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Abstract 

This paper studies a new absolutely stabilized formulation for the Stokes problem that is a modification of the method of [ 131. It is shown 

that the bilinear form is elliptic and continuous with respect to the H ‘-norm for the velocity and the L2-norm for the pressure. Optimal order 

error estimates for the finite element approximation of both the velocity and pressure in L’ are established, as well as one in H’ for the 

velocity. The formulation is nonsymmetric. We then introduce two symmetrized forms which retain ellipticity and continuity with respect to 

the same norm. It will be shown that the preconditioned conjugate gradient method and other existing iterative approaches can be applied 

with a convergence rate uniform in the number of unknowns. Also, modifications of other stabilized finite element methods are 

considered. 0 1998 Elsevier Science S.A. All rights reserved. 

1. Introduction 

In recent years, so-called ‘stabilization’ techniques have been used extensively to stabilize unstable numerical 
methods for partial differential equations (see Baiocchi and Brezzi [2] for a general framework). While existing 
results indicate that such methods have great promise, a fast solver for the resulting algebraic equations has been 
missing for many such methods, possibly because of a too simple treatment of the stabilization term and the lack 
of symmetry of the schemes. The effect of the former is that the bilinear form is either non-elliptic or 
non-continuous with respect to norms separating velocity and pressure. The effect of the latter is that existing 
iterative methods cannot be applied directly. In this paper, we first describe a new absolutely stabilized finite 
element method for the Stokes problem, with the method being related to the approach of Douglas and Wang 
[ 131. In it, a weighted L*-inner product is replaced by the HP’ -mner product, which is further replaced by a 

discrete H ‘-inner product for feasible computation. Our bilinear form is then elliptic and continuous with 
respect to the HI-norm for the velocity and the L*-norm for the pressure, while that in [13] is not elliptic. 
Optimal order error estimates for the finite element approximation for both the velocity in the L*- and H ‘-norms 
and the pressure in the L2-norm follow in a standard way. Then, we introduce two symmetrized forms of the 
method. One gives an augmented symmetric form which is indefinite; however, its Schur complement is elliptic 
and continuous with respect to the same norms. Hence, we can efficiently use existing iterative techniques with 
any effective elliptic preconditioner associated with velocity, including one of multigrid or domain-decomposi- 
tion type, along with a simple preconditioner associated with pressure, such as one of diagonal matrix type. The 
other gives a symmetric and positive definite problem which is spectrally equivalent to the Schur complement of 
the augmented symmetric form. This can be solved by a preconditioned conjugate gradient method with the 
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same preconditioner. The condition numbers of both preconditioned problems are then uniform in the number of 
unknowns. 

The paper is organized as follows. The Stokes problem is introduced in Section 2, along with some notation. 
We describe a new absolutely stabilized formulation and establish its ellipticity and continuity in Section 3. Its 
discrete counterpart and the corresponding finite element approximation are discussed in Section 4. Symmetriza- 
tions of this stabilized formulation and comments on existing iterative methods for such systems are presented in 
Section 5. Finally, we discuss implementation issues in Section 6, other stabilized finite element methods in 

Section 7, and the time-dependent Stokes problem in Section 8. 

2. The Stokes problem and preliminaries 

Let R be a bounded, open subset in !??‘I 
equations in dimensionless variables can be 

-~Au+Vp=f inR, 

v.u=o in 0 , 

u=o on i)R , 

(d = 2 or 3) with Lipschitz boundary aR. The stationary Stokes 
written as 

(2.1) 

where the symbols A, V and V. denote the Laplacian, gradient, and divergence operators, respectively, andf(x) 
is the external force per unit volume acting on the fluid at x E 0. For simplicity, but without loss of generality, 
we assume that the viscosity v is equal to one. 

Let B(O) be the linear space of infinitely differentiable functions with compact support on 0. We use the 
standard notation and definitions for the Sobolev spaces H‘(O)“, the associated inner products (. , .), and their 

respective norms 11. /I,, s Z- 0. (We suppress the designations d and R on the inner products and norms because 
the dependence on dimension and region will be clear by context.) The space H”(0)d coincides with L*(O)“, in 
which case the norm and inner product are denoted by ((.I1 and (. , .), respectively. As usual, Hb(f& is the 

closure of 9(O) with respect to the norm 11. II,, and H ‘(0) is the dual of H;)(a) with norm defined by 

Finally, let L:(n) denote the subspace of L’(a) consisting of all such functions in L’(O) having mean value 
zero. 

It is well known that (2.1) has a unique solution in 

‘Ir= H;,(f2)d X L;(fJ) . (2.2) 

It will be convenient below to define the operator A : H m-‘(fi)” + H:,(fl)” as the solution operator for the 

Poisson problem 

{ 

-Aq + Q = v in ij, 

Q=o on JR ; 
(2.3) 

i.e., Au = Q for a given v E Hm’(fii)” is the solution of (2.3). It is well known that (A. , .)I’? defines a norm that 
is equivalent to the H ‘-norm. 

3. Stabilized formulation 

We describe here a stabilized formulation of (2.1) that is essentially a continuous counterpart of that in [ 131 
(see also [2]). The ellipticity of the associated bilinear form and the continuity of the associated bilinear and 
linear forms on ‘?J” are established in Lemma 3.1. This will in turn imply the well-posedness of the stabilized 
formulation and its equivalence to (2.1). 

For any (u, p) and any (v, 4) in ?‘“, we define the bilinear form 
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(3.1) 0, p; u, q> = b.,(u, pi uv 4) + b,(u, PL u, 9) 

and the linear form 

f(u, q) = CL u) + cQ$, -Au + Vq) . 

Then, 6,(. , .) and 6,(. ; .) are, respectively, the symmetric and skew-symmetric parts of b(. ; .): 

b,Ju, p; u, q) = (VU, Vu) + a(A(-Au + VP), -Au + Vq) , 

b<,(K p; u, 4) = -(p, V. v) + (V. u, 4) ; 

(Y > 0 is the stabilization parameter. 

(3.2) 

(3.3) 

The stabilized formulation to be considered in this section is to find (u, p) E Y such that 

b(u, p; u, 9) =f(u, 9) > (u, 9) E ?f (3.4) 

The bilinear form b(u, q; u, q) with cy = 0 is not stable, since it does not control q. Hence, the a-term in 
b(u, q; u, q) adds stability to the bilinear form while that in f(u, q) maintains consistency. The description 
‘absolutely stabilized finite element method’ refers here to allowing (Y to be an arbitrary positive number. 
Conditionally stabilized finite element methods are discussed in Section 6. 

The bilinear and linear forms in (3.4) involve the H -‘-inner product, which requires solution of a boundary 
value problem for its evaluation. In the literature of stabilized finite element methods, this inner product has 
often been replaced by a simple, weighted L2-inner product based on a local inverse inequality on the finite 
element space. The effect of this, too simple, treatment is that the resulting bilinear form is either not elliptic or 
not continuous with respect to any norm separating the velocity, U, and the pressure, p. We will, instead, make 
use of a computationally feasible discrete H ’ -inner product to be defined in the next section. 

Below, we will use C with or without subscripts to denote a generic positive constant, possibly different at 
different occurrences, which is independent of the mesh size h introduced in the subsequent section but may 
depend on the domain 0 and stabilization parameters. 

LEMMA 3.1. The bilineur form b(. ; .) is elliptic and continuous in “Y, i.e. there exists a positive constant C 

such that 

(3.5) 

and 

b(w P; u, q) s CCll~ll: + lj~~/~)“~## + kii2)“2 3 (3.6) 

for all (u, p) and (u, q) in ‘I/: Moreover, the bilinear form b,(. ; . ) is elliptic and continuous and the linear form 
f(. ) continuous on V 

PROOF. By the PGncare-Friedrichs inequality, to show the validity of (3.5) it suffices to prove that, for any 

(u, 9) E K 

llsll c C(ltVuil + II - Au + W, 1. (3.7) 

Since 

IlAull-, = sup 
/(Au, q)l = 

II4 sup 
4oEHljw)d +H<;(R)” 

l(V;$) =G IlVUll? 
1 

(3.7) is an immediate consequence of the triangle inequality and the fact (see [ 171) that 

llsll 6 CllVd I 1 9 E Gm . 
To show (3.6) first note that, for u, (CI E H m’(f2)d, 

I(Au, +)I =z llA~~~,~~~/1~-, 6 CIIuII-,II+II-, . 

(3.8) 

(3.9) 

(3.10) 
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The second inequality above follows from the H’regularity bound of the Poisson problem. Now, (3.6) is 
straightforward from (3.10) and the Cauchy-Schwarz and triangle inequalities. Continuity of the bilinear form 
b,(. ; .) and the linear form f(. ) in V can be shown by a similar argument. Ellipticity of the bilinear form 
h,(. ; .) follows from (3.5) and the fact that b,(u, 4; u, 9) = h(u, q; u, 4). This completes the proof of the 
lemma. 0 

An immediate consequence of the Lax-Milgram Theorem 

THEOREM 3.1. Problem (3.4) has u unique solution in 51: 

Problems (2.1) and (3.4) are equivalent (see [2]). 

4. Finite element approximation 

and Lemma 3.1 is the following theorem. 

This section presents an absolutely stabilized finite element formulation for the Stokes problem based on 
(3.4). We first discuss the well-posedness of the discrete problem and then establish optimal order error 
estimates in the L*- and H’-norms for the velocity and the L*-norm for the pressure. For convenience of 

argument, we assume that the domain 0 is a polygonal domain in Rd and that the finite element space for the 
pressure is continuous. However, extensions to more general domains and discontinuous finite element spaces 

for the pressure can be made without difficulty; the appropriate modification of the method for discontinuous 
pressure spaces is addressed at the end of this section. 

We will approximate the solution of (3.4) by using a Galerkin-type finite element method. Let 9,, be a 
partition of R into finite elements; i.e., let 0 = U.,,,m,Z K with h = max{diam(K) : K E &}. Assume the 

triangulation Y), to be quasiuniform (see [ 121). Let G%‘“(n) be the space of continuous functions on R and let 
y/’ = Uh X P” be a finite-dimensional subspace of H:,(12)d X (L:(n) fl %“(fi)) such that, for any (u, 4) E 

(H”‘(f2)d X H’(0)) fl Y, there exists an interpolant of (u, q), denoted by (u’, q’), in ‘I”” such that 

IIu - ~‘11 + hllu - ~‘11, s Ch’-+‘llull,+, , 

c h#(u - u’)&.K s Ch’kd, +, > 
K E .J/, 

119 - d + hb - q’ll, s Ch’lkd, > 

(4.1) 

(4.2) 

(4.3) 

where r 2 0 for (4.1) and r 3 1 for (4.2) and (4.3). It is well known that (4.1), (4.2), and (4.3) hold for typical 
finite element spaces consisting of continuous piecewise polynomials with respect to quasiuniform triangulations 
(cf. [ 121). 

As mentioned earlier, we need to replace the H ‘-inner product in (3.4) by a computationally feasible 
discrete inner product that ensures the equivalence on vh between the standard norm in ‘Ir and that induced by 
the discrete bilinear form. (A discrete H -’ approach was introduced in [4] for scalar elliptic equations and was 
extended to the Stokes problem in [ll] in the context of first-order system least-squares methods.) So, let 
A, : H m’(f2)d + U h be the discrete solution operator p = A,u E U h for the Poisson problem (2.3) defined by 
the relations 

I 
(v+0~v++~.i&dx=(u,+), J,EUh. (4.4) 

12 

It is easy to check that (A, . , .)I’* defines a semi-norm on H-‘(f2)d which is equivalent to the discrete H ’ 
semi-norm 

Assume that there is a preconditioner B, : Hp’(f2)d + U” that is symmetric with respect to the L’(0)d-inner 
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product and spectrally equivalent to A,; i.e., there exists a positive constant C, independent of the mesh size h, 

such that 

+(A ,,v, v) s (B,v, v) d C(A,v, v), v E Uk (4.5) 

Finally, we introduce a ‘discrete’ Laplacian operator, A h : H,!,(J12)d -+Uh; let 9 = A,v E Uh satisfy 

(p,rv)= -(Vv,VW), VwEUh. (4.6) 

Define the discrete counterparts of the bilinear and linear forms as follows: 

Q(U, p; v, 9) = b:(u, p; v, 9) + b,(u, p; v, q) 3 (4.7) 

where 

@k p; V, 9) = (Vu, VrJ) + a,@,(-A,u + VP), -A,V + Vq) 

+ ~2 c hit-Au + Vp, -Au + OS),,, , 
KE.7 

(4.8) 

and 

f”tv, q) = (L v) + a,tBh.L -A,v + Vq, + a2 K& h;tf, -Au + v6?,,,, . 

Here, t. , ‘>(),K indicates the inner product in L2(K) and ai > 0 (i = 1, 2) are stabilization parameters. For 
simplicity, we consider only the case when (Y, = (Ye. The modified absolutely-stabilized finite element method is 

then to find an approximation, (Us, ph) E lJk X Pk, of (3.4) such that 

bh(Uh, ph; v, q) =fh(v, q), (v, q) E Uk x Pk (4.10) 

The only difference between our approach and that in [13] is the addition of the B,-terms which ensure the 
uniform ellipticity of bh(. ; .) with respect to the standard norm of “Ir (see Lemma 4.1) a property not shared by 
the bilinear form in [ 131. 

LEMMA 4.1. The bilinear form bk(. ; -) is elliptic in Zr’; i.e., there exists a positive constant C independent of h 

such that, for any (v, q) in Vh, 

11~11: + IIqI12 c Cb”(v, q; u, q) . (4.11) 

Moreover, for any (v, q) E Yh, there exists a positive constant C, independent of h, such that 

bk(w P; u> q) s C<l/# + ll~~~*)“*(k-# + llql12)“* (4.12) 

for all (u, p) in Yh and 

If ktv7 s)l c Sll4I + llsll) . (4.13) 

PROOF. Again by the Poincare-Friedrichs inequality, to show the validity of (4.1 l), it suffices to prove that, 

for any (v, q) E “Irk, 

)lqll* d Cb’(v, q; v, q) (4.14) 

To do so, let Q,: : L2(.G)d + Uk denote the L2(6?>d projection onto U '. Then, (4.1) implies that, for all v in 

H:,(Wd> 

I]v - Q,tvll s Chllvll, and IlQ,4, G cl1411 . (4.15) 

For any 9 EL*(a)“, a standard duality argument implies that 
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and 

Hence, 

11441: I c c Kg 
ii 
Gk4i.K + ll+4’1,,,) 1 

which, together with the choice q =Vq and the inequality (3.9), implies that 

llqll’ s c 
c 
Kz7 ~xllwl,z,.K + llw: ,A) 1 q E p” 

ii 
It follows from (4.6) that 

ll4,4 1.1, = SUP 
kA,,u, ~11 PU> w c pull ) 

(CEli’i 
II Il =;z;/, 11~11, 
90, 

(4.16) 

(4.17) 

so that the triangle and inverse inequalities (see [ 121) and the assumption (4.5) imply that 

llqll’~ C 
( 

.z,_ 
ii 

h;(IIVq - A& + llAull(?,.d + ilb - 4&,,, + llA,zull’ ,.,,) 

c Ch”(U, q; u, q) . 

This establishes the validity of (4.14) and, hence, (4.11). Since B,! = B,,Q,, and A,, = A,Q,t, (4.5) is valid for all 
u EL2(fi)“. Also, since, for any p and + in ,‘(fj)“, 

(4.12) and (4.13) then follow from (4.5), the Cauchy-Schwarz, triangle, and inverse inequalities, and a proof 
similar to that given for Lemma 3.1. This finishes the proof of the lemma. 

The following theorem is an immediate consequence of Lemma 4.1 and the Lax-Milgram Lemma. 

THEOREM 4.1. Problem (4.10) has cl unique solution in U” X PI’. 

Let us turn to the convergence of the discrete solution. 

THEOREM 4.2. Let (u, p) and (u”, p”) be the solutions of (2. I j und (4. IO), respectively. Assume that (u, p) is in 

H”“(n)” X H’(n) bvith r 3 1. Then, 

11~ - ~~11, + b - iI/ s Ch’(lld,+, + bier) (4.18) 

Z$ in addition (u, p) is H’-regular (i.e., IIzl12 + [/pII, 2 cllfll; see /Zllj, then 

11~ - d s Ch’+ ‘dial/,+, + ll~li,-) (4.19) 

PROOF. It is easy to check that the approximation error, (u - u”, (, -p”), satisfies the error equation 

bh(u -u”, p-ph;u,q)=O, (u,q)E v’. (4.20) 

Let (u’, p’) E Y” be an interpolant of (u, p) satisfying (4. l), (4.2) and (4.3). Then, the triangle inequality gives 

11~ - u% + 11~ -P?\ d ch’-(Ilull,+, + ll~ll,) + 11~’ - ~“11, + 11~’ - ~“11 

Hence, it is left for us to show that 

11~’ - ~‘11, + 11~’ - ~“11 s ch’(kllr+, + ll~li,) . (4.21) 
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It follows from the stability inequality (4.1 l), the error equation (4.20) (4.5) (4.6) and the Cauchy-Schwarz, 

triangle, and inverse inequalities that 

lIU’ - ZQ; + lip’ - phII G Cbh(Uh, p’ -p$ U’ - U/‘, p’ - p”) 

= Cb”(u’ - u, pi -p; ut - uh, p’ - ph) 

=s ($4 - uII,IIu’ - Uhll, 

+ Cl]-A,@’ - U) + V(P’-P)ll-,,hll - A,#‘- Uh) + V(P’ -Ph)/l-,./z 

+ C c hill- A@’ - u) + V((P’ -p)llo,KII - A@’ - ~‘7 + V(P’ -ph)ll,,,K 
K E Y,;, 

+ CIIV. (U’ - JZ)ll IIP’ - PII + CIIV. (u’ - 4 IIP’ - PhII 

6 ctllu’ - Uhll, + IIP’ -PhII) 
( 
IIJ - 4, + IIP’ - PII + hllP’ - Pll, + & mw - ~~llO.K) 3 

‘h 
which, together with (4.1) (4.2) and (4.3), implies (4.21) and hence (4.18). The L*-error estimate (4.19) can be 
established by an argument similar to that in [13]. This completes the proof of the theorem. 0 

The continuity assumption on P” can be removed if we modify and amplify the bilinear form bh(. ; .) and the 
linear form f”( . ) as follows (see [ 131): 

Gh(u, P; u> q) = bfi(w P; u, q) + b,(u, P; u, q) + a1 c h, 
EE r” 

I 
E IIpIlIqll ds 

and 

.?(u~ 9) = (A U) + a,@,& -A,U + v,q) + a2 c h;(f, -Au + Vq),,,, 
K t T,;, 

where 

G$(u, p; u, q) = (VU, Vu) + a,@,(-A,u + V,p,, -A,u + 0,s) + a2 c h;(-Au + Vp, -Au + Vq)o,K. 
K E ,T,, 

Here, &’ is the collection of interior edges of the triangulation Y/-,,, h, is the diameter of the edge E in ZYh, [pj 

denotes the jump of p across edges, a1 > 0 is another stabilization parameter, and V, : L*(fl) -+U/’ is a 
‘discrete’ gradient operator defined by 

(V1,q,w)= -(q,V.w), VW EU”. 

5. Symmetrization procedures 

The discrete, stabilized formulation (4.10) is nonsymmetric since the bilinear forms b:(* ; *) and b,(. ; .) are 
symmetric and skew-symmetric, respectively. Furthermore, the pseudo-differential order of the skew-symmetric 
form is the same as that of the symmetric form. Hence, perturbation arguments for iterative methods for 
nonsymmetric problems arising from discretizations of scalar elliptic equations do not apply. These remarks are 
true, in general, for systems of linear equations arising from stabilized finite element discretizations (see Section 
6). In this section, we first symmetrize the problem by a procedure (not least squares) which has been used in 
other fields of mathematics for different purposes (for example, see [ 161) and show that the Schur complement 
retains ellipticity and continuity with respect to the norm in ‘V, thus guaranteeing the efficiency of existing 
iterative methods. The second symmetrization procedure is a least-squares-like approach and gives a symmetric, 
positive-definite problem spectrally equivalent to the symmetric part of the original problem. Hence, there exist 
preconditioned conjugate gradient methods that can be applied with convergence uniform in the number of 
unknowns. 

Introducing the adjoint bilinear form of b”(. ; .) by 



b;(u, p; u, q) = bj’(u, p; u, q) - hl,(u, I?; u, 9) for (~6 P), (u, 9) E ‘y-” 
The problem dual to (4.10) is to find (u*, p*) E V” such that 

bX(u”, p”; u, q) =.f$J, q) , (u, q) E Y” (5.1) 

If (u”, ph) and (u*, p*) be the solutions of (4.10) and (5.1). respectively, we define (u+, p,) and (u_, p_) by 

(~,~,1)+)=~(116+~*,/1’~+1)*) and (u_,p )=G(u’-u*, 17” -I)*) . 

By adding and subtracting (4.10) and (5.1), we see that (U i, p ) and (U ~, p_ ) satisfy the symmetric, coupled 
system 

1 

bI’(u +, p+ ; u, 4) + h<,M -3 p-; u, 4) =.f”@~ 4) 3 

bl’(u~,P~;u,q)+ho(u+,p,;u,q)=O, 
(5.2) 

for (u, q) E “8’““. Let By and B(, be operators associated with the bilinear forms h:(. ; .) and b,(. ; .I; i.e., for (u, q) 
and (w, Y) in ‘If”, 

(B,(u, q); w, r) = h:(u, q; W, v), (B,(u, 4); w, 4 = h<,(u, q; w, 4 (5.3) 

Then, (5.2) can be rewritten as 

1 

B,(~+,I?+)+B,(~~.P~)=F, 

B,(K>P )+B<,(u+,P+)=~, 
(5.4) 

where the right-hand-side F is defined by 

(F; u, q) =f?u, q) , (u, q) E 2”” 

Let Bz = -B, denote the adjoint operator of B, with respect to the L’-inner product. For convenience, let us 

write it in the block 2 X 2 matrix form 

(5.5) 

which is symmetric but indefinite. By block Gauss elimination, 

1 

B,(u+, P,) = F - B<,(K> I)_) 3 

(B, + B1I;B:‘BJ(u_, p I= B:B:‘F, 
(5.6) 

where B, ’ is the inverse operator of B,. The operator B, + BZB L ‘Bci is the so-called Schur complement. One 
could solve the second equation for (U ~, p_ ) and then solve the first equation for (U + , p+ ) by preconditioned 
conjugate gradient methods with possibly different preconditioners. The solution of (4.7) can be recovered by 
averaging (u,, p,) and (u_, p_); i.e., 

(U”,p)=;(U+ +u-,p+ +p-). 

This is a two-stage algorithm since each preconditioned conjugate gradient iteration for the second equation in 
(5.6) requires the solution of the linear system B,x = b, which could also be replaced by an iterative method. 
There exist single-stage algorithms (see Remark 5.1); nevertheless, efficiency of those single-stage algorithms 
depends on the existence of good preconditioners for the operators B, and B, + B~B~‘B,; i.e., the same 
preconditioners as required by the simple algorithm above. Lemma 4.1 indicates that for the operator B,, we can 
use any effective elliptic preconditioner associated with velocity, including one of multigrid or domain- 
decomposition type, along with a simple preconditioner associated with pressure, such as one of diagonal matrix 
type. The condition number of the resulting preconditioned operator is independent of the mesh size h. The same 
or similar preconditioner can be used for B, + B$B T ’ B<, with the condition number again being uniformly 
bounded, as a consequence of the following theorem. 
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THEOREM 5.1. The operator B, + BZB., ‘B, is elliptic and continuous in Y”; i.e., there exists a positive 

constant C such that 

; (1k# + lIstI’) c ((By + B$B;‘BJ(u, q); u, q) (5.7) 

and 

((B,, + B:B,:‘B,)(u, q); w, r) s C(lkll: + ~~q~~*)“*(~~wll: + b-l*)“* 1 

for all (u, q) and (w, r) in “Ir”. 

(5.8) 

PROOF. By the definition of BU and integration by parts, 

B,(u> 4) = (Vq, V. v) . 

Hence, 

((& + BZB.r’B,)(u, s); W, r) = (B,Au, q); w, r) + (B.~‘B,(u, q); BJw, 4) 

= bt(u, q; w, r) + (B,: ‘(Vq, V. u); Vr, V. w) . 

Since the second term above for w = u and r = q is always nonnegative, the ellipticity of the bilinear form 
bf’(u, q; u, q) = bh(u, q; u, q) in Lemma 4.1 implies the inequality (5.7). It follows from the Cauchy-Schwarz 
inequality that 

Hence, to show the validity of (5.8) it suffices to prove that 

(BI’(Vq, V. u); Vq, V. v) 9 C(ll# + llsll*). 

To do so, let 

(~,$)=B:‘(Vq7q,V.u). 

Then, 

B,&, 4) = (Vq, V. v) ; 

its solution in Yh satisfies the standard HI-regularity bound 

llvll: + 11~11’ c wsll’, + IIV- ul12) . 
Now, it follows from Lemma 3.1 and the inequality llVq]l_ ‘11 s llqll that 

(B,:‘(Vq, V. u); Vq, V. u) = (P, 4; B.&, 4)) = bf(a, $; ~3 4) 

c cdlsbll: + 1144’) d c<lk# + llql12) . 
This proves (5.9) and, hence, (5.8). This completes the proof of the theorem. 0 

(5.9) 

REMARK 5.1. Iterative methods for similar systems arising from different applications than (5.5) have been 
studied by many researchers. The traditional Uzawa method (cf. [l]) can be regarded as a variant of the block 
Gauss-Seidel method in our application. Each iteration requires the solution of the system of linear equations 
with the coefficient matrix B,Y; hence, it is again a two-stage algorithm. This motivates the inexact Uzawa 
method which either iteratively approximates the solution of the system with matrix B,, or replaces B, by a 
preconditioner (see e.g. [15] and the references therein). Other approaches precondition the indefinite system 
either symmetric, positive-definitely (see [5]) or symmetric, indefinitely (see e.g. [23,24]) with possibly good 
condition numbers. One can then apply the conjugate gradient method to the definite system and the conjugate 
residual method to the indefinite system. The efficiency of these methods depends on the existence of good 
preconditioners for B, and the Schur complement BZB ,’ B, + B,,. For a comparison of the numerical 
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performance of those approaches for some examples arising from mixed finite element discretization of the 
Stokes problem, see [ 141. 

In the remainder of this section, we present a least-squares-like symmetrization. Problem (4.10) can be 

rewritten as 

(B, + B<,)(u”, /?) = F (5.10) 

According to Lemma 4. I, we can assume that there exists a preconditioner B,, : Hm~ ‘(0)“’ ’ + V” that is 
symmetric with respect to the L2(fi)“+’ inner product and spectrally equivalent to B,; i.e., there exist positive 
constants & and p,, independent of the mesh size h, such that, for (v, 4) E ‘?‘“l’, 

P,,(B,(v, 4), v, 4) s (UC q)> v, 9) G P, (B,(u, 4) v, 4) . 

Now, (5.10) can be symmetrized to 

(5.11) 

(B, + B<,)“B,‘(B, + B<,)(u”, p”) = (B, + B,)*B,‘F. (5.12) 

THEOREM 5.2. The operator (B, + B<,)*B,y ‘(B, + B<,) is spectrally equivalent to BY + B$BI’ Bn; i.e., for any 

(u, 4) E V’I, 

$ ((B,, + B:B,:‘BJ(v, 41, v, q> s ((B, + B<,)*Bo ‘(B, + B<,)(v> 413 v, 4) 
I 

(5.13) 

PROOF. The inequalities (5.13) follow immediately from (5.11) and the identity 

(B, + B,)*B;‘(B, + B<,) = B, + B;B;‘B<, 

Theorems 5.1 and 5.2, Lemma 4.1 and (5.11) indicate that (5.10) can be efficiently preconditioned by the 
symmetric operator B,, with the condition number bounded uniformly in the number of unknowns. Hence, the 
preconditioned conjugate gradient method converges uniformly in the number of unknowns. 

6. Implementations 

lmplementations of the stabilized finite element method based on (4.10) and preconditioned iterations in 
Section 5 require mainly applications of the preconditioner and the operator to a given vector. We describe them 

in detail in this section. 
For simplicity, let U” and P” consist of continuous, piecewise-linear functions in two dimensions. Extensions 

to higher order finite element subspaces and to three dimensions can be obtained in a similar fashion. Let ‘p, be 
the usual nodal basis function associated with the ith node; then the nodal basis for the finite element product 

space “?“I/“’ = 17” X P” is the form 

Span{(q,, O,OL (0, pt9,, 01, (0, 0, cp, ,I : i, = 1, . . . NA} = Span{*:,, t,I~f,, (cl:, : i, = 1, Nk} , 

where N, = N2 is the number of internal nodes and N3 is the total number of nodes (including boundary nodes). 
Also, set 

N = N, + N2 + N3 

If the solution of (4.10) is represented by 

(ZP, p”) = i $ u:+: , 
,=I ,=I 

(6.1) 

(4.10) has the following block matrix form: 
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(6.2) 

where the blocks correspond to the ordering of the basis functions given above. Thus, ak3,, = (BF:), cl, = (U:), 
and 9k = (FF) for k, 1 = 1, 2, 3, where 

Bf’: = bh(+:; 1,9:) and FF =f "(a,.b~) 

More specifically, the right-hand-side vector has the following components: 

F: = (f,> ~j) + a,((B,f),, -Ah%) + % c h;(f,, -AR),,,, 7 
KE’ih 

F; = q@J vq;, + ff2 c h:(f, bj,,,, 

The third terms in Ff and Ff are zero in the case that pi is linear or bilinear on each element. The second term 
in Ff and Fy can be computed by the definition of the discrete Laplacian operator in (4.6); i.e., 

((B,f),, -Alrq) = (v@,f I,> vcp,, and (@,f 12, -AhP,9) = cVcBhf 12, b’,) > 

and the remaining terms can be computed as usual, provided that B,!f is known. Hence, it is clear that the 
computational complexity for computing the right-hand side vector 9 is O(N), provided that B,lf is known. 

In Section 4, the preconditioner B, was required to be a symmetric, positive-definite operator spectrally 
equivalent to A,, the discrete Dirichlet solver given by (4.4). Since the action of a symmetric preconditioner 
applied to a given vector for an algebraic equation can be considered as one step of a symmetric iteration for 
that algebraic equation starting from a zero initial value, B,,f E Uh can be computed as follows: 

l Bhf=~,G,l(PsrO)+~ '$(O, q); 
l %=(%,/%2); 9, =(G:) and s2=(Gf) are then the result of one step of a symmetric iteration on (4.4) 

with the right-hand side (9, /sZ) and with zero initial values. Here, P, = ((f,, 49)) and s2 = ((f,, pi)). 
For the symmetric iteration required in the second step above, multigrid or domain decomposition methods 
spectrally equivalent to A, can be used. For example, the multigrid V( 1, I)-cycle with the Gauss-Seidel 
smoothing gives such a preconditioner if the directions of the sweeps are reversed in the pre- and post- 
smoothings. In this case, the evaluation of the preconditioner requires only O(N) operations. 

The matrix B is dense because of the involvement of B, in the bilinear form, but it is never applied in 
assembled form. Iterative methods solving (6.2) are usually based on computing the action of the matrix 3 
applied to arbitrary vector X = (Z’, , X2, kK?)>‘, where Xk = (HF). Let X represent the coefficients of a function 
pair 

and let 7fF represent the coefficients of the basis function I,%: for k = 1,2,3. Then, 

has the components 

where (. , .) is the 12-inner product. More specifically, 



126 Z. Ccti, J. L)ouglns .Ir. I Cotnput. Methods Appl. Mech. Ettgrg. I66 (1998) l/.5- 129 

(m); = a,@,,(-A,,u + Vq), Vp,) + (V.v, cpi) + ~2 c h;(-Au +Vq~Vcp)o,,. 
KE I,, 

The terms involving the discrete Laplacian operator can be computed through the definition; for example, 

(@,I(-A,>u + Vq)), 3 -49) = (W,,(-A,y + R/N,, VP,). 

while B,z(-A,ru + Vq) is computed as described above in the evaluation of the preconditioner. Also, 

9, = cc-a,,~, + a, q, P, 1) = ((Vu, 3 0% 1 + Cd, 4, cp, )I > 

S2 = CC-A,,u7 + a2q, cp,)) = U’u:, VP,) + (Jzq, P,)) . 

The remaining terms can be computed as usual. It is then easy to see that the matrix and vector multiplications, 
BX, take 0(N) operations. As we shall see, the iterative method for (6.3) also requires computing %‘x where 

(%I%); = (93IX Y;) = b”($!& u, q) 

These can be computed similarly to those above and again require 8(N) operations. 
In Section 5, two kinds of iterative methods were introduced for solving (4.10). We describe the 

implementation only of the preconditioned conjugate gradient (PCG) method based on the least-squares-like 
symmetrization (5.12). The implementation of the iterative method mentioned in Remark 5.1 can be made in a 

similar fashion. We define B,; ’ in terms of a matrix %‘,y ’ The assumptions on B,, and Lemma 4.1 indicate that 

we can choose 

where K -’ is the matrix form of the preconditioner B, and 9 is the diagonal of the mass matrix (((p,, 9,)) 
corresponding to the L’-inner product. The blocks above correspond to the ordering of the basis functions into 
those from U” and P’, respectively. Applying %‘(;I to a given vector 9 involves applying the preconditioning 

process Km ’ to the U” components of 99 and multiplying the P” components by d,‘. This requires 0(‘(N) 

operations. Then, (5.12) has the matrix form 

93%3,‘%I3L%l= %%3,‘s. (6.3) 

Theorems 5.1 and 5.2 indicate that the PCG method with the preconditioner 83,’ for (6.3) converges at a rate 
that is uniform in the mesh size h. Since the main cost of each iteration in the PCG method is the action of 
%‘(y ’ 93 ‘93 cy ’ 93 applied to a given vector, the computational complexity of each iteration is then proportional to 
the number of coefficients as discussed above. 

7. Other stabilized finite element methods 

In this section, we discuss other stabilized finite element methods. We will consider a general stabilized 
formulation similar to that in [2] in which an extra parameter is introduced. 

For (u, p) and (u, q) in -Y”, define the bilinear form 

b:‘@, P; u, q) = (Vu, Vu) + h,,(u, p; u, q) + a:‘(-A,,u + Vp, -t A,y + Vq), (7.1) 

where 
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&b’ + VP? -t A,v + vq) = a(B,(-A,u + VP,, -t A,v + Vq) + (Y c $(-Au + VP, -t Av + Vq),,, , 
KE.‘i,, 

and the linear form 

f:(v, q) = (A v) + &.J --t A,,v + Vq) 

The associated stabilized finite element method is to find an approximation (uh, ph) E Uh X Ph of (3.4) such that 

b:(u,pXq)=f:(u,q), (u,q)EUhXPh. (7.2) 

When t = 1, (7.2) reduces to the method defined in (4.11); for t = 0 and t = - 1, (7.2) represents 
modifications of those introduced in [ 191 and [ 181. 

THEOREM 7.1. For any real number t, there exists an a,,(t) > 0 such that, for (Y E (0, aO(t)), the bilinear form 
b:(. ; .) is elliptic and continuous on yh, the linear form f :(. ) is continuous on Yh, end (7.2) has a unique 
solution in Y”. 

PROOF. Continuity of the bilinear and linear forms can be shown by 
the proof of Lemma 4.1. To prove the ellipticity of the bilinear form, 
[2]. By Cauchy-Schwarz, 

an argument similar to that employed in 
we use an argument analogous to that in 

@,,(-‘&V + Vqh -t A,” + Vq> = (B,Vq, Vq) - (1 + t)(B,Vq, Ahv) + t(B, A,v, A,,v) 

3 (B,,Vq, Vq) - 11 + tl&Vq, Vq)“2(Bh A,v, Ahv)“’ - Itl(Bh A,v, Ahv) 

2; (B,Vq, Vq) - C,(B, A,v, A,v, 

with C, = $(I1 + t12 + ItI). Similarly, 

c @-Au + V% --t Au + ‘&,,, a; K& h#‘q11;,, - C, 2 h’KllAvII;,K . 
K t Y,? KE.T,z 

Now, it follows from (4.5), the inverse inequality, (4.16), and (4.17) that 

b:(vt 4; u, 4) z (1 - ac, c,)llvvII’ + ; ((B,v% vd + c 
K E ,T/, 

h:l/vq~,;,,) 

2 (1 - ~c,qllv~l12 + ; c,l19112 

Choosing 

1 
ah(t) = 2C, C, 

establishes the ellipticity of the bilinear form. Then, existence and uniqueness are immediate consequences of 
continuity, ellipticity, and the Lax-Milgram lemma. 0 

THEOREM 7.2. Let (u, p) and (uh, ph) be the solutions of (2.1) and (7.2), respectively. Assume that 

(u, p) E Hr+‘(n)d X H’(0) with r 2 1. Let CY,, be chosen so that the conclusions of Theorem 7.1 hold. Then, 

IIu - uhll, + 11~ - phII 6 Chr(llulll+, + 11~11,) . (7.3) 

Ix in addition, (u, p) is H2-regular, then 

IIu - uhll c Ch’+‘(llull,+, + llpll,) . (7.4) 

PROOF. The proof is similar to that for Theorem 4.2. 0 
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As (4. lo), (7.2) is nonsymmetric. It is easy to see by straightforward manipulations that the symmetric part of 
bj’(. ; .) has the form 

b::,(u, p; u. q) = h’:(u, p; u, q) + 
a(1 -t) 
~ (a:‘(W&u + Vp, A,Iu) + aj’(A,u, -A,u + Vq)) 2 (7.5) 

and the skew-symmetric part the form 

b;‘..,@? Pi u, 4) = b<,(W 17; UT 4) + 
a(1 -I) 

~ (a:‘(-A,u + Vp, A,su) - a:‘(A,u, -A,,u + Vq)) 2 (7.6) 

where, with cr, = (Y? = cy, the bilinear forms h:(. ; .) and h(,(. ; .) are defined in (4.8) and (3.3). Let B,,, and B,,, 

denote operators associated with the bilinear forms h:l,(. ; . ) and h:l<,(. ; .). Then, the symmetrization procedures 

of Section 5 applied to (7.2) give the symmetric but indefinite problem (5.5) and the symmetric positive-definite 
problem (5.12) with B, = B,,,, B<, = B,,,, and B,, = B ,,,), where we assume that B,,, is spectrally equivalent to B,.Y. 

THEOREM 7.3. Under the assumptions of Theorem 7. I, B,,, and B, ,, + B:(,B,,’ B,,‘, ure elliptic and continuous 
I 

on V”. Moreover, (B,,, + B,,<,)*Br,(, (B,,, + B,,<,) is spectrully equivulkt to B,,, + BT<,B,-,,‘B ,,(,. 

PROOF. The ellipticity and continuity of B,,, are immediate consequences of Theorem 7.1 and the fact that 

(B,.,@, qh (u, 4)) = b:‘(u, q; u> q) 

It is now easy to see that B, , + BzC,B,y,‘B,,, is elliptic. The proof of its continuity parallels that given in the proof 
of Theorem 5.1. The spectral equivalence is proved in an analogous fashion to that employed in Theorem 
5.2. 0 

8. The time-dependent Stokes problem 

Consider the time-dependent Stokes problem 

v.u =o in RX J, 

u=o onafiXJ, 

u(0, x) = u,,(x) in JJ , 

(8.1) 

where J = (0, T] and U,,(X) is the given initial condition. Let t” = n At E J; then implicit backward differencing 

gives 

1 
II_ I 

u 
-Au” + ar u” + V’F = f” + at in [I, 

V.u” =O in [J , (8.2) 

U " = 0 ona0, 

uo = u,,(x) in R 

At each time level t”, (8.2) represents an elliptic system for un which is similar to and has better numerical 

properties than that of the Stokes problem (2.1) because of the term u” /At in the first equation. When the 
stabilized finite element method and the preconditioned iterations (with initial guess obtained by extrapolation 
from the previous time levels) described in the respective Sections 4 and 5 are employed, only a fixed number 
(usually, a small number) of iterations is required for each time step. 
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