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MULTIGRID METHODS FOR NEARLY SINGULAR LINEAR
EQUATIONS AND EIGENVALUE PROBLEMS*

ZHIQIANG CAIt, JAN MANDEL#, AND STEVE MCCORMICKS

Abstract. The purpose of this paper is to develop a convergence theory for multigrid methods
applied to nearly singular linear elliptic partial differential equations of the type produced from a
positive definite system by a shift with the identity. One of the important aspects of this theory is that
it allows such shifts to vary anywhere in the multigrid scheme, enabling its application to a wider
class of eigenproblem solvers. The theory is first applied to a method for computing eigenvalues
and eigenvectors that consists of multigrid iterations with zero right-hand side and updating the
shift from the Rayleigh quotient before every cycle. It is then applied to the Rayleigh quotient
multigrid (RQMG) method, which is a more direct multigrid procedure for solving eigenproblems.
Local convergence of the multigrid V-cycle and global convergence for a full multigrid version of both
methods is obtained.
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1. Introduction. In this paper, we consider the solution of the generalized
eigenvalue problem based in an abstract finite-dimensional Hilbert space V' with inner
product (-, -): find A € R and 0 # u € V such that

(1.1) Au = A\Bu.

Here for simplicity A and B are assumed to be linear continuous symmetric positive
definite operators defined on V.

We will consider two multigrid approaches for finding the smallest eigenvalue for
(1.1) based on a sequence of subspaces. One uses multigrid as an inner loop solver for
an outer loop inverse iteration type process, which has been studied by many authors
(cf. the early work in [1] and [7]). The other is the Rayleigh quotient multigrid
(RQMG) method [5, 8], which is a more direct approach based on minimizing the
Rayleigh quotient at each stage of the multigrid processing. To our knowledge, this
is the first theory for methods like RQMG where the shifts are allowed to vary within
multigrid cycles and be close to eigenvalues. Filling this gap is the main purpose of
this paper.

We will analyze convergence of these two multigrid methods by developing and
applying a general convergence theory for singular or nearly singular linear problems:
given f € V and a scalar p € R, find 0 # u € V such that

(1.2) (A—uB)u=f.
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Here we restrict ourselves to theoretical analyses because of the numerical results
available in [5] for RQMG, the principal target of this paper.

Previous convergence results for multigrid algorithms applied to (1.2) were ob-
tained by Bank [1]. In order to establish norm estimates for the rate of convergence,
the shift i was assumed to be bounded away from the smallest eigenvalue of (1.1) in
[1]. In contrast, our analysis uses an error decomposition into the eigenspace asso-
ciated with the smallest eigenvalue of (1.1) and its orthogonal complement. We will
not attempt to solve (1.2) in the usual sense; instead, our aim is to preserve the ap-
proximate magnitude of the components in the eigenspace of the smallest eigenvalue
of (1.1) while attenuating error components in its orthogonal complement. In our
analysis, the shift p will be allowed to vary in a small neighborhood of the smallest
eigenvalue of (1.1).

The outline of the remainder of this paper is as follows. In section 2, we formu-
late the problems, establish notation, and define a multigrid algorithm for the nearly
singular problem. In section 3, we develop a convergence theory for this multigrid
algorithm. The theory is first applied in section 4 to a method for computing eigen-
values and eigenvectors that uses multigrid as an inner loop solver for an outer loop
inverse iteration type process. It is then applied in section 5 to RQMG. The final
section develops global convergence results for full multigrid V-cycle versions of both
methods.

2. Preliminaries. Let V be a real linear space, on which are given inner prod-
ucts a(+, -) and (-, -), with corresponding induced norms denoted by |||-||| and ||-||. Let
b(-, -) be a continuous, symmetric, positive definite bilinear form on V' x V. Consider
the eigenvalue problem: find A € R and 0 # u € V such that

(2.1) a(u,v) = Xb(u,v) VoveV.

If (2.1) corresponds to the eigenvalue problem for a self-adjoint elliptic partial
differential operator, it will typically admit an infinite set of nondecreasing eigenvalues.
Without loss of such generality, let the (possibly multiple) eigenvalues of (2.1) satisfy

(22) D<A <A <eee.
In particular, we note that A; is the minimum of the Rayleigh quotient over V:

(2.3) AL = oéggv RQ(u)

where the Rayleigh quotient is defined by

a(u,u)

(2.4) RQ(u) = b u)’

We will consider multigrid methods for finding the smallest eigenvalue for (2.1),
based on a sequence of finite-dimensional subspaces. To this end, let

Volc...cvkc...cv

be a nested family of finite-dimensional subspaces of V. Let (-, -); be a given inner
product on V¥ ||| its induced norm, and hy, = 27%hg the mesh parameter associated
with V¥ hg > 0. Then the corresponding finite-dimensional problem (2.1) on V* is
as follows: find \¥ € R and 0 # u* € V¥ such that

(2.5) a(u®,v) = \b(uk v) Yo e VP
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Let the (possibly multiple) eigenvalues of (2.5) satisfy

(2.6) 0< A <X <o NE

max*®

Note that A} is the minimum of the Rayleigh quotient over V*:

M= inf  RQY).

1= nf | RQ)
In order to analyze convergence of the multigrid algorithm for the eigenvalue
problem (2.5), we will first study the behavior of multigrid applied to the following

singular or nearly singular problem: given a source term f! in the dual space (V*)’
and a scalar A € R, find 0 # u! € V! such that

(2.7) a(ul,v) = Xb(ul,v) = fl(v) Voe Vi
The shift A is assumed to satisfy

(2.8) M < A<M 4+ 0(h/l), 1— .
By this we mean that

(2.9) M <A A+ Cho/l, 1 — o0

for some constant C' independent of hg and [. This condition, which allows for shifts
that are arbitrarily close to A\, can be guaranteed for the eigenproblem solvers we
consider, as we show in the last section. However, since A = )\11 is allowed, problem
(2.7) may not have a solution. This is acceptable because our real interest is eigen-
problems: we will attempt to solve (2.7) not in the strict sense, but only in that the
approximation is correct up to the eigencomponents belonging to A}.

The reader is strongly advised to keep in mind that all of the following estimates
allow for A to change any time during multigrid processing, provided it continues
to satisfy the bounds in (2.8). This allowance for a floating shift is one of the key
distinguishing points of the theory developed here, and it is just what enables treatment
of the nonlinear scheme RQMG below. Unfortunately, it is also what dramatically
complicates our exposition.

For any u, v € V, define the bilinear forms c,(:, -) and ¢(-, -) on V x V by

ex(u, v) = alu, v) = Ab(u, v) and  c(u, v) = a(u, v) — A\ b(u, v).

Fix k € {0, 1, ---, I} and let ¢*(-, -) be a bilinear form on V* x V*¥. We will use this
form to define the smoothing step in the multigrid algorithm defined below. Define
the operators A*, B¥, Cf, C*, Q% : VF — V¥ by requiring

Ak

(A%, v) = a(u, v),
(B*u, v) = b(u, v),
(C¥u, v) = ex(u, v),
(C*u, v) = c(u, v),
(Q"u, v) = ¢*(u, v)

for all w and v in V*. Note that

CF=A* —AB* and C*= 4% -\ B*
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In practice, the operator Q¥ will be constructed to “approximately invert” C¥ in some
weak sense. The basic idea is that we want Q* to satisfy the condition that it is an
adequate approximate inverse of C’/\C on oscillatory vectors in V*. We will be precise
about this condition in section 3.3.

Denote the eigenspace associated with \¥ by

VE={ueV*: a(u, v) = M\b(u, v) VYveVF}
and its a-orthogonal complement by
Vi ={ueV*: a(u,v) =0 YveVF}

For any u € V¥, define the a-orthogonal projection operators P : V¥ — V¥ and
P¥:Vk — VF by

a(PFu, v) = a(u, v) Yve VF
and
a(PYu, v) = a(u, v) Yv e V.

Consider the following multigrid algorithm for “solving” (2.7); more precisely, this
algorithm attempts to reduce the error in VJ only while keeping the V{ approximation
component essentially unchanged. Note that the multigrid algorithm as it is posed
here is based on a direct solver for the coarsest grid problem (I = 0). Later we will
allow for approximate solvers.

MG /ALGORITHM. Let an initial approzimation u'° € V' and a right-hand side
f* be given. Then the new approzimation ul? = MG/l(ul’O, 1Y) is defined recursively
as follows:

(a) If I = 0, then compute u'? € V! so that

(2.10) Plub? = Plul% and  ex(uh?, v) = fl(v) Yo e Vi

(b) If I > 0, then perform the following:
1. Coarse-grid correction step. Denote the current residual by r'°(v) =
fl(v) — ex(uh, v) and define f'=1 € (VI=1) as its restriction to VI=1:
i w) =rhO%w) Yo € VITL. Then set

ult = w0+ MG/ N0, f171).
2. Smoothing step. Define w' € V! by
(2.11) ¢ (w', v) =rbtv) YveV!

where v (v) = fL(v) — ex(ubt,v). Then set

ub? = bl 4ol
We have introduced this abstract form of the multigrid algorithm for two basic
reasons. First, we want a general scheme that controls the potential instabilities found
in many approaches to nearly singular equations, namely, those caused by shifts that
get too close to coarse grid eigenvalues. Our coarsest grid solver in (2.10) and the
smoothers we allow in section 3.3 prevent such difficulties. Second, this abstract
algorithm applies naturally to RQMG, as we show in section 5.
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3. Convergence of a multigrid method for nearly singular linear equa-
tions. In this section, we will analyze convergence of multigrid for the nearly sin-
gular linear problem (2.7). Our analysis uses an error decomposition introduced in
section 3.2, which is based on an interpretation of solution and error that takes into
account the objective of using (2.7) to solve the eigenvalue problem (2.5) with & = I.
We have therefore not attempted to solve (2.7) in the usual sense; instead, our aim
is to preserve the approximate magnitude of the components in the eigenspace asso-
ciated with A} while attenuating error components in its a-orthogonal complement.
Based on this error decomposition, we establish a smoothing property of relaxation in
section 3.3 and a reduced approximation property of the discretization in section 3.4
which are combined in section 3.5. A V-cycle estimate will be developed in section 3.7
that follows from the recursive estimates developed in section 3.6. Again, the reader
is strongly advised to keep in mind that the shift X\ is floating in the sense that it
is allowed to vary anywhere in the multigrid process, provided it remains within the
bounds expressed by (2.8).

3.1. Preliminaries and assumptions. Fix k € {0, 1, ---, [}. For any u € V*,
the a-orthogonal projections Pf and P¥ yield the unique decomposition

(3.1) u = Pfu + Pu.
Remark 3.1. Note that V}¥ and Vi are also b-orthogonal:
(3.2) bu,v) =0 YueVF VYveVf

In this paper, C' > 0 will denote a generic constant that does not depend on the
number of levels [ or any of the mesh sizes hy.

Assumption 3.1. The norms || - || and || - || are uniformly equivalent on all V'*,
that is, for any v € V¥,

1
(3-3) el < lvllk < Clloll.

Assumption 3.2. Assume that the following approximation properties hold:
(1) For any u € V}¥, there exists v € V! such that

(3-4) [l = [[| < Chyl[Jul]]-
(2) For any v € V™1, there exists u € V}* such that
(3.5) [llv = wll] < Chyl[]ol]l]

Remark 3.2. Under the usual full regularity assumptions and subspace proper-
ties, standard finite element theory (cf. [9]) concludes that for any 0 # uw € V that
minimizes RQ(u) over V there exists v € V! such that

[[lw = vl[] < Chall[ul]]-

(Note that C' here depends on A;.) Property (3.4) then follows using the triangle
inequality and this estimate with [ = k and | = kK — 1. An analogous argument
based on a corresponding estimate can be used to establish (3.5). The eigenvalue
estimate in our first lemma below also follows from standard finite element theory,
but we include its proof here to show that the estimate is actually a consequence of
our general assumptions.
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LEMMA 3.1 (eigenvalue approximation property).
k k— k 2
MNo< A<M on.

Proof. The left inequality follows from noting that ¢ is the minimum of RQ(u*)
over Vi i =k — 1, k, and that V¥~1 C V*. To prove the right inequality, note for
any u € VFand v € V"7 that

a(u—v, u—v)=a(u—wv, u)—a(u, v)+ av, v)
= Mb(u — v, u) = \eb(u, v) + A\ 1b(v, v)
= Mb(u — v, u—v)+ M= M)b(v, v)
> (M1 = AB)b(v, v)

M
= = a(v, v).
APt
Hence,
2
M=l \k < )\k71|||u_vm )
' T

The lemma then follows from Assumption 3.2 and the fact that )\]f_l is bounded by
a constant independent of hy. ]
Remark 3.3. A similar argument shows that

M <MY <A+ ChE.
Together with (2.8), this implies that
(3.6) 0< A=) < Chy/l.
LEMMA 3.2 (norm equivalence). It holds for any v € Vi that
(3.7) (v, ) < [Vl < Celv, v)
and for all sufficiently small hg that
(3.8) ex(v, ) < Il < Cer(o, v).

Proof. Tt suffices to prove (3.8) since (3.7) may be proved in a similar way.
The left inequality follows immediately from the fact that the bilinear form b(-, -) is
nonnegative. To prove the right inequality, note that since Vi is the a-orthogonal
complement of V¥, then

a(v, v) > \sb(v, v).
Thus,
A
ex(v,v) > (1= ) a(v, v).
A3
Standard “mini-max” arguments (cf. [9]) show that Ay < A5 < A3, from which follows
A2 — A
ex(v, v) > 270(1(1), ).
A2

The proof is concluded using (2.8). 0
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We may thus define new norms on the spaces VJ (k = 0, 1, ---, 1), which are
uniformly equivalent to the norm ||| - |||, by
lolle = Ve(v, v) Vv e Vs
Remark 3.4. || - ||. is a seminorm on V*. It is in fact a norm provided A} # ;.

3.2. Error decomposition. The following concept of error decomposition will
be the basis of our analysis. Because we consider algorithms for the nearly singular
problem (2.7) with the ultimate objective of solving (2.5) with & = [, the usual
concepts of solution and error are not really relevant here. Indeed, we will not attempt
to solve the problem per se but only to attenuate “error components” in the subspace
V7 while preserving the approximate magnitude of the components in V. The purpose
of this section is to make this precise. The main point to note here is that we cannot
measure error in the usual direct sense because A and hence what we even mean by the
“solution” are floating: the error component in V{ is more or less well defined because
A << Ab, so we will use a direct error norm to measure it. The error component in
Vll is elusive, however, so instead of a direct measure we will use a residual norm that
is easier to pinpoint and bound.

LEMMA 3.3 (an invariant subspace property). Let fY be a continuous linear
functional on V* that vanishes on V. Then for sufficiently small ho there ewists
a unique U € V¥ such that

(3.9) ex(U, v) = fy(w) VeVt

Proof. Tt follows from the definition of the subspace V§¥ and from (2.8) that the
bilinear form ¢y(+, -) is positive definite on Vzk . By the Lax—Milgram lemma there
exists a unique solution U € Vi of the variational problem

exU, v) = f¥(w) VoeVy

The proof is completed by noting that U is orthogonal to V¥ with respect to the
bilinear form c(-, -). O

Let u be an approximation to the solution of the following problem: find u* € V*
such that

(3.10) ex(uf, v) = fFv) YoeVk

for a given functional f*: V¥ — R. We then define the residual r as the functional
on V¥ given by

(3.11) r(v) = () — ex(u, v).
Suppose that we are given a decomposition
(3.12) =+ 1

where f§ vanishes on V}*. By Lemma 3.3, there exists a U € Vy such that (3.9) holds.
Write

U = Uy + U, UL = Plku7 Uy = szu.
Then

r(v) = fi(v) — ex(u1,v) + fa(v) — ea(uz,v) = r1(v) + cx(ez, v),
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where

(3.13) e = U —us

and

(3.14) r =147

with

(3.15) ri(v) = fr(v) — ex(us, v),

(3.16) ro(v) = f¥(v) — ex(ug, v) = calea, v).

We define the size of the error to be the pair

[l ]
llezlle )

where ||71|| is defined as the functional norm

(3.17) l|r1|| = sup [ri )]
veve ||Vl

Remark 3.5. Note that the decomposition (3.12), and therefore the definition of

the size of the error, is not unique. We allow this freedom to accommodate a general
theory but will specify the decomposition later to suit our purposes.

3.3. Smoothing properties of relaxation. Recall that the smoothing step in
the linear multigrid algorithm is defined as the replacement of the current approxi-
mation u € V¥ by

U =u-+w,
with the correction w € V¥ defined using ¢* as a preconditioner:
(3.18) " (w, v) =r(v) YveVk,

where 7 is the residual functional defined in (3.11). Also recall that Q* : V¥ — V¥
is the operator induced by the form ¢*. Below we use (Q¥)” to denote its adjoint
in (-, -). Here we assume that r is decomposed according to (3.14) for some given
decomposition of f according to (3.12). To analyze the smoother, we will need two
additional assumptions.

Assumption 3.3 (properties of the forms a and b). Assume for all u, v € V¥ that

(3.19) a(u, v) < Chi?|Jul| |[v]],
(320) a(w,w) > Ll

(3.21) b(u, v) < Clul] [Jv]],
(3.22) b(u, u) > éIIUII2

Remark 3.6. Let p(-) denote spectral radius; then (3.19)—(3.22) are equivalent to
the respective inequalities

(3.23) p(A¥) <COn2 p((AF)7h) <€ p(BY) <C.
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In view of Assumption 3.1, we also have the equivalent respective assumptions
(3.24) 1AM, < Ch2, (AN Mk <0, [IBFle < C,

which are naturally satisfied by a wide class of discrete elliptic problems.
Assumption 3.4 (smoother). Assume that w € V* is defined uniquely by (3.18)
and that

(3.25) [|wl]| < Chi|lr|l-

Further, suppose there exists a constant o > 0 such that

(3.26) Q@ -k

Remark 3.7. Property (3.25) is equivalent to the inequality

@"H"Q".

(3.27) 1@") Ik < Chi.

Let Q¥ = D* — L¥ where D* is self-adjoint in the inner product (-, -) and D* and
L* decompose C§ according to Cf = D*¥ — L* — (L*)T. Assume that

(3.28) éh,ﬁf < DF < op(AR)I and (LM)TLF < (1 —n)(D")?

for some appropriate constant 7 > 0. (Self-adjoint operators E and F are said to
satisfy the relation E > F' if E — F is nonnegative definite.) Then (3.26) and (3.27)
are easily verified for this choice of Q*. This shows that Assumption 3.4 is natural for
Gauss—Seidel relaxation applied to linear equations that satisfy (3.28), which is easily
verified for Poisson’s equation on a uniform grid, for example. For further discussion,
see [6]. Note also that the choice Q* = L DF satisfies (3.26) and (3.27) under these
assumptions provided w < 1, which corresponds to damped Jacobi relaxation.

LEMMA 3.4 (properties of the smoother).

(i) Define z € V¥ as the solution of the problem

(3.29) " (z,v) =r¥(v) YveVk
Then
(3.30) Izl < Chyllrf] |-

(ii) Define y € V¥ as the solution of the problem

(3.31) " (y, v) = cales, v) Vv eVF,
Then
(3.32) IIPFYlll < Chille]|

and, for sufficiently small hyg,

lle5 — Pyyll2 < (14 C(A = A1) + Chi A = AT|) les] |2
g k k2
(3:33) (1400 M) T IOkl
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Proof. (i) Bound (3.30) immediately follows from (3 19) and (3.25).
(ii) We first prove (3.32). From (3.16) we have r5(v) = cx(e}, v). It therefore
follows from (3.7) and (3.19) that

r5 ()] < llesllellvlle < lle5lle oll] < ChyMlesle o).
Hence,

(3.34) 1751 < Chi*lle3]le-

Write y; = Pfy and yo = PFy. Using the fact that y; € V¥ and relations (3.2),
(3.21), (3.25), and (3.34), we get

s lll = /Xebws, 1) < /XEb(, 9) < Cllgl < RS < Chiliehlle
which is just (3.32).
To prove (3.33), note that
e —y=(—(Q")7'CY)es
First note that by (3.26) we have
(I = (@H7'enrexu —(@M)~'ey)
=0 -oX (@) H@H T R+ ex@NTTeN@N) IR
=Cy = CX@QM T (@) + Q- C}) (@")ex

(3.35) <k - p(jlk) (2.

This bound and the inequality cy(ek, €5) < c(ek, e§) imply that

k k_ ) < k ky O k k|2
ea(es —y, e3 —y) < cales, e3) 7P(Ak) |Cxes [k
o
< Nefl2 — - G ICEAIE.
On the other hand, by (3.32) and (3.7) we have
C( — Y2, 62 Y2)
= exles — v, 62 y2) + (A = A)b(es — ya, €5 — y2)
= CA(62 Y, 62 —y) — ey, y1) + (A= A)b ( - Y2, 615 —Y2)
k k =\ A=A
<ecxles —y,e3 —y)+ \F a(y1, y1) + \E a(el —y2, €5 — o)
1 2

<eal(es —y, €5 —y) + ChEA = AY[[le5]|2 + C(A = A1) les — |2
We can thus conclude from the two inequalities above that

(1+ Chi X = N[l [e5]1Z — 5%y [ICKes]IR
—C(A—X\) ’

lle — yell2

which with (2.8) gives (3.33) for all sufficiently small hg. O
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3.4. Properties of coarse grid correction. Define the projection operator
Sk vk - Vzk_1 by

c(S*u, v) = c(u, v) YueVF VYoeVF L

Further, define the projection onto the c-orthogonal complement of VQI“*1 by
(3.36) " =1 - S*.

Remark 3.8. For any v € V¥, we have
(3.37) 1ol[2 = 15 0[[Z + [|T%][2
and, consequently,
(3.38) 15%0]le < [olle and [|T*]lc < [jv]le.

LEMMA 3.5 (stability of S*).
(3.39) I1s*olll < Clilll Vo e VE.

Proof. This bound follows immediately from (3.7) and (3.38). O
LEMMA 3.6 (eigenvector approximation properties).

(3.40) I1PFoll| < Challloll] Vo e Vy!
and
(3.41) I[P5oll| < Chellloll] Vv e VF

Proof. Let v € Vzk_1 and choose w € Vlk_l, guaranteed by (3.4) to satisfy
|1Pfo — wl|| < Chy|||Pfol]]-

Then
a(PFv, PFv) = a(v, Pfv) = a(v, Pfv —w)
< ollHIIPFv = wll| < Challlolll[IPEo]I],
which establishes (3.40). A similar argument proves (3.41). O

LEMMA 3.7 (eigenvector approximation property).
1P S™oll] < Chellolle Vv e V5.

Proof. This is an immediate consequence of (3.40), (3.39), and (3.7). 0

The following standard approximation assumption follows from H2-elliptic regu-
larity of the bilinear form a(-, -). See, for example, [6].

Assumption 3.5 (standard approximation property). There exists a constant 6 > 0
such that for any v € V¥, there exists w € V¥~! satisfying

5
p(AF)

THEOREM 3.1 (reduced approximation property). There exists a constant 6’ > 0
such that for sufficiently small hg,

o —wl||* < 1A%

(3.42) 1% < IC30l} Vv eVy.

&
p(AF)
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Proof. Let v € V. According to the Cauchy—Schwarz inequality, Assumption 3.1,
(3.20), and (3.8), we have

(Cxv, v) < |ICxolkllvllk < ClICYv|k]l[v]]] < CICYv[k(CRv, v)2.
Hence
(Chv, ) < C||Chvlls,
which together with (3.21), (3.20), and (3.8) implies that
A%l < [[CXv| |k + Al B ]|
< ||Ckollx + CA(Chv, v)?
(3.43) < C||Cf\“v||k.

Let P : V¥ — VF~1 be the a-orthogonal projection operator. Then, by Assump-
tion 3.5 and (3.43), there exists a constant é > 0 such that

(3.44) Ilo — Poll|? < | AR|lf < |CSoll.

6 C
ol =
Let u € V}* be such that (3.5) holds for v replaced by Pf~!Pv. Then

|[|PE=Y Pol||? = a(PF~! Pv, Pv) = a(PF~Pv, v) = a(PF ' Pv — u, v)
< |I|PE = Po —ul[[[[Jo]]| < Chal[| P~ Pol[[|]]v]]]
Hence
|1PF~ Poll] < Chyl[|o]|| < Chy]| Ak < Chi||CYv]l,
where we used (3.43). Now from this, (3.7), (3.44), and (3.23) we have
IT*oll? < llv — Py~ Poll?
< 2(|[Jo = Pol|]* +|||PF~" Pol|]?)

C
< ——||Chv|3.

This completes the proof. ]

3.5. Combined smoothing and approximation properties.
LEMMA 3.8 (reduced approximation property). Let w € V¥ be the solution of the
problem

¢ (w, v) = (V) + exlel, v) Yo e VE
Then for sufficiently small hy,
les — Pywlle < {(1+Cx = ))(IIS"e5 |2 + 52| T*e5]|?)
+Ch A= M| 1§12y 2 + Chy[Ir ]
with
=1~ 5 <D
where o is given in (3.26) and &' is given in (3.42).
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Proof. Let z and y be the solutions of the problems (3.29) and (3.31), respectively,
so that w = z 4+ y. The triangle inequality and (3.7) then imply that

lle3 — Pywlle < [l — Pylle + lll=]]]

The proof of the lemma now follows from (3.33), (3.30), Theorem 3.1, and (3.37). 0

Before we estimate the error in the multigrid algorithm, we need to estimate
the error quantities just before the coarse grid correction. To this end, recall in the
correction step of MG/ that the functional f*~1 € (V*~1) is the restriction of the
residual functional %0 to V*~1:

1 w) =7 00) = fF(v) — ex(uP, v) Vo e VETL
Now
u]f’o = Plkuk’0 and ug’o = szuk’o.

A given decomposition of f* according to (3.12) yields a decomposition of 7#:9 ac-
cording to (3.14)—(3.16):

r#0(v) =i %) + 1y O(v) Yo e VE,
where
k,0 k k,0 k,0 k,0 k,0 k. kO
r () = () —ea(uy s 0), oy (v) = ey v), eyt = Uy —uy
and U¥ is the solution of the problem (3.9). For any v € V*~1,

ry Y (v) = (e, v) = (A = A)b(ey ’, v)

= (e, Py7'w) — (A= A0)b(es”, v) + c(es°, Pf7 )
c(Ske’;’O7 P2k*1v) — (A= Al)b(eg’o, v) + c(e;“o, Plkflv).

We are therefore led to choose

(3.45) P ) = () = (A= A)bley , v) + ele”, PIMo)
and
(3.46) Fl(0) = ¢(SFeh 0, PELy).

This provides a legitimate coarse grid decomposition according to (3.12) because the
functional f¥~! vanishes on V*~! and

FEl = phet g gkl
Let Uy ' € V™! be the solution of the problem
(3.47) Uyt v) = fEl(w) Yo e VETL

Then r8=19(v) = fF=1(v) — ¢y (u¥~10, v) has a corresponding decomposition accord-
ing to (3.14)(3.16):

r’ffl’o(v) = fF 1) - cA(u’ffl’O, v) and r’;*l’o(v) N ugfl’o, v).
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LEMMA 3.9 (initial coarse grid error estimates). The initial coarse grid error
satisfies

(3.48) WL — ol = TR0 L0 kel o)
(3.49) UEY. < (14 CO = 21)) 1S5 0. for sufficiently small ho,
(3.50) s~ = Sey e < CO = A)lles e,

and

(3.51) Iy~ = AT Ol (CO = M) + Ol e -

k—1,0

7 I

Proof. Relations (3.48) follow immediately from the definitions of MG /¥, e
and rk_l’o, 1=1,2.

Bound (3.49) follows from using (3.47), (3.46), the Cauchy—Schwarz inequality,
(3.38), (3.21), (3.20), and (3.7), to conclude that
e e = ex(@a ™ Us ™) + (= Ab(y ™ Us )
= (83 Uy ™) + (A= AT UpTY)
< [15% e llelltdy ™ le + CO = M) [Uds 12

By (3.46) and (3.47), we have
cUFTt = GFeB0 0) = (A= A)B(SFEE 0 v) Vo e VL

Choosing v = U1 — §%eF 0 then (3.50) follows from (3.21), (3.20), (3.7), and (3.38).
To prove (3.51), let v € V¥~ and u € V¥ be arbitrary. Then from (3.45), the
Cauchy—Schwarz inequality, (3.21), and (3.7), we have

A1) < 1 () 4+ (= An)b(es”, o) + Je(e5”, PF o))

k, k, k, -
< |y )+ C = M)lles | vl + le(es®, PF~ v — )

k, k, k, —
< @)+ = M)llles ] o]l + Cllles || [[|PF~ v —ulll.

Choosing u € V}* according to (3.5) with Pf~'v in place of v, it follows from (3.8)
that

AT < 1 @) 4+ CO= M) ex I [oll + Challes el P ol

Now since \¥=! < X} = C, then (3.21) implies that

IPE ol = /AP o, PE o) < (/A b(w, v) < o).

The above two inequalities imply (3.51). O

3.6. Recursive estimate. For convenience in what follows, we define the rela-

tion
-
<§>§<S>, D, q, T, s ER,
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to mean that p <7 and ¢ < s. For k=0, 1, ..., [, with B; and e¥, i =1, 2, 3 given,
let
ko ok
e¥ ¢
(3.52) = 7.
g5 Ok

THEOREM 3.2 (recursive estimate). Assume that there is a constant Cy such that
MG /"~ satisfies

353 Iy ™2 = uy ™" < gt [N |
( : ) k—1,2 - k—1,0
llez " lle llez e

with

(3.54) 0<el1<Cy,i=1,23
and

(3.55) 1>0k—1>p0>0.

Then MG /* satisfies

lllup® = ud ] (el
(3.56) k2 <¢& k.0 )
||62 le H€2 ||c
with
(3.57) bl < <L Oh OV N),i=1,2,3
and
(3.58) Br—1 < Bk < Br—1+ Chi, + C(A = A1).

Proof. From (3.53), (3.49), (3.51), and (3.38) we have

(8:59) [l = T < eI+ 5T (1 CO = A)) el
and

(3.60) 5™l < 51Ol + Bret (1 + C (= A1) [15%eh | ..
Letting

k—1,2 1 k-
Plk 1, k=12

k—1,2 k—1, k—1,2
Uy =P u ,

and  u,
it then follows from (3.48) and (3.41) that

k-1, k—1, k-1,
(3.61) 11PFuy ™" 2] < My ™% =y 7|
and

k 1,2 k—1,2 k—1,0
(3.62) [1PFuy™ 2] < Challluy ™" = uy
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Now (3.13), (3.7), and (3.49) (noting that A — A\; < C) imply that

k—1,2 k— k—1,2
s 2] = 1y~ —e5 2]

- k—1,2
< O(|tts ™l + [les

k,0 k—1,2
le) < C(llex fle + lles

‘C)a

which together with (3.40) gives

k—1,2 k,0 k—1,2
(3.63) 1[Pfuy 2] < Chi(lles [l + [les

le)-

By definition, u* ! = u® % + 4*~12, For any v € V¥, decomposing r* ! (v) = f*(v) —
ex(uf 1 v) according to (3.14)—(3.16) yields

0 v) — ex(PFuP=12 v)

o

1
=% (v) + (A= A)b(Pfab~12, v).
Hence by the Cauchy—Schwarz inequality, (3.21), and (3.20) we get

k, k, -1,
(3.64) Iy < )+ CIA = AT PFat 2.

Letting o = Plkug*l’2 — P2’“ulffl’27 then

. k, k—1,2 k—1,2
(3.65) Halll < [11Pfuy ™21+ (11 Pguy™
and because ub % — PFuf~12 = pEyf12 and PRyl - pRuk-12 = —pRyih 2
we obtain
el — kO _ phyj1,2

= (B0 + U ) N Bl
PR Pt 1)
(3.66) = (5 —Us )+ e v a
From this, (3.38), and (3.50) we get

k1 k k0 k _k,0 k— k—1,2 ~
les Hle < I1T%e5 P lle + 15%ey” — Uy le + lleg™ 2l + llalle

k, k1, .
(3.67) <(1+CA =) lles lle + les ™" 2l + [llalll-

We can similarly conclude that

(3.68) 1S%es Ml < OO = M)lles®lle + lles™ e + Il]all]
and
(3.69) 1T eh e < 1T e5 0l + |[al]-

. . k,2 k,1
To estimate the size of e5'* = UY — Pyuk? = €5 — PFw, where w € V* solves

¢*(w, v) = r¥(v) + ex(eh !, v) Vo € V¥, note that Lemma 3.8 implies that

1
k 2
24 82 Tres 2)

1
e 2lle < (14+ CO = M)* (IIS*es
+ChielA = M2 e e + Chillry”!
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By using (3.59)—(3.69), (3.54), and (3.55), a lengthy computation shows that

k,2 11k, O k,0
lles *lle < e5llry Il + Brlles °le,

with €5 and S satisfying (3.57).
k.0

It remains to estimate |||u}"? — u%°|||. We have from (3.30) and (3.32) that

> = b Ol < Ml =+ [l = b
k, k, k—1, k-1,
< Chy (I + lle M) + IPEaE ™21+ 112§~
It thus follows from (3.64), (3.67), (3.61), (3.63), (3.65), (3.59), and (3.60) that
k> = b Ol < (=570 + )l Ol + (2571 + O = A1) + )l e

which completes the proof. 0

3.7. Linear V-cycle estimate.
THEOREM 3.3 (linear V-cycle estimate). Suppose that MG /° satisfies

270 M ® = Ol Y _ o (P
( . ) 0,2 - 0,0
lleg |l lleg |l

independently of hg and of the choice of the decomposition fO = f2 + f9 for some
positive constants €, 1 > By > 3 > 0. Then for sufficiently small ho and X\ — A1,

MG/" satisfies
[y ? = uy || Iry )]
1,2 <& 1,0
e "l lles [l

with
(3.71) V<l <V 4 Cho+CA=A)I, i=1,2, 3,
and
(3.72) Bo < B < Bo+ Cho+ C(A— )L
Proof. This follows directly from recursion on Theorem 3.2. O

LEMMA 3.10 (direct solver). Let MG/® be defined by (2.10). Then (3.70) holds
with €9 = €3 = Bo = 0 and €3 a constant independent of hy.

Proof. Relations (2.10) are equivalent to assuming that u® 2 = u)"° +uy*, where
uy? € V2 is defined by

(3.73) ex(uy? v) = fOv) VoveVy
Clearly then,
0.2 _ 0.0 _

Uy — U

that is, ) = €3 = 0. Let f° = fY + f9 be a decomposition according to (3.12) and
U° € VP be the solution of (3.50) with k& = 1. Then e ® = U° — uJ'? satisfies

0,2 0,2 0,2 0,2
exley”, ey ):f?(% ):7’(1)(‘32 ),



MULTIGRID FOR LINEAR EQUATIONS AND EIGENPROBLEMS 195

which together with (3.7), (3.8), and (3.20) implies that
llez ®112 < Cenley?, ex®) = Cri(ey®) < Cllrilllley *le-

Hence, By = 0 and €9 is a constant independent of hg. This completes the proof. ]
Remark 3.9. Since (3.70) holds with 8y = 0, it certainly holds with 5y = .
LEMMA 3.11 (approximate solver). Let MG/® in the definition of MG/ be re-

placed by a mapping

MO O 02

such that for any f9,

0
(3.74) 2l <0 sup LN
N

and for any f9 that vanishes on V7,
(3.75) 1Py MO f3 = U0l < Bol Il

where U° is defined by (3.9) with k = 0. Then (3.70) holds with e; < C,i =1, 2, 3,
and By from (3.75).
Proof. We have

0,2 0,0 0,2 ,
My =y 1] = [y (|| = [ PPu® 2|l < [||PPMOF2| + [[[PP MO f3]]]-

From (3.74) and the fact that f0 = r”"% we conclude that
IIPPMO 1] < ClIr ).

It follows from (3.74) and the definition of ¢° that

0 0
e < s Wl <co gy V20N

< U
0#£veV?o [[|v]]] 0#£veVy [[|v]]]

The above inequalities imply that € < C for i = 1, 2. Since e3? = U° — uy? =
U° — PIMPOfO from (3.75) and (3.74) we have

e *lle < IU° — PEMO 2l + 1S MO 7| < Bolld® e+ C 1.

This completes the proof. ]

4. Convergence of a linearized multigrid method for eigenvalue prob-
lems. Here we apply the theory developed in the previous section to a linearized
multigrid method for solving the eigenvalue problem (2.5) with & = [. This method
uses an outer loop iterative process, which replaces the given approximate eigenfunc-
tion uf)ld € V! by the new approximation u!_, € V! that is computed by applying
MG/ to the problem

(4.1) A= RQ(u'),
(4.2) a(ul, v) = Ab(u!, v) =0 YoeV!.

Assume for simplicity that MG/ uses an exact coarsest grid solver.
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Here we are considering a conventional linearized multigrid method applied to
the eigenvalue problem, so the shift A is now considered to be fixed throughout each
multigrid cycle, allowed to change only between cycles via (4.1). However, the reader
should note that changes could be allowed anywhere within the multigrid cycles, and
the proof of our next theorem would still apply. We will use this observation in proving
our theorem on RQMG. The reader should also note that this linearized algorithm
relies on the fact that no multigrid cycle will produce the exact solution of (4.2) (i.e.,
we will show that ul,, # 0).

LMG/ALGORITHM. Given an initial approzimation uéld € V! to an eigenvector
for (2.5) belonging to A such that |||ul,4||| = 1, then the new approzimation u!., =
LMG/' (ul ) is defined as follows:

1. MG inner solver. Perform one step of MG/" applied to (4.2) using the
initial approzimation ul® = ul ; and the shift A = RQ(ul,;):

u? = MG/ (u"°, 0) .
2. Normalization. Set

. B ul,2
new |||u172 .

To analyze the convergence of LM G/, we define the error in an approximation

ul = ul +ub,ul = Plul, i =1, 2, to an eigenvector of (2.5) belonging to A} by

u

l
u
(4.3) el=__2_ .
[l 11

Note that A} <\ = RQ(u"?).
THEOREM 4.1 (convergence of linearized multigrid). LMG/ ! converges according
to the estimate

(4.4) letewlle < (Cho + B) llegialle

for sufficiently small hg.
Proof. First note that the definition of A yields

c,\(ul’o7 ul’o) = a(ul’o7 ul’o) — )\b(ul’o, ul’o) =0.
Thus writing ub? = ull’o + UZQ’O, where ui’o = Plub% i =1, 2, then
ex(uy®, uy”) +ex(uz®, uy®) =0,
which can be rewritten
s 112 = m (11 117 4 (= M) bus s uz®) -

Letting = (A — A}) /AL, then from this relation and (2.8) we can conclude for suffi-
ciently small hgy that

1,0 1,0
(4.5) llug ° (|2 < Cl[Juy °|1?
and that

2

1
1,0 1,0
(4.6) [uy *1[1* < E”uz
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Now let fl(v) = fl(v) = fi(v) =0 Vv € VL. Then f! certainly vanishes on V/,
and noting that ¢ = 0 in (3.9) with k& = [, we apply Theorem 3.3, the Cauchy—Schwarz
inequality, and (4.5) to conclude that

1,0
1,2 1,0 [f£(v) = ex(uy ", v))| 1,0
|Hul — U |||S€llo7§up‘/l ! ||UH 1 +512||Z/{—U2 HC
(US
b l,O
= (- ael s PO oy
omevi I
1,0 1,0
< &' (CO= Al + a1l
[,0
(4.7) < Cynelllu T

Similarly, we apply Theorem 3.3 and (4.6) to obtain

e = 04 4.

< Ce'n[fuy 1] + Billuz °|

(438) < (Cvie' + ') luzlle
From (4.7) we can conclude that

ey M1 = ey 1] = [l =y
(4.9) > (1—Cyme') [[Jub Il -
Bounds (4.8) and (4.9) now yield

Cymet + 3
(1.10) Iebonlle < ( TVt ) bl

The proof now follows from (3.6). o

Remark 4.1. The theory here for MG/ assumes an exact coarsest grid solver. In
fact, the theory holds if we assume only that the coarsest grid solver is effective enough
that it does not contaminate the estimates in (3.71) and (3.72); see Lemma 3.11.
In any event, this theorem shows that the LMIG/ worst case convergence factor is
arbitrarily close to the multigrid factor for standard well-posed linear elliptic equations
provided (2.8) holds. We will show in section 6 that (2.8) can be guaranteed by the
use of a full multigrid or nested iteration process.

5. Convergence of RQMG for eigenvalue problems. In this section, we
apply the theory of section 3 to RQMG, which is a direct multigrid method for (2.5)
involving minimization of the Rayleigh quotient over level k corrections to the fine-
grid eigenvector approximation. The approximate eigenvalue is the Rayleigh quotient
of the eigenvector approximation incorporating all current corrections, so it changes
during each level k correction. The main point in establishing RQMG convergence is
simply to recognize that the proof of Theorem 4.1 made no use of the fact that the
shift A was assumed to be fixed in the multigrid cycles.

Following is the definition of RQMG/, which (as MG was) is posed with an
exact coarsest grid solver and a general smoother. (Again, approximate coarsest grid
solvers can be treated as in Lemma 3.11.) To accommodate recursion, we have defined
RQMG/ in terms of a given vector u € V', which should be interpreted as the finest
level eigenvector approximation.
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RQMG, /ALGORITHM. Given an initial correction u° € V' for the approvimate
eigenvector u € V!, then the new correction ub? = RQMG/l(u“J, u) is defined as
follows:

(a) If 1 = 0, then compute u>2 € V! so that

ul1’2 = ull’o and RQ(u+ub?) = min RQ(u+ ub® +v).
veVy

(b) If 1l > 0, then perform the following:
1. Coarse-grid correction step. Set ul! = u-O+RQMG /"1 (0, u+u-0).
2. Smoothing step. Let A = RQ(u + ub1) and define w' € V! by
d'(w', v) = —ex(u+ubt v), VYveVh
Then set ub? = ub! +w'.

Remark 5.1. The RQMG coarsest grid correction step posed here is in the spirit of
our analysis in the sense that the V? error component is guaranteed to be unchanged.
This is in contrast to the significant changes that can happen in the more natural
RQMG scheme of determining an optimal correction from the coarsest grid, which
would be much more difficult to analyze. However, the coarsest grid solver used here
is no less practical because it can be implemented using projections onto V, and V5,
which are obtained naturally in the full multigrid process. That is, the eigenvector
approximation computed initially on the coarse grid can be used to implement the
coarsest grid RQMG solver efficiently.

THEOREM 5.1 (RQMG convergence). Suppose that the current eigenvector ap-
prozimation uly is in V1 \ {0}. Let ub? = RQMG/ (0, ul,q). (Here we assume that
any nonzero initial correction has already been added into u = ul,,.) Define the new
eigenvector approzimation by u., = ul, +ub?. Define the errors el and €, in
the respective approzimations ul,y and ul., as in (4.3). Then RQMG/l converges
according to the estimate

(5.1) ehewlle < (Cho + B)llekialle-

Proof. The coarsest grid solver satisfies the assumptions of Lemma 3.11. Indeed,
setting to zero the Fréchet derivative of RQ(ul, + ud? 4+ w) with respect to v € Vi,
we get

W

ex(w,v) = ex(udg,v) Yo e Vy.

0,2 0,0 0,0
(mul ) |>:<0><50< I5°1 )
0,2 - 0,0 )

4 = w5l 0 e = w5l

where ) = 0, i =1, 2, 3, and By = . This proof is now completed by noting that
the proof of Theorem 4.1 did not rely on fixing the shift )\, so it applies here without
modification. O

This theorem confirms that RQMG converges linearly with a per cycle error
reduction factor that is bounded below one uniformly in [, which is the usual sense
of multigrid optimality. Of course, Rayleigh quotient iteration is cubically convergent
when exact linear solvers are used. It should therefore come as no surprise that the
overall efficiency of a Rayleigh quotient iterative method is dictated by the linear
solver efficiency. For the elliptic case considered here, RQMG is optimal in this sense,
as the numerical results in [5] demonstrate.

Hence
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6. Full multigrid for eigenvalue problems. The theory developed in this
paper applies to the eigenvalue problem (2.1) but only in a local sense: the multigrid
convergence factors are guaranteed to be optimal only in a relatively small region
about the eigenspace. More precisely, if A (> A1) is the current approximation to the
eigenvalue on level I, then to obtain this optimality we need an estimate like (2.8).

Our purpose in this section is to show that this localness can be ensured by a full
multigrid procedure, which is an outer loop iteration that uses the basic multigrid
cycle first on coarser grids to obtain good initial guesses to the fine grid problem. We
will use this scheme to guarantee that the error on each level satisfies

(6.1) le']lc < Chu,

which will suffice to prove (2.8) and, therefore, the optimality of the relevant multigrid
solver.

The full multigrid procedure will be posed in terms of a generic multigrid method
for solving the level [ eigenvalue problem defined by (2.5). We write this generic
scheme in the form

Ulnew = EMG/Z (Uéld) )

which we assume converges in the sense of Theorems 4.1 and 5.1 with a factor bounded
above by the constant v = Chg+ < 1, provided (2.8) is satisfied and hy is sufficiently
small. The following definition of the full multigrid process uses v > 1 cycles of EMG
on progressively finer levels but makes no use of any initial approximation.
FMG /ALGORITHM. The final approzimation u' = FMG/l 1s defined as follows:
(a) If 1 = 0, then compute u! € V! so that the error satisfies (2.8) and (6.1) for
[=0.
(b) If 1 > 0, then perform the following:
1. Coarse grid solution. Set u!~! = FMG/lil.
2. Multigrid step. Perform v steps of EMG/ applied to (2.5) using the
initial approzimation u!~%0 = !=1:

Wbt =EMG/ (ub*Y), p=1,2, -, v

Note that the coarsest grid (I = 0) step can be done by computing an accurate
approximation to uY. This follows from an estimate for the error measure ||e°|. that
we obtain in the proof of our last theorem. (See (6.2) and (6.3) below.)

THEOREM 6.1 (global convergence). Let A = RQ(u'). Then, for sufficiently small
ho and large v, bounds (2.8) and (6.1) are satisfied for all 1 > 0.

Proof. The case [ = 0 is true by definition. Suppose for induction purposes that
(2.8) and (6.1) are true for [ — 1. Writing u! = v} + ), ul € V!, i =1, 2, first note
that

RO - Ay = ) el )
b(uy, uy) + b(uy, up)
N 1112
(6.2) < Ohi + M2,
where e! = \H%IH as in (4.3). With the analogous decomposition u!~! = u}™' + w5,
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€ V71 i = 1,2 and defining u; = P{u!"", then by (3.8) and (3.5) it follows that

| Piul=1 . inf, ey ||[u' " =]
PR = I 1 Pfu Y| = (1 Plus ]
ui™" = us +uf ]
e 1] = eI
ui™" = walll + C flug "l
™M1 = uy™ = wll] = Cllug e
lllﬁlllu;;Tlllll‘ e,

-1
1 — Huy —ui|| _Clet-1
IR el

Chy_1
~1-Chi_1

For sufficiently small hg, we therefore have that

(6.3)

Pl -1
1P oy,
[ Prut=1]]

Bounds (2.8) and (6.1) for I now follow from (6.2), (6.3), and the definition of 7 that

implies
! v |1 Piu ="
lelle <"z B
[ Prut=1]]
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