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Designing an optimal deep neural network for a given task is important and challenging 
in many machine learning applications. To address this issue, we introduce a self-adaptive 
algorithm: the adaptive network enhancement (ANE) method, written as loops of the form

train → estimate → enhance.

Starting with a small two-layer neural network (NN), the step train is to solve the 
optimization problem at the current NN; the step estimate is to compute a posteriori
estimator/indicators using the solution at the current NN; the step enhance is to add new 
neurons to the current NN.
Novel network enhancement strategies based on the computed estimator/indicators are 
developed in this paper to determine how many new neurons and when a new layer 
should be added to the current NN. The ANE method provides a natural process for 
obtaining a good initialization in training the current NN; in addition, we introduce an 
advanced procedure on how to initialize newly added neurons for a better approximation. 
We demonstrate that the ANE method can automatically design a nearly minimal NN for 
learning functions exhibiting sharp transitional layers as well as discontinuous solutions of 
hyperbolic partial differential equations.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Deep neural network (DNN) has achieved astonishing performance in computer vision, natural language processing, 
and many other artificial intelligence (AI) tasks (see, e.g., [8,16,12]). This success encourages wide applications to other 
fields, including recent studies of using DNN models to learn solutions of partial differential equations (PDEs) (see, e.g., 
[2,7,6,10,20,23]). The phenomenal performance on many AI tasks comes at the cost of high computational complexity. 
Accordingly, designing efficient network architectures for DNN is an important step towards enabling the wide deployment 
of DNN in various applications.

Studies and applications of neural network (NN) may be traced back to the work of Hebb [14] in the late 1940’s and 
Rosenblatt [21] in the 1950’s. DNN produces a new class of functions through compositions of linear transformations and 
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activation functions. This class of functions is extremely rich. For example, it contains piece-wise polynomials, which are 
the footing of spectral elements, and continuous and discontinuous finite element methods for computer simulations of 
complex physical, biological, and human-engineered systems. It approximates polynomials of any degree with exponential 
efficiency, even using simple activation functions like ReLU. More importantly, a neural network function can automatically 
adapt to a target function or the solution of a PDE.

Despite great successes of DNN in many practical applications, it is widely accepted that approximation properties of 
DNN are not yet well understood and that understanding on why and how they work could lead to significant improvements 
in many machine learning applications. First, some empirical observations suggest that deep network can approximate many 
functions more accurately than shallow network, but rigorous study on the theoretical advantage of deep network is scarce. 
Therefore, even in the manual design of network models, the addition of neurons along depth or width is ad-hoc. Second, 
current methods on design of the architecture of DNN in terms of their width and depth are empirical. Tuning of depth 
and width is tedious, mainly from experimental results in ablation studies which typically require domain knowledge about 
the underlying problem. Third, there is a tendency in practice to use over-parametrized neural networks; this leads to a 
high-dimensional nonlinear optimization problem which is much more difficult to train than a low-dimensional one. These 
considerations suggest that a fundamental, open question to be addressed in scientific machine learning is: what is the 
optimal network model required, in terms of width, depth, and the number of parameters, to learn data, a function, or the 
solution of a PDE within some prescribed accuracy?

To address this issue, we introduce a self-adaptive algorithm: the adaptive network enhancement (ANE) method, written 
as loops of the form

train → estimate → enhance.

Starting with a small two-layer NN, the step train is to solve the optimization problem of the current NN; the step estimate
is to compute a posteriori estimator/indicators using the solution at the current NN; the step enhance is to add new neurons 
to the current NN. This adaptive algorithm learns not only from given information (data, function, PDE) but also from the 
current computer simulation, and it is therefore a learning algorithm at a level which is more advanced than common 
machine learning algorithms.

To develop an efficient ANE method, we need to address the following essential questions at each adaptive step when 
the current NN is not sufficient for the given task:

(a) how many new neurons should be added?
(b) when should a new layer be added?

For a two-layer NN, we proposed the ANE method (see Algorithm 4.1) for learning a given function in [18] and the solution 
of a given self-adjoint elliptic PDEs through the Ritz formulation in [17]. In the case of a two-layer NN, question (b) is 
irrelevant and question (a) was addressed by introducing a network enhancement strategy that decides the number of new 
neurons to be added in the first hidden layer. This strategy is based on the physical partition of the current computer 
simulation determined by the a posteriori error indicators (see Algorithm 3.1).

For a multi-layer NN, it is challenging to address both the questions. First, the role of a neuron in approximation at a 
hidden layer varies and depends on which hidden layer the neuron is located. Second, there is almost no understanding on 
the role of a specific hidden layer in approximation and, hence, we have no a priori approximation information for deter-
mining when a new layer should be added. To resolve question (a) for a multi-layer, we will exploit the geometric property 
of the current computer simulation and introduce a novel enhancement strategy (see Algorithm 4.2) that determines the 
number of new neurons to be added at a hidden layer other than the first hidden layer. For question (b), we will introduce 
a computable quantity to measure the improvement rate of two consecutive NNs per the relative increase of parameters. 
When the improvement rate is small, then a new layer is started.

Training DNN, i.e., determining the values of the parameters of DNN, is a problem in nonlinear optimization. This high 
dimensional, nonlinear optimization problem tends to be computationally intensive and complicated and is usually solved 
iteratively by the method of gradient descent and its variations (see [4]). In general, a nonlinear optimization has many 
solutions, and the desired one is obtained only if we start from a close enough first approximation. A common way to 
obtain a good initialization is by the method of continuation [1]. The ANE method provides a natural process for obtaining 
a good initialization. Basically, the approximation at the previous NN is already a good approximation to the current NN in 
the loops of the ANE method. To provide a better approximation, we initialize the weights and bias of newly added neurons 
at the first hidden layer by using the physical partition of the domain (see Section 3 and [18] for details); in this paper we 
introduce an advanced procedure on how to initialize newly added neurons at a hidden layer that is not the first hidden 
layer.

For simplicity of presentation, the ANE method for a multi-layer NN is first described for learning a given func-
tion through the least-squares loss function (see Section 4). The method is then applied to learn solutions of linear 
advection-reaction equations through the least-squares neural network (LSNN) method introduced in [5] (see Section 7). 
We demonstrate that the ANE method can automatically design a nearly minimal NN for learning functions exhibiting sharp 
transitional layers as well as discontinuous solutions of hyperbolic PDEs.
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Recently, there is growing interest in automatic machine learning (AutoML) in an effort of replacing a manual design 
process of architectures by human experts. Neural architecture search (NAS) method (see a survey paper [11] and reference 
therein) presents a general methodology at high level on AutoML. It consists of three components: search space, search 
strategy, and performance estimation strategy. Usually the resulting algorithm is computationally intensive because it ex-
plores a wide range of potential network architectures. Nevertheless, the NAS outperforms manually designed architectures 
in accuracy on some tasks such as image classification, object detection, or semantic segmentation. The NAS based on the 
physics-informed neural network is recently used for solving stochastic groundwater flow problem in [13].

The paper is organized as follows. DNN, the best least-squares (LS) approximation to a given function using DNN, and 
the discrete counterpart of the best LS approximation are introduced in Section 2. The physical partition for a DNN func-
tion is described in Section 3. The ANE method, initialization of parameters at different stage, and numerical experiments 
are presented in Sections 4, 5 and 6, respectively. Finally, application of the ANE method to the linear advection-reaction 
equation is given in Section 7.

2. Deep neural network and least-squares approximation

A deep neural network defines a function of the form

y = N (x) = ωL ·
(

N(L−1) ◦ · · · ◦ N(1)(x)
)

− bL : x ∈Rd −→ y = N (x) ∈R, (2.1)

where d is the dimension of input x, ω(L) ∈ RnL−1 , b(L) ∈ R, the symbol ◦ denotes the composition of functions, and L is 
the depth of the network. For l = 1, · · · , L − 1, the N(l) :Rnl−1 →Rnl is called the lth hidden layer of the network defined by

N(l)(x(l−1)) = σ(ω(l)x(l−1) − b(l)) for x(l−1) ∈ Rnl−1 , (2.2)

where ω(l) ∈ Rnl×nl−1 , b(l) ∈ Rnl , x(0) = x, and σ(t) = max{0, t}p with positive integer p is the activation function and its 
application to a vector is defined component-wise. This activation function is referred to as a spline activation ReLUp . When 
p = 1, σ(t) is the popular rectified linear unit (ReLU). There are many other activation functions such as (logistic, Gaussian, 
arctan) sigmoids (see, e.g., [19]).

Let θ denote all parameters to be trained, i.e., the weights {ω(l)}L
l=1 and the bias {b(l)}L

l=1. Then the total number of 
parameters is given by

N = Md(L) =
L∑

l=1

nl × (nl−1 + 1). (2.3)

Denote the set of all DNN functions by

MN(θ, L) = {
ωL ·

(
N(L−1) ◦ · · · ◦ N(1)(x)

)
− bL : ω(l) ∈ Rnl×nl−1 , b(l) ∈Rnl for l = 1, ..., L − 1

}
.

Let f (x) ∈ R be a given target function defined in a domain � ∈ Rd . Training DNN to learn the function f (x) using 
least-squares loss function amounts to solve the following best least-squares approximation: find f N(x; θ∗) ∈MN (θ , L) such 
that

‖ f (·) − f N(·; θ
∗)‖ = min

v∈MN (θ,L)
‖ f − v‖ = min

θ∈RN
‖ f (·) − v(·; θ)‖, (2.4)

where v(x; θ) ∈MN (θ , L) is of the form

v(x; θ) = ωL ·
(

N(L−1) ◦ · · · ◦ N(1)(x)
)

− bL

with N(l)(·) defined in (2.2), and ‖v(·)‖ = (∫
�

v2(x)dx
)1/2

is the L2(�) norm.
Let I be the integral operator over the domain � given by

I( f ) =
∫
�

f (x)dx. (2.5)

Let T = {K : K is an open subdomain of �} be a partition of the domain �, i.e., union of all subdomains of T equals to 
the whole domain � and that any two distinct subdomains of T have no intersection. Let QT be a quadrature operator 
based on the partition T , i.e., I(v) ≈QT

(
v
)
, such that

‖v‖T =
√

(v, v)T =
√
QT

(
v2

)
defines a weighted l2-norm. The best discrete least-squares approximation with numerical integration over the partition T
is to find fT (x; θ∗ ) ∈MN (θ , L) such that
T

3
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‖ f (·) − fT (·; θ
∗
T )‖T = min

v∈MN (θ ,L)
‖ f − v‖T = min

θ∈RN
‖ f (·) − v(·; θ)‖T . (2.6)

Theorem 2.1. Assume that there exists a positive constant α such that α ‖v‖2 ≤ ‖v‖2
T for all v ∈ M2N ≡ MN (θ , L) ⊕ MN (θ , L). 

Let fT be a solution of (2.6). Then there exists a positive constant C such that

C ‖ f − fT ‖ ≤ inf
v∈MN (θ ,L)

{
‖ f − v‖ + sup

w∈M2N

|(I −QT )(v w)|
‖w‖

}
+ sup

w∈M2N

|(I −QT )( f w)|
‖w‖ . (2.7)

Proof. The theorem may be proved in a similar fashion as that of Theorem 4.1 in [18]. �
3. Physical partition (PP)

As seen in [18], the physical partition of the current NN approximation plays a critical role in the ANE method for a 
two-layer NN. As we shall see, it is essential for our self-adaptive multi-layer NN as well. For simplicity of presentation, we 
consider ReLU activation function only in this section. The idea of our procedure for determining the physical partition can 
be easily extended to other activation functions even though the corresponding geometry becomes complex.

For any function v ∈ MN (θ , k) with k ≥ 2, it is easy to see that v is a continuous piece-wise linear function with 
respect to a partition K(k−1) of the domain �. This partition is referred to as the physical partition of the function v in 
MN (θ , k). This section describes how to determine the physical partition K(k−1) of a function in MN (θ , k). To this end, for 
l = 1, · · · , k − 1, denote by K(l) the physical partition of the first l layers.

To determine the physical partition K(1) , notice that a two-layer NN with n1 neurons generates the following set of 
functions:

MN(θ,2) =
{

n1∑
i=1

ω
(2)
i σ(ω(1)

i · x − b(1)
i ) − b(2) : ω

(2)
i , b(1)

i , b(2) ∈R, ω(1)
i ∈ Sd−1

}
, (3.1)

where Sd−1 is the unit sphere in Rd . The MN (θ , 2) may be viewed as an extension of the free-knot spline functions [22]
to multi-dimension, and its free breaking hyper-planes are

P j : ω(1)
j · x − b(1)

j = 0 for j = 1, ..., n1. (3.2)

This suggests that the physical partition K(1) is formed by the boundary of the domain � and the hyper-planes {
ω(1)

j · x − b(1)
j = 0

}n1

j=1
.

Next, we describe how to form the physical partition K(l) . Our procedure is based on the observation that for l =
2, ... , k − 1, the K(l) may be viewed as a refinement of the K(l−1) . For j = 1, · · · , nl , denote the function generated by the 
jth neuron at the lth-layer without the activation function by

g(l)
j (x) =

nl−1∑
i=1

ω
(l)
i j σ

(
ω(l−1)

i · x(l−2) − b(l−1)
i

)
− b(l)

j ,

where x(l−2) = N(l−2) ◦ · · · ◦ N(1)(x). It is clear that the functions g(l)
j (x) are continuous piece-wise linear functions with 

respect to the physical partition K(l−1) . The action of the activation function on g(l)
j (x), i.e., σ(g(l)

j (x)) = max{0, g(l)
j (x)} for 

j = 1, · · · , nl , generate nl continuous piece-wise linear functions with respect to a refined partition of K(l−1) . Therefore, 
the refinement is created by the activation function through replacing negative values of g(l)

j (x) by zero (see Fig. 1 for 
illustration). In other words, the refinement is done by all new hyper-planes satisfying

g(l)
j (x) = 0 for j = 1, · · · , nl. (3.3)

To determine whether or not an element K ∈ K(l−1) is refined, for each g(l)
j (x), we compute its values at vertices of 

K . If these values change signs, then the element K is partitioned by the hyper-plane g(l)
j (x) = 0 into two subdomains. It 

is possible that an element K ∈ K(l−1) may be partitioned by many hyper-planes in (3.3). Denote the collection of refined 
elements in K(l−1) by

K(l−1)
r =

{
K ∈ K(l−1)

∣∣∃ j0 such that values of g(l)
j0

(x) at vertices of K change signs
}

. (3.4)

Denote by K(l)
K the physical partition of element K ∈ K(l−1) by hyper-planes in (3.3) and the boundary of K . Then the 

physical partition K(l) by the first l hidden layers is given by
4
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Fig. 1. Breaking lines generated by the jth neuron of the lth-layer.

K(l) =
⎛
⎜⎝ ⋃

K∈K(l−1)
r

K(l)
K

⎞
⎟⎠⋃(

K(l−1) \K(l−1)
r

)
. (3.5)

The procedure of determining the physical partition of a function in MN (θ , k) with k ≥ 3 is summarized in Algorithm 3.1.

Algorithm 3.1 Physical partition.

For any function v ∈MN (θ , k) with k ≥ 3, the partition K(1) is determined by the boundary of the domain � and the hyper-planes 
{
ω(1)

i · x − b(1)
i = 0

}n1

i=1
. 

For l = 2, · · · , k − 1,

(1) evaluate g(l)
j (x) at vertices of K(l−1) for j = 1, · · · , nl ;

(2) determine K(l−1)
r using (3.4);

(3) for each K ∈ K(l−1)
r , determine its refinement by hyper-planes whose values change signs at vertices of K ;

(4) K(l) is given in (3.5).

4. Adaptive network enhancement method

Given a target function f (x) and a prescribed tolerance ε > 0 for approximation accuracy, in [18] we proposed the 
adaptive network enhancement (ANE) method for generating a two-layer ReLU NN and a numerical integration mesh such 
that

‖ f (·) − fT (·; θ
∗
T )‖ ≤ ε ‖ f ‖, (4.1)

where fT (x; θ∗
T ) is the solution of the optimization problem in (2.6) over a two-layer NN with numerical integration defined 

on the partition T .
For the convenience of readers and needed notations, we state Algorithm 5.1 of [18] (see Algorithm 4.1 below) for the 

case that numerical integration based on a partition T is sufficiently accurate. In this algorithm, K is the physical partition 
of the current approximation fT , ξK = ‖ f − fT ‖K ,T is the local error in the physical subdomain K ∈ K, and the network 
enhancement strategy introduced in [18] consists of either the average marking strategy:

K̂ =
{

K ∈ K : ξK ≥ 1

#K
∑
K∈K

ξK

}
, (4.2)

where #K is the number of elements of K, or the bulk marking strategy: finding a minimal subset K̂ of K such that∑
K∈K̂

ξ2
K

≥ γ1

∑
K∈K

ξ2
K

for γ1 ∈ (0, 1). (4.3)

With the subset K̂, the number of new neurons to be added to the current NN is equal to #K̂, the number of elements in 
K̂.

For continuous functions exhibiting intersecting interface singularities or sharp transitional layer like discontinuities, 
numerical results in [18] showed the efficacy of the ANE method for generating a nearly minimal two-layer NN to learn 
5
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Algorithm 4.1 Adaptive Network Enhancement for a two-layer NN with a fixed T .
Given a target function f (x) and a tolerance ε > 0, starting with a two-layer ReLU NN with a small number of neurons,

(1) solve the optimization problem in (2.6);

(2) estimate the total error by computing ξ =
( ∑

K∈K
ξ2

K

)1/2

/‖ f ‖T ;

(3) if ξ < ε , then stop; otherwise, go to Step (4);
(4) add #K̂ neurons to the network, then go to Step (1).

the target function within the prescribed accuracy. However, in the case that the transitional layer is over a circle but not 
a straight line, the approximation by a two-layer NN with a large number of neurons exhibits a certain level of oscillation; 
while the approximation using a three-layer NN with a small number of parameters is more accurate than the former 
and has no oscillation. Those numerical experiments suggest that a three-layer NN is needed for learning certain type of 
functions even if they are continuous.

In this section, we develop the ANE method for a multi-layer NN. To address question (b), i.e., when to add a new layer, 
we introduce a computable quantity denoted by ηr measuring the improvement rate of two consecutive NNs per the relative 
increase of parameters. If the improvement rate ηr is less than or equal to a prescribed expectation rate δ ∈ (0, 2), i.e.,

ηr ≤ δ, (4.4)

for two consecutive ANE runs, then the ANE method adds a new layer. Otherwise, the ANE adds neurons to the last hidden 
layer of the current network. Here a conservative strategy for adding a new layer is adopted by a double-run to check if 
inefficiency is identified when enhancing neurons in the current layer.

To define the improvement rate, denote the two consecutive NNs by MNnew and MNold , where the subscripts Nnew and 
Nold are the number of parameters of these two NNs, respectively. Assume that the former is obtained by adding neurons in 
the last hidden layer of the latter. Let ξnew and ξold be the error estimators of the approximations using MNnew and MNold , 
respectively. The improvement rate ηr is defined as

ηr =
(

ξold − ξnew

ξold

)/(
(Nnew)r − (Nold)r

(Nnew)r

)
,

where r is the order of the approximation with respect to the number of parameters and may depend on the activation 
function and the layer.

To determine the number of new neurons to be added in the last (but not first) hidden layer, our network enhancement 
strategy starts with the marked subset K̂ of K as in the first layer, where K is the physical partition of the current 
approximation. The subset K̂ is further regrouped into a new set C = {C : C is a connected, open subdomain of �} such 
that each element of C is either an isolated subdomain in K̂ or a union of connected subdomains in K̂. Now, the number 
of new neurons to be added equals to the number of elements in C . This strategy is based on the observation that a multi-
layer NN is capable of generating piece-wise breaking hyper-planes in connected subdomains by one neuron. Summarizing 
the above discussion, our network enhancement strategy on adding neurons and layers is described in Algorithm 4.2.

Algorithm 4.2 Network enhancement strategy.
Given an error estimator ξ and the improvement rate ηr ,

(1) if (4.4) holds for two consecutive ANE runs, add a new hidden layer; otherwise, go to Step (2);
(2) use the marking strategy in (4.2) or (4.3) to generate K̂, and regroup K̂ to get C;
(3) if there is only one hidden layer, add #K̂ neurons to the first hidden layer; otherwise, add #C neurons to the last hidden layer.

Assume that numerical integration on T is accurate, then the ANE method for generating a nearly minimal multi-layer 
neural network is described in Algorithm 4.3.

Algorithm 4.3 Adaptive network enhancement for a multi-layer NN with a fixed T .
Given a target function f (x) and a tolerance ε > 0 for accuracy, starting with a two-layer NN with a small number of neurons and using one loop of 
Algorithm 4.1 to generate a two-layer NN, then

(1) solve the optimization problem in (2.6);

(2) estimate the total error by computing ξ =
( ∑

K∈K
ξ2

K

)1/2

/‖ f ‖T ;

(3) if ξ < ε , then stop; otherwise, go to Step (4);
(4) compute the improvement rate ηr ;
(5) add a new hidden layer or new neurons to the last hidden layer by Algorithm 4.2, then go to Step (1).
6
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5. Initialization of training (iterative solvers)

To determine the values of the network parameters, we need to solve the optimization problem in (2.6), which is 
non-convex and, hence, computationally intensive and complicated. Currently, this problem is often solved by iterative 
optimization methods such as gradient descent (GD), Stochastic GD, Adam, etc. (see, e.g., [4] for a review paper in 2018 
and references therein). Since non-convex optimizations usually have many solutions and/or many local minimum, it is then 
critical to start with a good initial guess in order to obtain the desired solution. As seen in [18], the ANE method itself is 
a natural continuation process for generating good initializations. In this section, we discuss initialization strategies of the 
ANE method for a multi-layer NN in two dimensions. Extensions to three dimensions are straightforward conceptually but 
more complicated algorithmically.

There are three cases that need to be initialized: (1) the beginning of the ANE method for a two-layer NN with a small 
number of neurons; (2) adding new neurons at the first layer; and (3) adding new neurons at the last hidden layer which 
is not the first layer. Initialization for both cases (1) and (2) was introduced in Section 5 of [18]. For the convenience of 
readers, we briefly describe them below.

The ANE method starts with a two-layer NN with n1 neurons. Denote the input weights and bias by ω(1) =(
ω(1)

1 , ...,ω(1)
n1

)T
and b(1) =

(
b(1)

1 , ...,b(1)
n1

)T
, respectively; and the output bias and weights by c(1) =

(
b(2),ω

(2)
1 , ...,ω

(2)
n1

)T
. 

The initials of ω(1) and b(1) are chosen such that the hyper-planes

Pi : ω(1)
i · x − b(1)

i = 0 for i = 1, ...,n1

partition the domain uniformly. With the initial θ (1) = (ω(1), b(1)) prescribed above, let

ϕ
(1)
0 (x) = 1 and ϕ

(1)
i (x) = σ(ω(1)

i · x − b(1)
i ) for i = 1, ...,n1.

Then the initial of c(1) is given by the solution of the following system of linear algebraic equations

M(θ (1)) c(1) = F (θ (1)), (5.1)

where the coefficient matrix M(θ (1)) and the right-hand side vector F (θ (1)) are given by

M
(
θ (1)

)
=

((
ϕ

(1)
j (x),ϕ

(1)
i (x)

))
(n1+1)×(n1+1)

and F
(
θ (1)

)
=

((
f ,ϕ(1)

i (x)
))

(n1+1)×1
,

respectively.
When adding new neurons at the first layer, the parameters associated with the old neurons will inherit the current 

approximation as their initials and those of the new neurons are initialized through the corresponding hyper-planes. Each 
new neuron is related to a sub-domain K ∈ K̂ (see Algorithm 4.1) and is initialized by setting its corresponding hyper-plane 
to pass through the centroid of K and orthogonal to the direction vector with the smallest variance of quadrature points in 
K . For details, see Section 5 of [18].

In the case (3), new neurons are added either at a new layer or at the current but not the first layer. As in the case 
(2), the parameters of the old neurons are initialized with their current approximations. Below we describe our strategy 
on how to initialize newly added neurons. First, consider the case in which we add neurons to start a new layer. Assume 
that the current NN has k − 1 hidden layers. By Algorithm 4.2, the number of new neurons to be added at the kth hidden 
layer equals to the number of elements in C(k−1) . For each element C ∈ C(k−1) , one neuron is added to the kth hidden 
layer, and its output weight is randomly initialized. Below we introduce a strategy to initialize its bias and weights, ω(k) =(

b(k), ω
(k)
1 , · · · ,ω

(k)
nk−1

)T =
(
ω

(k)
0 , ω

(k)
1 , · · · ,ω

(k)
nk−1

)T
. To this end, let us introduce a corresponding output function of the 

neuron to be added to refine C ,

lC (x) = b(k) +
nk−1∑
i=1

ω
(k)
i σ

(
ω(k−1)

i · x(k−2) − b(k−1)
i

)
≡

nk−1∑
i=0

ω
(k)
i ϕ

(k−1)
i (x),

where the functions {ϕ(k−1)
i (x)}nk−1

i=0 are given by

ϕ
(k−1)
0 (x) = 1 and ϕ

(k−1)
i (x) = σ

(
ω(k−1)

i · x(k−2) − b(k−1)
i

)
.

Note that C ∈ C(k−1) is either an isolated physical subdomain or consists of several connected physical sub-domains in 
K̂(k−1) .

A heuristic method is introduced here to initialize a neuron such that its corresponding break poly-lines can divide the 
sub-domains in C as many as possible (please refer to Fig. 2 for a graphical illustration):

• step 0: Initialize an empty set X = ∅;
7
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Fig. 2. A heuristic method for initializing a neuron at the last hidden layer.

• step 1: Compute pairwise distances among mid-points on the boundary edges of C , find the point pair (v1, v2) having 
the longest distance;

• step 2: Compute the centroid o of C ;
• step 3: If o ∈ C , find the set of intersection points of the edges in C and the two line segments ov1 and ov2. Add the 

set of intersection points into X ;
• step 4: If o /∈ C , decompose C into two sub-regions C1 and C2 by the line passing through o and perpendicular to v1v2. 

Along the boundary edges of C1 and C2, locate a mid-point v0 which has the largest distance sum to v1 and v2;
• step 5: For each sub-region, use (v0, v1) and (v0, v2) respectively as the farthest point pair, repeat step 2-5 recursively 

until all sub-regions have their centroids located inside the region.

The above procedure returns a point set X = {x0, ..., xm}. Now, a reasonable initial is to choose {ω(k)
i }nk−1

i=0 so that the 
corresponding function lC (x) vanishes at x j for all 0 ≤ j ≤ m, i.e.,

0 = lC (x j) =
nk−1∑
i=0

ω
(k)
i ϕ

(k−1)
i (x j) = lT

j ω
(k) for j = 0,1, ...,m, (5.2)

where x(0)
j = x j , x(k−2)

j = N(k−2) ◦ · · · ◦ N(1)(x j) for k > 2, and l j =
(
1,ϕ

(k−1)
1 (x j), · · · ,ϕ

(k−1)
nk−1

(x j)
)T

. When m < nk−2, any 

nontrivial solution of (5.2) may serve as an initial of ω(k) . When m ≥ nk−2, (5.2) becomes an over-determined system and 
may not have a solution. In that case, we can choose a smaller γ1 value in (4.3) so that fewer number of elements are 
marked.

When neurons are added to the current layer in the case (3), the initialization procedure described above needs to 
be changed as follows. Note that each C ∈ C(k−1) may be identified as a subset of C̃ consisting of m connected physical 
sub-domains in K(k−2) . This implies that the {x j}m

j=0 in (5.2) should be chosen based on the physical subdomains of C̃ in 
K(k−2) .

6. Numerical results for learning function

This section presents numerical results of the ANE method for learning a given function through the least-squares loss 
function. The test problem is a function defined on the domain � = [−1, 1]2 given by

f (x, y) = tanh

(
1

α
(x2 + y2 − 1

4
)

)
− tanh

(
3

4α

)
, (6.1)

which exhibits a sharp transitional layer across a circular interface for small α. This test problem was used in [18] to 
motivate the ANE method for generating a multi-layer neural network. To learn f (x, y) accurately, we show numerically 
that it is necessary to use at least a three-layer NN. The structure of a two- or three-layer NN is expressed as 2-n1-1 or 
2-n1-n2-1, respectively, where ni is the number of neurons at the ith hidden layer.

In this experiment, we set α = 0.01 and the corresponding function f is depicted in Fig. 3 (a); a fixed 200 × 200
quadrature points are uniformly distributed in the domain �; we use the bulk marking strategy defined in (4.3) with 
γ1 = 0.5; and we choose the expectation rate δ = 0.6 with r = 1 in (4.4) and the tolerance ε = 0.05. The ANE method starts 
with a two-layer NN of 12 neurons, and the corresponding breaking lines {Pi}12

i=1 are initialized uniformly. Specifically, half 
of breaking lines are parallel to the x-axis

ω(1)
i = 0 and b(1)

i = −1 + 1
i for i = 0, · · · ,5
3

8
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Table 1
Adaptive numerical results for function with a transitional layer.

Network structure # parameters Training accuracy 
‖ f − f̂ ‖T /‖ f ‖

Improvement rate 
η

2-12-1 37 0.357414 –
2-18-1 55 0.323118 0.293198
2-26-1 93 0.272614 0.382528
2-18-5-1 137 0.025483 1.538967

Fig. 3. Adaptive approximation results for function with a transitional layer. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

and the other half are parallel to the y-axis

ω(1)
i = π/2 and b(1)

i = −1 + 1

3
(i − 6) for i = 6, · · · ,12.

In addition, the output weights and bias are initialized by solving the linear system in (5.1).
For each iteration of the ANE method, the corresponding minimization problem in (2.6) is solved iteratively by the Adam 

version of gradient descent [15] with a fixed learning rate 0.005. The Adam’s iterative solver is terminated when the relative 
change of the loss function ‖ f − f̂ ‖T is less than 10−3 during the last 2000 iterations.

The ANE process is automatically terminated after four loops (see Table 1), and the final model of NN generated by the 
ANE is 2-18-5-1 with 137 parameters. The best least-squares approximation of the final NN model and the corresponding 
physical partition are depicted in Figs. 3 (e) and (d). Clearly, the ANE method, using a relatively very small number of degrees 
of freedom, is capable of accurately approximating a function with thin layer without oscillation. This striking approximation 
property of the ANE method may be explained by the fact that the circular interface of the underlying function is captured 
very well by a couple of piece-wise breaking poly-lines of the approximation generated by the second layer.
9
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Table 2
Numerical results of adaptive and fixed NNs for function with 
a transitional layer.

Network structure # parameters Training accuracy 
‖ f − f̂ ‖T /‖ f ‖

2-18-5-1 (Adaptive) 137 0.025483
2-18-5-1 (Fixed) 137 0.046199
2-174-1 (Fixed) 523 0.111223

Fig. 4. Approximation results generated by a fixed 2-174-1 NN for function with a transitional layer.

Figs. 3 (b)-(c) depict the physical partitions of the approximations at the intermediate NNs. In Fig. 3 (b), centers of the 
marked elements are illustrated by red dots; the breaking lines corresponding to the old and new neurons are displayed 
by blue and red lines, respectively. Table 1 shows that the adaptive network enhancement is done first at the current 
layer and then ended at the second hidden layer, because the improvement rates are smaller than the expectation rate 
for two consecutive network enhancement steps. Fig. 3 (c) shows that there are 8 marked sub-domains and 5 connected 
sub-domains, which explains only 5 neurons are added at the second hidden layer.

For the purpose of comparison, in Table 2 we also report numerical results produced by two fixed NN models. With 
the same architecture of NN, the first two rows of Table 2 imply that the adaptive NN obtains a better training result than 
the fixed NN. This suggests that the ANE method does provide a good initialization. The second experiment uses a fixed 
one hidden layer with nearly four times more parameters than the adaptive NN; its approximation is less accurate (see the 
third row of Table 2) and exhibits a certain level of oscillation (see Fig. 4 (a)) which is not acceptable in many applications. 
Despite that the corresponding physical partition (see Fig. 4(b)) does capture the circular interface, it is too dense in the 
region where the function does not have much fluctuation. This experiment indicates that a three layer NN is necessary for 
approximating a function with thin layer.

7. Application to PDEs

The ANE method introduced in this paper can be easily applied for learning solutions of partial differential equations. 
As an example, we demonstrate its application to the linear advection-reaction problem with discontinuous solution in this 
section.

7.1. Linear advection-reaction problem

Let � be a bounded domain in Rd with Lipschitz boundary, and β(x) = (β1, · · · , βd)
T ∈ C1(�̄)d be the advective velocity 

field. Denote the inflow part of the boundary ∂� by

�− = {x ∈ � : β(x) · n(x) < 0},
where n(x) is the unit outward normal vector to �− at x ∈ �− . Consider the following linear advection-reaction equation{

uβ + γ u = f in �,

u = g on � ,
(7.1)
−

10
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where uβ = β ·∇v is the directional derivative along the advective velocity field β; and γ ∈ C(�̄), f ∈ L2(�), and g ∈ L2(�−)

are given scalar-valued functions.
Introduce the solution space of (7.1) and the associated norm as follows

Vβ = {v ∈ L2(�) : vβ ∈ L2(�)} and ‖|v‖|β =
(
‖v‖2

0,� + ‖vβ‖2
0,�

)1/2
,

respectively. Define the least-squares functional by

L(v; f) = ‖vβ + γ v − f ‖2
0,� + ‖v − g‖2

−β (7.2)

for all v ∈ Vβ , where f = ( f , g) and the weighted norm over the inflow boundary is defined by

‖v‖−β = 〈v, v〉1/2
−β =

⎛
⎜⎝∫

�−

|β ·n| v2 ds

⎞
⎟⎠

1/2

.

Now, the least-squares formulation of (7.1) (see, e.g., [3,9]) is to find u ∈ Vβ such that

L(u; f) = min
v∈Vβ

L(v; f). (7.3)

Assume that there exist a positive constant γ0 such that

γ (x) − 1

2
∇ · β(x) ≥ γ0 > 0 for all x ∈ �. (7.4)

It then follows from the trace, triangle, and Poincaré inequalities that the homogeneous LS functional L(v; 0) is equivalent 
to the norm ‖|v‖|2β , i.e., there exist positive constants α and M such that

α ‖|v‖|2β ≤ L(v;0) ≤ M ‖|v‖|2β . (7.5)

7.2. LSNN method and a posteriori error estimator

Denote by MN (θ , l) the set of DNN functions as in Section 2. Let T be a partition of the domain � and E− as a partition 
of the inflow boundary �− . Let xK and xE be the centroids of K ∈ T and E ∈ E− , respectively. Then the least-squares neural 
network (LSNN) method introduced in [17] is to find uN

T (x, θ∗) ∈MN (θ , l) such that

LT
(
uN
T (x, θ

∗); f
) = min

v∈MN (θ ,l)
LT

(
v(x; θ); f

) = min
θ∈RN

LT
(

v(x; θ); f
)
, (7.6)

where the discrete LS functional is given by

LT
(

v(x; θ); f
) =

∑
K∈T

(
vβ + γ v − f

)2
(xK ; θ) |K | +

∑
E∈E−

(|β · n|(v − g)2)(xE ; θ)|E|.

Here, |K | and |E| are the d and d − 1 dimensional measures of K and E , respectively.
There are two key components in applying the ANE method: (a) an a posteriori error estimator for determining if the 

current approximation is within the prescribed tolerance and (b) a posteriori error indicators for determining how many new 
neurons to be added at either width or depth. As a gift from the LS principle, the value of the least-squares functional at 
the current approximation is a good a posteriori error estimator. Specifically, let uk ∈ MN (θ , l) be the LSNN approximation 
at the current network and u be the exact solution of (7.1), then the estimator is given by

ξ ≡
√
LT (uk; f) = L1/2

T (uk; f). (7.7)

To estimate the relative error, we may use

ξrel = L1/2
T (uk; f)

L1/2
T (uk;0)

.

Lemma 7.1. The estimator ξ satisfies the following reliability bound:

‖|u − uk‖|β ≤ 1√
α

√
L(uk; f) ≤ 1√

α
ξ + h.o.t., (7.8)

where h.o.t. means a higher order term.
11
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Table 3
Adaptive numerical results for the solution with a constant jump over two line segments.

Network structure # parameters
‖u − ūτ ‖0

‖u‖0
ξrel = L1/2(ūτ ;f)

L1/2(ūτ ;0)
Improvement rate 
η

2-6-1 19 0.543526 0.462477 –
2-7-1 22 0.541213 0.449957 0.328366
2-8-1 25 0.545274 0.449094 0.022159
2-7-1-1 24 0.515736 0.401161 2.120618
2-7-2-1 33 0.510399 0.391292 0.159051
2-7-3-1 42 0.113705 0.066804 4.510882
2-7-4-1 51 0.105822 0.019171 5.197913

Proof. The first inequality in (7.8) is a direct consequence of the lower bound in (7.5) and the fact that L(uk; f) = L(u −
uk; 0). The second inequality in (7.8) follows from the fact that L(uk; f) = LT (uk; f) + h.o.t. This completes the proof of the 
lemma. �

To define the local error indicators, we make use of the physical partition K(l−1) = {K } of the current approximation (see 
Section 3). For each K ∈K(l−1) , the indicator ξK is defined by

ξK =
⎛
⎜⎝‖ (uk)β + γ uk − f ‖2

0,K +
∫

�−∩∂ K

|β ·n| u2
k ds

⎞
⎟⎠

1/2

. (7.9)

7.3. Numerical experiment

In this section, we report numerical results for two test problems: (1) constant jump over two line segments and (2) 
non-constant jump over a straight line. In [5], we showed theoretically that a NN with at least two hidden layers is needed 
in order to accurately approximate their solutions. The purpose of this section is to demonstrate the efficacy of the ANE 
method for generating a nearly minimal NN to learn solutions of PDEs.

In both experiments, the integration is evaluated on a uniform partition of the domain with 100 × 100 points. The 
prescribed expectation rate in (4.4) is set at δ = 0.6 with r = 1. For the iterative solver, a fixed learning rate 0.003 and the 
same stopping criterion as that in Section 6 are used. Finally, the ANE method starts at a two-layer NN with initialization 
described in Section 6.

7.3.1. Constant jump over two line segments
The first test problem is the problem in (7.1) defined on � = (0, 1)2 with γ = f = 0 and a piece-wise constant advection 

velocity field

β =
{

(1 − √
2,1)T , (x, y) ∈ ϒ1 = {(x, y) ∈ � : y < x},

(−1,
√

2 − 1)T , (x, y) ∈ ϒ2 = {(x, y) ∈ � : y ≥ x}.
Denote the inflow boundary and its subset by

�− = {(x,0) : x ∈ (0,1)} ∪ {(1,0)} ∪ {(1, y) : y ∈ (0,1)} and �1− = {(x,0) : x ∈ (0,43/64)},
respectively. For the inflow boundary condition

g(x, y) =
{ −1, (x, y) ∈ �1−,

1, (x, y) ∈ �2− = �− \ �1−,

the exact solution of the problem is u = −1 in �1 and u = 1 in �2 = � \ �̄1, where

�1 = ∪2
i=1{x ∈ ϒi : ξ i · x < 43/64}, ξ1 = (1,

√
2 − 1)T , and ξ2 = (

√
2 − 1,1)T .

As depicted in Fig. 5(a), the discontinuity of the solution is along two line segments.
Choosing γ1 = 0.6 for the bulk marking strategy in (4.3), the ANE method is terminated when the relative error estimator 

ξrel is less than the accuracy tolerance ε = 0.05. The architecture of the final NN model of this test problem is 2-7-4-1 
with ξrel = 0.019171 < ε = 0.05 (see Table 3), and the corresponding approximation is depicted in Fig. 5 (f). Again, the 
corresponding physical partition (see Fig. 5 (e)) accurately captures the interface by the piece-wise breaking lines of the 
second hidden layer. This explains why the ANE method produces an accurate approximation to a discontinuous solution 
without oscillation or overshooting.
12
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Fig. 5. Adaptive approximation results for the solution with a constant jump over two line segments.

Table 4
Numerical results of adaptive and fixed NNs for the solution with a con-
stant jump over two line segments.

Network structure # parameters
‖u − ūτ ‖0

‖u‖0
ξrel = L1/2(ūτ ;f)

L1/2(ūτ ;0)

2-7-4-1 (Adaptive) 51 0.105822 0.019171
2-7-4-1 (Fixed) 51 0.164322 0.116689

Approximation results of intermediate NNs are also reported in Table 3 and Fig. 5 (b)-(d). The second hidden layer is 
added when the improvement rate of two consecutive runs are less than the expectation rate (see the second and third rows 
in Table 3). Additionally, Fig. 5 (c) shows that a two-layer NN with seven neurons fails to approximate the discontinuous 
solution. This claim is actually true for a two-layer NN with 200 neurons (see [5]). Hence, a three-layer NN is essential for 
learning the solution of this problem.

A fixed 2-7-4-1 NN is tested for a comparison. Due to random initialization of some parameters, the experiment is 
replicated 10 times. We observe from the training process that this fixed network gets trapped easily at a local minimum 
and fails to approximate the solution well in most of the duplicate runs. The best result is reported in Table 4 and Fig. 6
(b). Although two network models have the same approximation power, attainable approximation may not be as accurate 
as the adaptive NN due to the inherent difficulty of non-convex optimization.

Remark 7.2. A fixed 2-5-5-1 NN was employed for the same test problem in [5]. Although a NN with fewer number of 
parameters can accurately approximate the solution, as pointed out in Remark 5.1 in [5] that the network gets trapped easily 
at a local minimum. Repeated training is necessary for a fixed network model.
13
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Fig. 6. Traces generated by adaptive and fixed NNs for the solution with a constant jump over two line segments.

Fig. 7. Adaptive approximation results for the solution with a non-constant jump.

7.3.2. Non-constant jump over a straight line
The second test problem is again the equation in (7.1) defined on the domain � = (0, 1)2 with a constant advection 

velocity field and a piece-wise smooth inflow boundary condition. Specifically, γ = 1, β = (1, 1)T /
√

2, and �− = �1− ∪ �2− ≡
{(0, y) : y ∈ (0, 1)} ∪ {(x, 0) : x ∈ (0, 1)}. Choose g and f accordingly such that the exact solution u is

u(x, y) =
{

sin(x + y), (x, y) ∈ �1 = {(x, y) ∈ (0,1)2 : y > x},
cos(x + y), (x, y) ∈ �2 = {(x, y) ∈ (0,1)2 : y < x}.

As presented in Fig. 7 (a), the interface of the discontinuous solution is the diagonal line y = x and the jump over the 
interface is not a constant.
14
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Table 5
Adaptive numerical results for the solution with a non-constant jump.

Network structure # parameters
‖u − ūτ ‖0

‖u‖0
ξrel = L1/2(ūτ ;f)

L1/2(ūτ ;0)
Improvement rate 
η

2-6-1 19 0.085907 0.178871 –
2-8-1 25 0.075888 0.157503 0.912494
2-10-1 31 0.070408 0.135401 1.340723
2-13-1 40 0.070891 0.129806 0.365856
2-15-1 46 0.068234 0.1250658 0.522031

2-13-2-1 57 0.042813 0.100613 1.290553
2-13-4-1 87 0.033823 0.091411 0.505859
2-13-7-1 132 0.029862 0.065525 1.429230
2-13-9-1 162 0.013429 0.044559 2.883692
2-13-10-1 177 0.004651 0.025733 7.856341

Table 6
Numerical results of adaptive and fixed NNs for the solution with a non-
constant jump.

Network structure # parameters
‖u − ūτ ‖0

‖u‖0
ξrel = L1/2(ūτ ;f)

L1/2(ūτ ;0)

2-13-10-1 (Adaptive) 177 0.004651 0.025733
2-13-10-1 (Fixed) 177 0.033602 0.049884

Starting at a two-layer NN with six neurons and choosing γ1 = 0.3 in the bulk marking strategy in (4.3), the ANE process 
repeats itself multiple runs until the accuracy tolerance ε = 0.03 is achieved. Ultimately, the ANE stops at a 2-13-10-1 NN 
model with the relative error estimator ξrel = 0.025733 (see Table 5). Fig. 7 (d) and (e) illustrate the approximation and the 
corresponding physical partition using the final model. In addition, the traces of the exact and numerical solutions on the 
plane y = 1 − x are depicted in Fig. 7 (f), which clearly show that the final NN model is capable of accurately approximating 
the discontinuous solution without oscillation.

In Fig. 7 (b)-(c), we also present the traces of the exact and numerical solution and the corresponding physical partition 
using an intermediate 2-13-1 NN. Again, this two-layer NN fails to provide a good approximation (see Fig. 7 (c)) even though 
the corresponding physical partition (see Fig. 7(b)) locates the discontinuous interface. Moreover, as reported in Table 6, the 
adaptive model yields to a better approximation result comparing to a fixed ReLU NN model of the same size.

8. Conclusion

Designing an optimal deep neural network for a given task is important and challenging in many machine learning 
applications. To address this important, open question, we have proposed the adaptive network enhancement method for 
generating a nearly optimal multi-layer neural network for a given task within some prescribed accuracy. This self-adaptive 
algorithm is based on the novel network enhancement strategies introduced in this paper that determine when a new 
layer and how many new neurons should be added when the current NN is not sufficient for the given task. This adaptive 
algorithm learns not only from given information (data, function, PDE) but also from the current computer simulation, and 
it is therefore a learning algorithm at a level which is more advanced than common machine learning algorithms.

The resulting non-convex optimization at each adaptive step is computationally intensive and complicated with possible 
many global/local minimums. The ANE method provides a natural process for obtaining a good initialization that assists 
training significantly. Moreover, to provide a better initial guess, we have introduced an advanced procedure for initializing 
newly added neurons that are not at the first hidden layer.

In [18,17] and this paper, we have demonstrated that the ANE method can automatically design a nearly minimal two- or 
multi-layer NN to learn functions exhibiting sharp transitional layers as well as continuous/discontinuous solutions of PDEs. 
Functions and PDEs with sharp transitions or discontinuities at unknown location have been a computational challenge 
when approximated using other functional classes such as polynomials or piecewise polynomials with fixed meshes. In 
our future work, we plan to extend the applications of self-adaptive DNN to a broader set of tasks such as data fitting, 
classification, etc., where training data is limited but given. The ANE method has a potential to resolve the so-called “over-
fitting” issue when data is noisy.

CRediT authorship contribution statement

Conception and design of study: Z. Cai, J. Chen, M. Liu.
Acquisition of data: J. Chen, M. Liu.
Analysis and/or interpretation of data: Z. Cai, J. Chen, M. Liu . Drafting the manuscript: Z. Cai, J. Chen, M. Liu.
Revising the manuscript critically for important intellectual content: Z. Cai, J. Chen, M. Liu.
15



Z. Cai, J. Chen and M. Liu Journal of Computational Physics 455 (2022) 111021
Approval of the version of the manuscript to be published: Z. Cai, J. Chen, M. Liu.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

References

[1] E.L. Allgower, K. Georg, Numerical Continuation Methods: An Introduction, Springer-Verlag, Berlin, 1990.
[2] J. Berg, K. Nystrom, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317 

(2018) 28–41.
[3] P. Bochev, J. Choi, Improved least-squares error estimates for scalar hyperbolic problems, Comput. Methods Appl. Math. 1 (2) (2001) 115–124.
[4] L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale machine learning, SIAM Rev. 60 (2018) 223–311.
[5] Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for linear advection-reaction equation, J. Comput. Phys. 443 (2021) 110514.
[6] Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for scalar nonlinear hyperbolic conservation law, Appl. Numer. Math. 174 

(2022) 163–176, arXiv:2105 .11627v1 [math .NA].
[7] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs, J. Comput. Phys. 

420 (2020) 109707.
[8] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language processing (almost) from scratch, J. Mach. Learn. Res. 12 (2011) 

2493–2537.
[9] H. De Sterck, T.A. Manteuffel, S.F. McCormick, L. Olson, Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs, 

SIAM J. Sci. Comput. 26 (1) (2004) 31–54.
[10] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1) (2018) 3.
[11] T. Elsken, J.H. Metzen, F. Hutter, Neural architecture search: a survey, J. Mach. Learn. Res. 20 (2019) 1–21.
[12] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, http://www.deeplearningbook.org.
[13] H. Guo, X. Zhuang, T. Rabczuka, Stochastic analysis of heterogeneous porous material with modified neural architecture search (NAS) based physics-

informed neural networks using transfer learning, arXiv preprint arXiv:2010 .12344v2 [cs .LG], 2020.
[14] D.O. Hebb, The Organization of Behavior. A Neuropsycholocigal Theory, A Wiley Book in Clinical Psychology, vol. 62, 1949, 78.
[15] D.P. Kingma, J. Ba, ADAM: a method for stochastic optimization, in: International Conference on Representation Learning, San Diego, 2015, arXiv 

preprint arXiv:1412 .6980.
[16] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing 

Systems, vol. 25, Curran Associates, Inc., 2012, pp. 1097–1105.
[17] M. Liu, Z. Cai, Adaptive two-layer ReLu neural network: II. Ritz approximation to elliptic PDEs, Comput. Math. Appl. (2022), submitted for publication, 

arXiv:2107.08935v1 [math .NA].
[18] M. Liu, Z. Cai, J. Chen, Adaptive two-layer ReLU neural network: I. best least-squares approximation, Comput. Math. Appl. (2022), in press, arXiv:

2107.08935v1 [math .NA].
[19] A. Pinkus, Approximation theory of the mlp model in neural networks, Acta Numer. 8 (1999) 143–195.
[20] M. Raissia, P. Perdikarisb, G. Karniadakisa, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems 

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[21] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev. 65 (1958) 386.
[22] L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981.
[23] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1139–1364.
16

http://refhub.elsevier.com/S0021-9991(22)00083-3/bibC6CBFE428C92999550FEB60337D89375s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib857A2715966ED6CD24A1990181B940BBs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib857A2715966ED6CD24A1990181B940BBs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib958695BECAC605C121BC8242EDE3557Fs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bibF999CBC6559684F5761C8970EC9A259As1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib268E1A9804256C5537DABB547CA707F1s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib490DBF870FB15D0C080EC7306F5CBB27s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib490DBF870FB15D0C080EC7306F5CBB27s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib1A70512310EE14A9F117C2DA345073CFs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib1A70512310EE14A9F117C2DA345073CFs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib1E92299B2CD9270374CF817F781F6EFBs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib1E92299B2CD9270374CF817F781F6EFBs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bibCE9F54625E336220491A71ED46DF7CDAs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bibCE9F54625E336220491A71ED46DF7CDAs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib04A4EF5DE6F5BB81CF32512324694D08s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib35162A375DBFC4A8587B27D6565BD999s1
http://www.deeplearningbook.org
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib1BC26B45D88965E2DE7318EE3B37557Bs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib1BC26B45D88965E2DE7318EE3B37557Bs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib7243039584635457CEF0FFFD11019915s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib3B92EFDC6F4468FDE02D2617EC0275A5s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib3B92EFDC6F4468FDE02D2617EC0275A5s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib4ABCC7B784E72CC93BD03FFAE00EB3C1s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib4ABCC7B784E72CC93BD03FFAE00EB3C1s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib8C5199C05DA746293429430E67371DCBs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib8C5199C05DA746293429430E67371DCBs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib595A11CC07DFEA6BF1FB8E92EEAD1B69s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib595A11CC07DFEA6BF1FB8E92EEAD1B69s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib71F47E87409B710AAB28601D80307DE5s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bibF2E2145A9E36B50005799FFE61DCF406s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bibF2E2145A9E36B50005799FFE61DCF406s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bibDFCED79F8AD838DD73EE0A45EA981111s1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bib445BE778133BD83CBFA1CDD86F0B28DAs1
http://refhub.elsevier.com/S0021-9991(22)00083-3/bibD32F5609A9E0CCD2707B1E8B1D243BC4s1

	Self-adaptive deep neural network: Numerical approximation to functions and PDEs
	1 Introduction
	2 Deep neural network and least-squares approximation
	3 Physical partition (PP)
	4 Adaptive network enhancement method
	5 Initialization of training (iterative solvers)
	6 Numerical results for learning function
	7 Application to PDEs
	7.1 Linear advection-reaction problem
	7.2 LSNN method and a posteriori error estimator
	7.3 Numerical experiment
	7.3.1 Constant jump over two line segments
	7.3.2 Non-constant jump over a straight line


	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


