̃− ∪ {(x,0)| x ∈ (0, T)}
is the “inflow” boundary of �. Let m0 be a positive integer and let

�1 =
(

a,a + b − a

m0

)
×

(
0,

T

m0

)
and �i =

(
a,a + i

(b − a)

m0

)
×

(
0, i

T

m0

)
\ �i−1

for i = 2, ..., m0. The sketch of domains {�i}m0
i=1 is presented in Fig. 1 and it is clear that {�i}m0

i=1 forms a partition of the
domain �. Denote by ui = u|�i the restriction of the solution u of (1.1) on �i , then ui is the solution of the following
problem:⎧⎪⎪⎨

⎪⎪⎩
(ui)t + ∇x · f(ui) = 0, in �i ∈R2,

ui = g, on �i− = �− ∩ ∂�i,

ui = ui−1, on �i−1,i = ∂�i−1 ∩ ∂�i

(4.1)

for i = 1, ..., m0, where ∂�0 = ∅.
Define the least-squares functional for problem (4.1) by

Li(v; ui−1, g
) = ‖vt(x, t) + ∇x · f(v)‖2

0,�i
+ ‖v − g‖2

0,�i−
+ ‖v − ui−1‖2

0,�i−1,i
.

Then the corresponding discrete least-squares functional Li
T

(
v(·; θ); ui−1, g

)
over the subdomain �i may be defined in a

similar fashion as in (2.6). Now, the block space-time LSNN method is to find ui
T (z, θ∗

i) ∈M(θ , L) such that

Li
T

(
ui
T (·, θ

∗
i); ui−1, g

) = min
v∈M(θ,L)

Li
T

(
v(·; θ); ui−1, g

) = min
θ∈RN

Li
T

(
v(·; θ); ui−1, g

)
(4.2)

for i = 1, ..., m0.

Remark 4.1. The NN model M(θ , L) is determined by the first subdomain and will be used for all subdomains. The trained
parameter θ∗

i from the ith-subdomain is a good approximation to the parameters of the (i + 1)th-subdomain and, hence,
may be used as an initial. This is because the solution in the current block is the evolution of the solution in the previous
block.

The block space-time LSNN method is based on a proper partition of the domain � depending on the “inflow” boundary
of the domain. For example, in one dimension again, if
167

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
�− = {(x, t) ∈ [a,b] × [0, T]| x = a, x = b, or , t = 0},
then the domain � may be partitioned by time blocks as

�i = (a,b) × (
(i − 1)T /m0, iT /m0

)
(4.3)

for i = 1, ..., m0. Then the block space-time LSNN method may be defined accordingly.

5. Implementation and numerical experiments

In this section, we present numerical results for one dimensional benchmark test problems. Test problems include scalar
nonlinear hyperbolic conservation law: (1) inviscid Burgers equation, i.e., f(u) = 1

2 u2 (section 5.1–5.2) and (2) f(u) = 1
4 u4

(section 5.3). Additionally, we analyze the effects of integration mesh and network structure in section 5.4; and compare
the Roe and ENO schemes in section 5.5.

The domain � = (a, b) × (0, T) is partitioned into time blocks as (4.3) and m0 is the number of blocks. Unless otherwise
stated, the integration mesh T is obtained by uniformly partitioning all subdomains �i into identical squares with the mesh
size h = 0.01 for i = 1, · · · , m0. To preserve the conservation, the spatial mesh size hi and the temporal step size τ in both
Roe (3.1) and ENO (3.5) schemes are chosen to be the same as the integration mesh size, i.e., hi = τ = h = 0.01. The block
space-time LSNN method is implemented, and the minimization problem in (4.2) is numerically solved using the Adams
version of gradient descent [22] with a fixed or an adaptive learning rate.

As shown in [7], a three-layer NN is needed in order to approximate discontinuous solutions along non-straight line
interfaces. Since there is no prior knowledge of geometric shape of the discontinuous interfaces for nonlinear problems,
we use three-layer NN models for all test problems. Moreover, the same architecture of three-layer NN models is used for
all blocks. As suggested in Remark 4.1, the parameters of the NN for the current block are initialized by the values of the
parameters of the NN in the previous block. For the first block, the parameters of the second hidden layer are initialized
randomly; and those of the first hidden layer are initialized using the strategy introduced in [24]. For convenience of readers,
we briefly describe here. Let ωi ∈ S1 and bi ∈ R be the weights and bias of the ith neuron of the first hidden layer of the
first block NN model, respectively, where S1 is the unit circle in R2. Initial of {(ωi, bi)}n1

i=1 is chosen so that the hyper-
planes {ωi · (x, t) = bi)}n1

i=1 form a uniform partition of the first block �1. In addition, without an effective training strategy,
we observe from the experiment that adding a weight α to the L2 loss of the initial condition is helpful for the training.
Specifically, the following least-squares functional is used in the implementation

Li(v; ui−1, g
) = ‖vt(x, t) + ∇x · f(v)‖2

0,�i
+ ‖v − g‖2

0,�i−
+ α‖v − ui−1‖2

0,�i−1,i
for i = 1, · · · ,m0 (5.1)

and the weight α is empirically determined.
Let ui be the solution of the problem in (4.1) and ui,T be the NN approximation. Using all quadrature points including

those near the discontinuity, the relative error in the L2 norm for each block is reported in Table 1–8. Note that the points
near discontinuity are usually excluded when reporting the error of existing traditional methods. The network structure is
expressed as 2-n1-n2-1 for a three-layer network with n1 and n2 neurons in the respective first and second layers. The traces
of the exact solution and the numerical approximation are depicted in Figs. 2–7 on a plane perpendicular to the space-time
plane. Those traces exhibit the capability of the numerical approximation in resolving the shock/rarefaction. Since those
planes are generally not perpendicular to the discontinuous interface, the errors shown in those traces are larger than the
actual error.

5.1. Riemann problem for the inviscid Burgers equation

For the one dimensional inviscid Burgers equation, f(u) = f (u) = 1
2 u2, we report numerical results for the corresponding

Riemann problem where the initial condition with a single discontinuity is given by:

u0(x) =
{

uL , if x ≤ 0,

uR , if x > 0.
(5.2)

When uL > uR , the characteristic lines intersect and a shock forms immediately for t > 0. The weak solution is given by

u(x, t) =
{

uL , if x ≤ st,

uR , if x > st,
(5.3)

with the shock speed determined by the RH condition

s = f (uL) − f (uR)
.

uL − uR

168

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
Table 1
Relative errors of Riemann problem (shock) for Burgers’ equation using Roe and ENO fluxes.

Network structure Block Roe flux ‖ui −ui,T ‖0

‖ui ‖0

ENO flux ‖ui−ui,T ‖0

‖ui‖0

2-10-10-1 �1 0.049553 0.030901
2-10-10-1 �2 0.046321 0.030178
2-10-10-1 �3 0.044123 0.028984
2-10-10-1 �4 0.042621 0.028791
2-10-10-1 �5 0.041182 0.032253

When uL < uR , the range of influence of all points in R is a proper subset of R × [0, ∞). This fact implies that the
weak solution of the scalar hyperbolic conservation law is not unique. To ensure the underlying Cauchy problem having a
unique solution over the whole domain R × [0, ∞), the so-called vanishing viscosity weak solution is introduced (see, e.g.,
[13,23,31]) and given by

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

uL , if x < uL t,

x/t, if uL t ≤ x ≤ uR t,

uR , if x > uR t.

5.1.1. Shock formation
The first test problem is corresponding to the case

uL = 1 > 0 = uR

with a computational domain � = (−1, 2) × (0, 1). The inflow boundary is

�− = �L− ∪ �R− ≡ {(−1, t) : t ∈ [0,1]} ∪ {(2, t) : t ∈ [0,1]}
with the boundary conditions: g = uL on �L− and g = uR on �R− . The block space-time LSNN method is employed with
m0 = 5 blocks, a fixed learning rate 0.003, and 30000 iterations for each block.

The set of experiments is done by using the numerical fluxes of Roe (3.1) and the second order ENO (3.5). By choosing
α = 20 in (5.1), numerical results of both schemes are reported in Table 1. Since the results of the Roe flux are similar,
Fig. 2 (b)-(f) only depict the traces of the exact and numerical solution generated by the ENO flux on the planes t = iT /m0
for i = 1, · · · , m0. Clearly, the block space-time LSNN method with a conservative scheme is able to resolve the shock and
accurately approximate the solution without the Gibbs phenomena. For this simple Riemann problem, Roe and ENO schemes
produce similar results. Given the additional evaluations involving in the ENO scheme, we do not observe many advantages
of using higher-order scheme for flux reconstruction despite the fact that ENO performs slightly better in the L2 relative
errors.

5.1.2. Rarefaction waves
The second test problem is corresponding to the case

uL = 0 < 1 = uR

with a computational domain � = (−1, 2) × (0, 0.2). The inflow boundary is

�− = �L− ∪ �R− ≡ {(−1, t) : t ∈ [0,0.2]} ∪ {(2, t) : t ∈ [0,0.2]}
with the boundary conditions: g = uL on �L− and g = uR on �R− . The block space-time LSNN method is employed with
m0 = 2 blocks, a fixed learning rate 0.003, and 20000 iterations for each block.

Numerical results of a 2-10-10-1 network using the Roe flux (3.1) are reported in Table 2. The traces of the exact and
numerical solutions in Fig. 3 indicate that Roe’s scheme fails to resolve the rarefaction. For the traditional mesh-based
method, it is well-known that Roe’s scheme is not able to compute the physical solution of the rarefaction wave. This is
because the scheme approximates the numerical flux depending the sign of the speed ai (3.2) at midpoints. If the sign
differs on two sides and u(x, t) travels slower on the left, Roe’s scheme may not be able to capture such behavior. From this
perspective, we observe certain limitations of using such conservative scheme and that the discretization scheme is very
important for the block space-time LSNN method.

Remark 5.1. In [15,23], the authors proposed the “entropy fix” traditional mesh-based approach to address such issue. In
a forthcoming paper, we will propose a discretization scheme for the LSNN method which is capable of resolving the
rarefaction.
169

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
Fig. 2. Approximation results of Riemann problem (shock) for Burgers’ equation using Roe flux.

Table 2
Relative errors of Riemann problem (rarefaction) for Burgers’ equation using Roe flux.

Network structure Time block
‖ui −ui,T ‖0

‖ui ‖0

2-10-10-1 �1 0.047435
2-10-10-1 �2 0.074521

Fig. 3. Approximation results of Riemann problem (rarefaction) for Burgers’ equation using Roe flux.

5.2. Inviscid Burgers equation with smooth initial condition

The third problem is again the Burgers equation defined on the computational domain � = (0, 2) × (0, 0.4) with the
inflow boundary
170

Table 3
Relative errors of Burgers’ equation with a sinusoidal initial condition using ENO flux.

Network structure Time block
‖ûi−ui,T ‖0

‖ûi‖0

2-30-30-1 �1 0.010461
2-30-30-1 �2 0.012517
2-30-30-1 �3 0.019772
2-30-30-1 �4 0.022574
2-30-30-1 �5 0.029011
2-30-30-1 �6 0.038852
2-30-30-1 �7 0.075888
2-30-30-1 �8 0.078581

Table 4
Relative errors of Riemann problem (shock) with f (u) = 1

4 u4 using Roe flux.

Network structure Block
‖ui−ui,T ‖0

‖ui‖0

2-10-10-1 �1 0.035034
2-10-10-1 �2 0.036645
2-10-10-1 �3 0.036798
2-10-10-1 �4 0.037217
2-10-10-1 �5 0.037451

�− = �L− ∪ �R− ≡ {(0, t) : t ∈ [0,0.4]} ∪ {(2, t) : t ∈ [0,0.4]}
and a sinusoidal initial condition

u0(x) = 0.5 + sin(πx).

The shock forms at t = 1/π ≈ 0.318. Since the exact solution of the test problem is defined implicitly, in order to measure
the quality of the NN approximation, we generate a benchmark reference solution û using the traditional mesh-based ap-
proach. Specifically, the third order accurate WENO scheme [28] is employed for the spatial discretization with a fine grid
(
x = 0.001 and
t = 0.0002) on the computational domain �; and the fourth order Runge-Kutta method is used for the
temporal discretization [32]. The block space-time LSNN method is implemented with m0 = 8 blocks and an adaptive learn-
ing rate which starts at 0.005 and decays by half for every 25000 iterations. The learning rate decay strategy is employed
with 50000 iterations on each time block.

Since the initial condition of the test problem is a smooth function, it is expected that a network with additional neurons
is needed for approximation. Choosing α = 5 in (5.1), the numerical results of a 2-30-30-1 network using the ENO flux in
(3.5) are reported in Table 3. Fig. 4 depicts the traces of the reference solution and numerical approximation on the plane
t = iT /m0 for i = 1, · · · , m0. We observe some error accumulation when block evolves, and the block space-time LSNN
method can resolve the shock. It is noticeable in Fig. 4 that approximation near the local maximum is poor. Possibly this is
due to inaccuracy of the second order ENO scheme for complicated initial data. A new and accurate discretization scheme
for the LSNN method will be reported in a forthcoming paper [6].

5.3. Riemann problem with f (u) = 1
4 u4

The fourth numerical experiment is the Riemann shock problem with a convex flux f(u) = f (u) = 1
4 u4. We choose the

initial condition

uL = 1 > 0 = uR

in (5.2), then the weak solution is given by (5.3) with the speed s = 1/4. The computational domain of problem is given by
� = (−1, 1) × (0, 1) and the inflow boundary is

�− = �L− ∪ �R− ≡ {(−1, t) : t ∈ [0,1]} ∪ {(1, t) : t ∈ [0,1]}
with the boundary conditions: g = 1 on �L− and g = 0 on �R− .

Empirically, we choose α = 20 in (5.1) in the implementation. Employing the block space-time LSNN method with m0 = 5
blocks, a fixed learning rate 0.003 and 30000 iterations for each block, we report the numerical results of a 2-10-10-1
network in Table 4 and Fig. 5. Obviously, the discontinuous interface can be accurately captured as the NN approximation is
almost overlapped with the exact solution, which suggests that the LSNN method is not only capable of solving the Burgers
equation but also the problem with a general convex flux.
Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
171

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176

Fig. 4. Approximation results of Burgers’ equation with a sinusoidal initial using ENO flux.

Fig. 5. Approximation results of Riemann problem (shock) with f (u) = 1
4 u4 using Roe flux.
172

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
Table 5
Relative L2 errors of the problem with a piece-wise linear initial using different integration mesh sizes.

Time block Integration mesh size

h = 0.1 h = 0.05 h = 0.025 h = 0.01 h = 0.005

�1 0.056712 0.029366 0.017376 0.013946 0.013121
�2 0.079633 0.064069 0.048971 0.037891 0.036501
�3 0.120129 0.115123 0.102844 0.084728 0.081209

Table 6
Relative L2 errors of the problem with a piece-wise linear initial using different network structures.

Time block Network structure

2-4-4-1 2-7-7-1 2-10-10-1 2-13-13-1

�1 0.021699 0.017004 0.013121 0.009895
�2 0.047953 0.040521 0.036501 0.028159
�3 0.095649 0.088201 0.081209 0.072244

5.4. Effects of integration mesh and network structure

The goal of this section is to analyze the effects of integration mesh and network structure for the LSNN method. Specif-
ically, we use the inviscid Burgers equation defined on the computational domain � = (−1, 2) × (0, 0.6) with a continuous
piece-wise linear initial condition

u0(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x < 0,

1 − 2x, if 0 ≤ x ≤ 1/2,

0, if x > 1/2.

The inflow boundary is

�− = �L− ∪ �R− ≡ {(−1, t) : t ∈ [0,0.6]} ∪ {(2, t) : t ∈ [0,0.6]},
with the boundary conditions: g = 1 on �L− and g = 0 on �R− . Even though the initial value u0 is continuous, the shock
will appear at some point since u(x, t) travels faster on the left-hand side than on the right-hand side. Specifically, when
t < 1/2, the solution is continuous and it is determined by the characteristic lines as well as the initial conditions:

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x < t < 1/2,

1 − 2x

1 − 2t
, if t ≤ x ≤ 1/2,

0, if x > 1/2.

When t > 1/2, the shock forms and the desired weak solution satisfying RH condition is given by

u(x, t) =
{

1, if x < (2t + 1)/4,

0, if x ≥ (2t + 1)/4.

The block space-time LSNN is implemented with m0 = 3 blocks, a fixed learning rate 0.003 and α = 10 in the training.
In order to explore the network approximation power, we do not constrain the number of iterations on each block. The
stopping criteria for the gradient descent solver is set as follows: the solver stops when the loss function (5.1) decreases
within 0.1% in the last 2000 iterations.

The first set of experiments is to observe the impact of integration mesh size when a fixed network structure 2-10-10-1
is used. Starting with the same initialization for both layers, the relative L2 errors of the ENO scheme on uniform meshes
with different mesh size are reported in Table 5. The results display that the error decreases as the integration mesh size
reduces, but the decreasing rate is small when the mesh size is sufficiently fine. This indicates that h = 0.01 is fine enough
to accurately evaluate the discrete LS functional in (4.2) for the given 2-10-10-1 network.

The second set of numerical tests is to investigate the effect of network structure. To accurately evaluate the functional,
we use a fine integration mesh with size h = 0.005. The approximation errors generated by four different network structures
using the ENO scheme are presented in Table 6. As expected, the approximation error decreases as the number of neurons
in the network increases.

Tables 5 and 6 indicate that the approximation error grows significantly as the block evolves. To address this issue, a
simple way is to decrease the size of each block, or equivalently, increases the number of blocks m0. Specifically, increasing
m0 from 3 to 6, Table 7 reports numerical results of the ENO scheme using h = 0.01, which is better than the results in the
173

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
Table 7
Relative L2 errors of the problem with a piece-wise linear initial using ENO flux with
m0 = 6.

Network structure Block
‖ui −ui,T ‖0

‖ui‖0

2-10-10-1 �1 0.008958
2-10-10-1 �2 0.014842
2-10-10-1 �3 0.019282
2-10-10-1 �4 0.025562
2-10-10-1 �5 0.047431
2-10-10-1 �6 0.052606

Table 8
Relative errors of Burgers’ equation with a piece-wise linear initial condition.

Network structure Block Roe flux ‖ui −ui,T ‖0

‖ui ‖0

ENO flux ‖ui −ui,T ‖0

‖ui ‖0

2-10-10-1 �1 0.008333 0.008958
2-10-10-1 �2 0.017503 0.014842
2-10-10-1 �3 0.025342 0.019282
2-10-10-1 �4 0.036211 0.025562
2-10-10-1 �5 0.061251 0.047431
2-10-10-1 �6 0.068512 0.052606

Fig. 6. Approximation results of Burgers’ equation with a piece-wise linear initial using Roe flux.

corresponding column in Table 5. Due to the increasing computational cost when using a smaller block, in practice we need
to balance the cost and the accuracy when choosing the size of the block in the block space-time LSNN method.

5.5. Comparison of the Roe and ENO schemes

This choosing set of numerical experiments aims to compare numerical performances of the LSNN method using the Roe
(3.1) and ENO (3.5) schemes. The test problem in section 5.4 is used, and the block space-time LSNN method is employed
with m0 = 6 blocks, the 2-10-10-1 network structure, and with a uniform integration mesh of the size h = 0.01. We note
that the ENO performs better than the Roe in the relative L2 norm (see Table 8) and near the discontinuous interface (see
Fig. 6 and 7). Note that the former is more expansive than the latter in the computational cost due to additional testing.

6. Discussions and conclusions

The block space-time LSNN method is proposed for solving scalar nonlinear hyperbolic conservation laws. The least-
squares formulation is a direct application of the least-squares principle to the underlying problem: the equation, the inflow
boundary condition, and the initial condition. The block space-time version of the LSNN method is introduced to compensate
with some uncertainty of the not well-understood nonlinear optimization procedure.

How to approximate the differential operator in the least-squares functional is critical for the success of the space-time
LSNN method. As mentioned in the introduction, existing NN-based methods are not applicable to the inviscid Burgers
equation whose solution is discontinuous. Employing the Roe and the second order ENO schemes, we show numerically
that the resulting LSNN method is capable of resolving the shock without smearing and oscillations. Moreover, the LSNN
method has much less degrees of freedom (DoF) than traditional mesh-based methods.

Despite the great potential demonstrated in this paper, the current version of the LSNN method needs to be improved in
both accuracy and efficiency in order to grow into a viable numerical method. First, the method is inaccurate for complicated
174

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
Fig. 7. Approximation results of Burgers’ equation with a piece-wise linear initial using ENO flux.

initial condition; moreover, it has limitations for problems with rarefaction waves and with non-convex spatial fluxes. To
overcome these deficiencies, we recently study a new version of the LSNN method that uses a novel and accurate finite
volume method developed in [6]. Second, the computational cost of the current version of the LSNN method is expensive
because of the resulting non-convex optimization. To reduce the cost, we will explore physical meanings of non-linear
parameters of NNs (see, e.g., [24]) to develop good initial strategies and then employ fast iterative solvers such as methods
of BFGS type (the Broyden–Fletcher–Goldfarb–Shanno algorithm).

References

[1] Y. Bar-Sinai, S. Hoyer, J. Hickey, M.P. Brenner, Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad. Sci. USA 116 (31)
(2019) 15344–15349.

[2] P. Bochev, J. Choi, Improved least-squares error estimates for scalar hyperbolic problems, Comput. Methods Appl. Math. 1 (2) (2001) 115–124.
[3] F. Brezzi, L.D. Marini, E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci. 14 (12) (2004)

1893–1903.
[4] E. Burman, A posteriori error estimation for interior penalty finite element approximations of the advection-reaction equation, SIAM J. Numer. Anal.

47 (5) (2009) 3584–3607.
[5] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs, J. Comput. Phys.

420 (2020) 109707.
[6] Z. Cai, J. Chen, M. Liu, Finite volume least-squares neural network (FV-LSNN) method for scalar nonlinear hyperbolic conservation laws, arXiv preprint,

arXiv:2110 .10895, 2021.
[7] Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for linear advection-reaction equation, J. Comput. Phys. 443 (2021) 110514.
[8] W. Dahmen, C. Huang, C. Schwab, G. Welper, Adaptive Petrov–Galerkin methods for first order transport equations, SIAM J. Numer. Anal. 50 (5) (2012)

2420–2445.
[9] H. De Sterck, T.A. Manteuffel, S.F. McCormick, L. Olson, Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs,

SIAM J. Sci. Comput. 26 (1) (2004) 31–54.
[10] H. De Sterck, T.A. Manteuffel, S.F. McCormick, L. Olson, Numerical conservation properties of H(div)-conforming least-squares finite element methods

for the Burgers equation, SIAM J. Sci. Comput. 26 (5) (2005) 1573–1597.
[11] L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. Part I: the transport equation, Comput. Methods Appl. Mech. Eng.

199 (23–24) (2010) 1558–1572.
[12] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1) (2018)

1–12.
[13] E. Godlewski, P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol. 118, Springer Science & Business Media, 2013.
[14] D. Gottlieb, C.-W. Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (4) (1997) 644–668.
[15] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 135 (2) (1997) 260–278.
[16] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III, in: Upwind and High-

Resolution Schemes, Springer, 1987, pp. 218–290.
[17] J.S. Hesthaven, Numerical Methods for Conservation Laws: From Analysis to Algorithms, SIAM, 2017.
[18] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer Science & Business Media, 2007.
[19] P. Houston, J.A. Mackenzie, E. Süli, G. Warnecke, A posteriori error analysis for numerical approximations of Friedrichs systems, Numer. Math. 82 (3)

(1999) 433–470.
[20] P. Houston, R. Rannacher, E. Süli, A posteriori error analysis for stabilised finite element approximations of transport problems, Comput. Methods Appl.

Mech. Eng. 190 (11–12) (2000) 1483–1508.
[21] D.Z. Kalchev, T.A. Manteuffel, A least-squares finite element method based on the Helmholtz decomposition for hyperbolic balance laws, arXiv preprint,

arXiv:1911.05831v2, 2020.
[22] D.P. Kingma, J. Ba ADAM, A method for stochastic optimization, in: International Conference on Representation Learning, San Diego, 2015;

arXiv preprint, arXiv:1412 .6980.
[23] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, Boston, 1992.
[24] M. Liu, Z. Cai, J. Chen, Adaptive two-layer ReLU neural network: I. Best least-squares approximation, Comput. Math. Appl. (2022), in press, arXiv:

2107.08935v1 [math .NA].
[25] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations, arXiv

preprint, arXiv:1711.10561, 2017.
[26] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[27] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (2) (1981) 357–372.
175

http://refhub.elsevier.com/S0168-9274(22)00002-2/bibFBEA9E115F2D86FBD4956A6D4FD6729Es1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibFBEA9E115F2D86FBD4956A6D4FD6729Es1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib958695BECAC605C121BC8242EDE3557Fs1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib93312ACD20432E1BEA1D71473EB174B1s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib93312ACD20432E1BEA1D71473EB174B1s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib4D4B4C16A9E4AE22213F0E84D7A54F86s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib4D4B4C16A9E4AE22213F0E84D7A54F86s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib34AFCB53734650090791025D0D7AC83Cs1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib34AFCB53734650090791025D0D7AC83Cs1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib4B5E5797D4A86C71E3206BAEADB75D92s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib4B5E5797D4A86C71E3206BAEADB75D92s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib268E1A9804256C5537DABB547CA707F1s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibF29CDCCAD56369A96021E7CAED420132s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibF29CDCCAD56369A96021E7CAED420132s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibCE9F54625E336220491A71ED46DF7CDAs1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibCE9F54625E336220491A71ED46DF7CDAs1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib72B74E13AE5DEDC7EA169929A818BB85s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib72B74E13AE5DEDC7EA169929A818BB85s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib061D3DDB29308FD4BF2E584E1B7AAE8Ds1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib061D3DDB29308FD4BF2E584E1B7AAE8Ds1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib04A4EF5DE6F5BB81CF32512324694D08s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib04A4EF5DE6F5BB81CF32512324694D08s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib0E6D4D427E352113BF04D4F03FD71FCAs1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib7936BC5C74F62D33BAA75127DD64181Fs1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib28D059ADA707DC5303C1B463E8DB260Bs1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibD48D831BA2E49D16B1895C90EB8AEC96s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibD48D831BA2E49D16B1895C90EB8AEC96s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib8674FB61B161FA58FB82879AF3BA3D58s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib27826628456ED5470AA745613273279Bs1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib63CEC346280833E488056AF7EAF5DED2s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib63CEC346280833E488056AF7EAF5DED2s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib908112F272482BCDB83360FACF57E2F1s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib908112F272482BCDB83360FACF57E2F1s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibFA0068CC21EE356436A56567B3E06455s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibFA0068CC21EE356436A56567B3E06455s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib3B92EFDC6F4468FDE02D2617EC0275A5s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib3B92EFDC6F4468FDE02D2617EC0275A5s2
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibC5216D9F20279998D43E721BCE2A1374s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib595A11CC07DFEA6BF1FB8E92EEAD1B69s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib595A11CC07DFEA6BF1FB8E92EEAD1B69s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib622B96F911A6F17FDFC4125DEE49FD2As1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib622B96F911A6F17FDFC4125DEE49FD2As1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib5842172AB20801451AD1F665D22735A9s1

Z. Cai, J. Chen and M. Liu Applied Numerical Mathematics 174 (2022) 163–176
[28] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in: Advanced Numerical
Approximation of Nonlinear Hyperbolic Equations, Springer, 1998, pp. 325–432.

[29] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (2) (1988) 439–471.
[30] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1139–1364.
[31] J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, vol. 22, Springer Science & Business Media, 2013.
[32] Y. Wang, Z. Shen, Z. Long, B. Dong, Learning to discretize: solving 1D scalar conservation laws via deep reinforcement learning, arXiv preprint, arXiv:

1905 .11079, 2019.
176

http://refhub.elsevier.com/S0168-9274(22)00002-2/bibC9CC9CD8A5BC99597AC6970D64144C75s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibC9CC9CD8A5BC99597AC6970D64144C75s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib71F4046F09E7D4503939EAC3E4CD5F29s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibD32F5609A9E0CCD2707B1E8B1D243BC4s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bib4D366027D5A858B70B2B31010D34B371s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibF261A51A7172F9CC6408565666A8C2C2s1
http://refhub.elsevier.com/S0168-9274(22)00002-2/bibF261A51A7172F9CC6408565666A8C2C2s1

	Least-squares ReLU neural network (LSNN) method for scalar nonlinear hyperbolic conservation law
	1 Introduction
	2 Space-time least-squares neural network method
	3 Conservative finite volume operator
	4 Block space-time least-squares neural network method
	5 Implementation and numerical experiments
	5.1 Riemann problem for the inviscid Burgers equation
	5.1.1 Shock formation
	5.1.2 Rarefaction waves

	5.2 Inviscid Burgers equation with smooth initial condition
	5.3 Riemann problem with f(u)=1/4u4
	5.4 Effects of integration mesh and network structure
	5.5 Comparison of the Roe and ENO schemes

	6 Discussions and conclusions
	References

