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Abstract. In this paper, we study adaptive neuron enhancement (ANE) method for solving self-adjoint second-
order elliptic partial differential equations (PDEs). The ANE method is a self-adaptive method generating a two-
layer spline NN and a numerical integration mesh such that the approximation accuracy is within the prescribed
tolerance. Moreover, the ANE method provides a natural process for obtaining a good initialization which is crucial
for training nonlinear optimization problem.

The underlying PDE is discretized by the Ritz method using a two-layer spline neural network based on either the
primal or dual formulations that minimize the respective energy or complimentary functionals. Essential boundary
conditions are imposed weakly through the functionals with proper norms. It is proved that the Ritz approximation
is the best approximation in the energy norm; moreover, effect of numerical integration for the Ritz approximation
is analyzed as well. Two estimators for adaptive neuron enhancement method are introduced, one is the so-called
recovery estimator and the other is the least-squares estimator. Finally, numerical results for diffusion problems
with either corner or intersecting interface singularities are presented.
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1. Introduction. Recent success of neural networks (NNs) for many artificial intelligence
tasks has led wide applications to other fields, including recent studies of using neural network
models to numerically solve partial differential equations (PDEs) (see, e.g., [1, 2, 3, 4, 5]). Because
neural network functions are nonlinear functions of the parameters, discretization of a PDE is set up
as an optimization problem through either the natural minimization or manufactured least-squares
(LS) principles. Hence, existing methods consist of (1) the deep Ritz method [3] and (2) the deep
LS method such as the deep Galerkin method (DGM) [5], the physics-informed neural networks
(PINN) [4], the deep LS and FOSLS methods [2], etc. The former has the least variables, requires
the least smoothness, but is applicable to a single class of problems. The latter is applicable to a
large class of PDEs, but either has additional variables such as the FOSLS or requires additional
smoothness like the LS.

Neural networks produce a new class of functions through compositions of linear transforma-
tions and activation functions. This class of functions is extremely rich. For example, it contains
piecewise polynomials, which are the footing of spectral elements, and continuous and discontinu-
ous finite element methods. It approximates polynomials of any degree with exponential efficiency,
even using simple activation functions like ReLU. Despite many efforts, it is widely accepted that
approximation properties of NNs are not yet well-understood. As a consequence, design of network
structures for approximating the solution of a PDE within the prescribed accuracy remains open
and is mainly done by time consuming trial-and-error.

To address the issue on how to design a minimal network model required to approximate a
function/PDE within the prescribed accuracy, in terms of width, depth, and the number of param-
eters, we propose and study the adaptive neuron enhancement (ANE) method for approximating
a function in [6] and for solving a self-adjoint second-order elliptic PDE in this paper. Specifically,
for a given tolerance ε > 0, the ANE method generates a two-layer spline neural network such that
the approximation accuracy is within the prescribed tolerance. The key ingredient of the method is
the neuron enhancement strategy which determines how many new neurons to be added, when the
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current approximation is not within the given accuracy. This is done through local error indicators
collected on the physical subdomains, and a proper neuron initialization.

The underlying PDE is discretized by the Ritz method using a two-layer spline neural net-
work based on either the primal or dual formulations. The primal problem minimizes the energy
functional with the (essential) Dirichlet boundary condition imposed weakly [2]. Another way to
impose the Dirichlet boundary condition is the well-known Nitsche’s method that requires the
stabilization constant is sufficient large (see [7] in the context of neural networks). When the dual
(flux) variable is important for the underlying application, we may maximize the complementary
functional directly; in this case, the Neumann boundary condition becomes essential and is again
enforced weakly through the functional with a proper norm.

Even though the set of neural network functions does not form a space, we show that the
Ritz approximation based on either the primal or the dual formulation is the best approximation
in the energy norm. Moreover, we are able to analyze the effect of numerical integration as well.
As expected, the error in the energy norm by the Ritz approximation with numerical integration
is bounded by the approximation error of the neural network and the error of the numerical
integration. This result may be considered as the extension of the first Strang’s lemma (see, e.g.,
[8]) from the Galerkin approximation over a subspace to the Ritz approximation over a set.

A posteriori error estimation is important for the ANE method. In this paper, we consider
two estimators: the recovery and the least-squares estimators. For the primal formulation, the
recovery estimator is defined as a weighted L2 norm of difference between the numerical and the
recovered fluxes. When the recovered flux is more accurate than the numerical flux (i.e., the so-
called saturation assumption [9]), the recovery estimator is proved to be reliable and efficient. The
least-squares estimator [10] adds an additional term, the L2 norm of the residual, to the recovery
estimator.

The paper is organized as follows. The primal and dual formulations of the diffusion-reaction
problem and their well-posedness are discussed in section 2. The Ritz approximation using neural
networks are described in section 3. Error estimates of the Ritz approximations and effect of
numerical integration are obtained in sections 3 and 4, respectively. A posteriori error estimators,
the ANE method, and initialization at each stage of the ANE method are introduced in the
respective section 5, 6, and 7. Finally, we present numerical results for problems with either corner
or intersecting interface singularities in section 8.

In this paper, we will use the standard notation and definitions for the Sobolev space Hs(Ω)
and Hs(Γ) for a subset Γ in ∂Ω. The standard associated inner product and norms are denoted
by (·, ·)s,Ω and (·, ·)s,Γ and by ‖ · ‖s,Ω and ‖ · ‖s,Γ, respectively. When s = 0, H0(Ω) coincides with
L2(Ω). Denote the corresponding norms on product space Hs(Ω)d by ‖·‖s,Ω, d and | · |s,Ω, d. When
there is no ambiguity, the subscript Ω and d in the designation of norms will be suppressed.

2. Diffusion-Reaction Problem. Let Ω be a bounded domain in Rd with Lipschitz bound-
ary ∂Ω = Γ̄D∪Γ̄N . Consider the following self-adjoint second-order scalar elliptic partial differential
equation:

(2.1)


−div (A∇u) + c u = f, in Ω ⊂ Rd,

u = g
D
, on ΓD,

−n ·A∇u = g
N
, on ΓN ,

where f ∈ L2(Ω), c ∈ L2(Ω), g
D
∈ H1/2(ΓD), g

N
∈ H−1/2(ΓN ); A(x) is a d × d symmetric

matrix-valued function in L2(Ω)d×d; and n is the outward unit vector normal to the boundary.
We assume that A is uniformly positive definite and that c ≥ 0.

The natural optimization problem of (2.1) is the so-called primal problem that minimizes
the energy functional over H1

g,D(Ω) = {v ∈ H1(Ω) : v = gD on D}. Since it is difficult for
neural network functions to satisfy boundary conditions (see [3]), as in [2], we enforce the Dirichlet
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(essential) boundary condition weakly through the energy functional. To this end, define the
energy functional by

J(v) =
1

2

{
‖A1/2∇v‖20,Ω + ‖c1/2v‖20,Ω + γD‖v − gD‖21/2,ΓD

}
−
(

(f, v) + (gN , v)0,ΓN

)
=

1

2
a(v, v)− f(v) +

γD
2
‖gD‖21/2,ΓD

,(2.2)

where γD > 0 is a constant and the quadratic form a(·, ·) and the linear form f(·) are given by

a(v, v) = ‖A1/2∇v‖20,Ω + ‖c1/2v‖20,Ω + γD‖v‖21/2,ΓD

and
f(v) = (f, v) + (gN , v)0,ΓN

+ γD(gD, v)1/2,ΓD
,

respectively. Then the primal problem is to find u ∈ V := H1(Ω) such that

(2.3) J(u) = min
v∈V

J(v).

Remark 2.1. Another way to enforce the Dirichlet boundary condition is the well-known
Nitsche’s method usually stated in the Galerkin formulation. Its equivalent form for the Ritz
formulation is to transform the Dirichlet boundary condition to the Robin boundary condition by
penalization (see [7] in the context of neural networks), and the penalization constant is usually
required to be large.

Proposition 2.2. Problem (2.3) has a unique solution u ∈ V . Moreover, the solution u
satisfies the following a priori estimate:

(2.4) ‖u‖1,Ω ≤ C
(
‖f‖−1,Ω + ‖gD‖1/2,ΓD

+ ‖gN‖−1/2,ΓN

)
.

Proof. By the assumptions on A and c and the trace theorem, the bilinear form a(·, ·) is H1(Ω)
elliptic, i.e., there exists a positive constant α such that

(2.5) α‖v‖21,Ω ≤ a(v, v), ∀ v ∈ V.

It is easy to see that the bilinear form a(·, ·) and the linear form f(·) are continuous in V × V and
V , respectively. Then the Lax-Milgram lemma implies that problem (2.3) has one and only one
solution in V .

The solution u ∈ V of problem (2.3) may be characterized by the relation

a(u, v) = f(v), ∀ v ∈ V.

Now, the a priori estimate in (2.4) is a direct consequence of (2.5) and the fact that

|f(u)| ≤ C
(
‖f‖−1,Ω + ‖gD‖1/2,ΓD

+ ‖gN‖−1/2,ΓN

)
‖u‖1,Ω.

This completes the proof of the proposition.

Another optimization problem of (2.1) is the so-called dual problem that maximizes the com-
plementary functional for the dual variable σ = −A∇u over the dual space

Σ := H(div; Ω) = {τ ∈ L2(Ω)d : ∇ · τ ∈ L2(Ω)}.

For simplicity of presentation, assume that the diffusion coefficient c(x) is positive. The negative
of the complementary functional is given by

J∗(τ ) =
1

2

{
‖A−1/2τ‖20,Ω + ‖ 1√

c
(∇·τ − f)‖20,Ω + γN‖τ ·n + gN‖2−1/2,ΓN

}
+

∫
ΓD

gD(τ ·n)ds

=
1

2
a∗(τ , τ )− f∗(τ ) +

1

2

(
‖c−1/2f‖20,Ω + γN‖gN‖2−1/2,ΓN

)
,(2.6)
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where γN > 0 is a constant and the quadratic form a∗(·, ·) and the linear form f∗(·) are given by

a(τ , τ ) = ‖A−1/2τ‖20,Ω + ‖c−1/2∇·τ‖20,Ω + γN‖τ ·n‖2−1/2,ΓN

and
f∗(τ ) = (f, c−1∇·τ )− (gD, τ ·n)0,ΓD

− γN (gN , τ ·n)−1/2,ΓN
,

respectively. The Neumann boundary condition becomes essential for the dual problem and is
enforced weakly through the complementary functional defined in (2.6). The dual problem is then
to seek σ ∈ Σ such that

(2.7) J∗(σ) = min
τ∈Σ

J∗(τ ).

Proposition 2.3. Problem (2.7) has a unique solution σ ∈ Σ. Moreover, the solution σ
satisfies the following a priori estimate:

‖σ‖0,Ω ≤ C
(
‖f‖−1,Ω + ‖gD‖1/2,ΓD

+ ‖gN‖−1/2,ΓN

)
.

Proof. The proposition may be proved in a similar fashion as that of Proposition 2.1.

3. Neural Network Methods. A two-layer neural network (NN) consists of an input and
output layers. The output layer usually has no activation function. Let τk be the spline activation
function of the form:

τk(t) = max{0, tk} =

{
0, t < 0,

tk, t ≥ 0,

for a fixed integer k > 0. It is clear that τk(t) is a piece-wise polynomial of degree k in Ck−1(R)
with one breaking point t = 0. When k = 1, the activation function τ1(t) is the popular rectified
linear unit (ReLU). A two-layer spline NN with n neurons generates the following functional class
from Rd → Ro:

(3.1) Mo
n(τk) =

{
c0 +

n∑
i=1

ciτk(ωi ·x− bi) : bi ∈ R, ωi ∈ Sd−1, ci ∈ Ro
}
,

where d and o are the respective dimension of the input and output; ωi ∈ Sd−1 and bi ∈ R are
the respective weights and bias of the input layer; ci ∈ Ro and c0 ∈ Ro are the respective weights
and bias of the output layer; and Sd−1 is the unit sphere in Rd. The total number of parameters
of Mo

n(τk) is
Md(n) = (d+ o)n+ o,

where {ci}ni=0 are linear parameters and {ωi, bi}ni=1 are nonlinear parameters.

Remark 3.1. Since τk is not a polynomial, it has been proven (see, e.g., [11, 12]) that the
linear space

M(τk) =
{
v(x) ∈M1

n(τk) : n ∈ Z+

}
is dense in C(K), the space of all continuous functions defined on a compact set K ∈ Rd. Note
that Mo

n(τk) is a subset, but not a subspace, of Mo(τk) =M(τk)× · · · ×M(τk)︸ ︷︷ ︸
o

.

Even though results on approximation order are still scarce, there are two noticeable results for
target functions in Sobolev space in the L2(Ω) norm by Petrushev [13] and in spectral Barron space
in the Sobolev norm by Siegel and Xu [14]. It is not clear if the former has been extended to the
H1(Ω) norm. For the latter, solutions of very few partial differential equations have been shown
in the spectral Barron space [15].
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To approximate the solution of (2.1) using neural network functions, the Ritz method is to
minimize the energy functional over the setM1

n(τk), i.e., finding un ∈M1
n(τk) ⊂ H1(Ω) such that

(3.2) J(un) = min
v∈M1

n(τk)
J(v).

Since M1
n(τk) is not convex, problem (3.2) has many solutions.

Theorem 3.2. Let u ∈ H1(Ω) be the solution of problem (2.3), and let un ∈ M1
n(τk) be a

solution of (3.2). Then we have

(3.3) ‖u− un‖a = inf
v∈M1

n(τk)
‖u− v‖a,

where ‖v‖a :=
√
a(v, v) is the energy norm for the primal variable.

Proof. The proof of the theorem follows easily from the standard error estimate for the Rite
approximation: for any v ∈M1

n(τk),

‖u− un‖2a = 2 (J(un)− J(u)) ≤ 2 (J(v)− J(u)) = ‖u− v‖2a,

which implies the validity of (3.3).

When the flux variable σ = −A∇u is important for the underlying application, we may
approximate it directly through the dual problem: finding σn ∈Md

n(τk) such that

(3.4) J∗(σn) = min
τ∈Md

n(τk)
J∗(τ ).

Theorem 3.3. Let σ ∈ H(div; Ω) be the solution of problem (2.7), and let σn ∈ Md
n(τk) be a

solution of (3.4). Then we have

(3.5) ‖σ − σn‖a∗ = inf
τ∈Md

n(τk)
‖σ − τ‖a∗ ,

where ‖τ‖a∗ :=
√
a∗(τ , τ ) is the energy norm for the dual variable.

Proof. The theorem may be proved in a similar fashion. For any v ∈M1
n(τk),

‖σ − σn‖2a∗ = 2 (J∗(σn)− J∗(σ)) ≤ 2 (J∗(τ )− J∗(σ)) = ‖σ − τ‖a∗ ,

which implies the validity of (3.5).

4. Effect of Numerical Integration. In practice, the integrals of the loss functional are
computed numerically. For example, we proposed and implemented the composite mid-point quad-
rature rule in [2]. To understand the effect of numerical integration, we extend the first Strang
lemma for the Galerkin approximation over a subspace (see, e.g, [8]) to the Ritz approximation
over a subset.

To this end, denote by aT (·, ·) and fT (·) the discrete counterparts of a(·, ·) and f(·) through
numerical integration. Similarly, a∗

T
(·, ·) and f∗

T
(·) are the discrete counterparts of a∗(·, ·) and

f∗(·). Then approximations to the primal and dual variables with numerical integration are seeking
uT ∈M1

n(τk) such that

(4.1) JT (uT ) = min
v∈M1

n(τk)
JT (v), where JT (v) =

1

2
aT (v, v)− fT (v)

and σT ∈Md
n(τk) such that

(4.2) J∗
T

(σT ) = min
τ∈Md

n(τk)
J∗
T

(τ ), where J∗
T

(v) =
1

2
aT (τ , τ )− fT (τ ),

respectively.
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Theorem 4.1. Assume that there exists a positive constant α independent of M1
2n(τk) such

that

(4.3) α ‖v‖2a ≤ aT (v, v), ∀ v ∈M1
2n(τk).

Let u and uT be the solutions of (2.3) and (4.1), respectively. Then there exists a positive constant
C such that

‖u− uT ‖a

≤ C

(
inf

v∈M1
n(τk)

{
‖u− v‖a + sup

φ∈M1
2n(τk)

|a(v, φ)− aT (v, φ)|
‖φ‖a

}
+ sup
φ∈M1

2n(τk)

|f(φ)− fT (φ)|
‖φ‖a

)
.(4.4)

Proof. For any v ∈M1
n(τk), it is easy to see that uT − v ∈M1

2n(τk) ⊂ V . By the assumption
in (4.3), the definition of JT (·), and the relations:

JT (uT ) ≤ JT (v) and a(u, uT − v) = f(uT − v),

we have

α

2
‖uT − v‖2a ≤

1

2
aT (uT − v, uT − v) = JT (uT )− JT (v) + fT (uT − v)− aT (v, uT − v)

≤ fT (uT − v)− aT (v, uT − v)

=
(
fT (uT − v)− f(uT − v)

)
+
(
a(v, uT − v)− aT (v, uT − v)

)
+ a(u− v, uT − v)

which, together with the Cauchy-Schwarz inequality, implies

‖uT − v‖2a ≤ C

(
‖u− v‖2a + sup

φ∈M1
2n(τk)

|a(v, φ)− aT (v, φ)|
‖φ‖a

+ sup
φ∈M1

2n(τk)

|f(φ)− fT (φ)|
‖φ‖a

)
.

Combining the above inequality with the triangle inequality

‖u− uT ‖a ≤ ‖u− v‖a + ‖v − uT ‖a

and taking the infimum over all v ∈M1
n(τk) yield (4.4). This completes the proof of the theorem.

Remark 4.2. For any φ1, φ2 ∈M1
n(τk), since M1

n(τk) is not a subspace, φ1−φ2 is generally
not in M1

n(τk). But it is easy to see that φ1− φ2 ∈M1
2n(τk). This is why the assumption in (4.3)

and the supremum in (4.4) are over M1
2n(τk) but not M1

n(τk).

Theorem 4.3. Assume that there exists a positive constant α∗ independent of Md
2n(τk) such

that

(4.5) α∗ ‖τ‖2a∗ ≤ a∗T (τ , τ ), ∀ τ ∈Md
2n(τk).

Let σ and σT be the solutions of (2.7) and (4.2), respectively. Then there exists a positive constant
C such that

‖σ − σT ‖a∗

≤ C

(
inf

τ∈Md
n(τk)

{
‖σ − τ‖a∗ + sup

v∈Md
2n(τk)

|a(τ ,v)− aT (τ ,v)|
‖v‖a∗

}
+ sup
v∈Md

2n(τk)

|f(v)− fT (v)|
‖v‖a∗

)
.(4.6)

Proof. The theorem may be proved in a similar fashion as that of Theorem 4.2.
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5. Estimators. Like adaptive finite element method, A posteriori error estimation plays
a crucial role for the ANE method. The a posteriori error estimator is used for determining
if the current approximation is within the target accuracy and a posteriori error indicators for
determining how many new neurons to be added, where to refine the integration mesh, and how
to initialize parameters of new neurons. By following ideas of the a posteriori error estimation for
the finite element method (see, e.g., [16]), we study the recovery and least-squares estimators in
this section.

Let uT ∈M1
n(τk) be a solution of (4.1). Define the recovered flux σ̂T ∈Md

n(τk) satisfying

(5.1) ‖D−1/2
(
σ̂T +A∇uT

)
‖0,Ω = inf

τ∈Md
n(τk)

‖D−1/2
(
τ +A∇uT

)
‖0,Ω,

where D is either the identity I, A, or A2. Then the estimator and indicators are given by

(5.2) ξ = ‖D−1/2
(
σ̂T +A∇uT

)
‖0,Ω and ξK = ‖D−1/2

(
σ̂T +A∇uT

)
‖0,K , ∀ K ∈ Kn,

where Kn = {K} is the physical partition of the domain Ω for the current approximation uT (see
the subsequent section). To analyze the estimator ξ, we make the standard saturation assumption
(see, e.g., [9]): there exists a positive constant γ ∈ [0, 1) such that

(5.3) ‖D−1/2
(
σ̂T +A∇u

)
‖0,Ω ≤ γ ‖D−1/2A∇

(
u− uT

)
‖0,Ω.

Theorem 5.1. Under the assumption in (5.3), we have

(5.4)
1

1 + γ
ξ ≤ ‖D−1/2A∇

(
u− uT

)
‖0,Ω ≤

1

1− γ
ξ.

Proof. The first inequality in (5.4) is a direct consequence of the triangle inequality and (5.3):

ξ ≤ ‖D−1/2
(
σ̂T +A∇u

)
‖0,Ω + ‖D−1/2A∇

(
u− uT

)
‖0,Ω ≤ (1 + γ) ‖D−1/2A∇

(
u− uT

)
‖0,Ω.

The second inequality in (5.4) may be proved in a similar fashion.

The first and second inequalities in (5.4) are the so-called global efficiency and reliability
bounds, respectively. The reliability bound is used for terminating the adaptive procedure. For
the ANE method, the global efficiency bound is sufficient for determining the number of new
neurons to be added. This is different from the adaptive finite element method in which a local
efficiency bound is preferred.

Another estimator of the recovery type is the least-squares (or dual) estimator defined as
follows:

(5.5) η =

( ∑
K∈Kn

η2
K

)1/2

=
(
‖A−1/2(σ̂T +A∇uT )‖20,Ω + ‖c−1/2(∇·σ̂T + cuT − f)‖20,Ω

)1/2

,

where ηK is the local indicator given by

(5.6) ηK =
(
‖A−1/2(σ̂T +A∇uT )‖20,K + ‖c−1/2(∇·σ̂T + cuT − f)‖20,K

)1/2

for all K ∈ Kn. Let u and σ = −A∇u be the solutions of (2.3) and (2.7), respectively. Denote the
errors by

e = u− uT and e = σ − σ̂T .

It is easy to see that

η2 = ‖A−1/2(e +A∇e)‖20,Ω + ‖c−1/2(∇·e + c e)‖20,Ω,
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which, together with integration by parts, yields

(5.7) |||e|||2 + |||e|||2∗ = η2 + 2

∫
∂Ω

e (e·n) ds,

where ||| · ||| and ||| · |||∗ are norms given by

|||v|||2 = ‖A1/2∇v‖20,Ω + ‖c1/2v‖20,Ω and |||τ |||2∗ = ‖A−1/2τ‖20,Ω + ‖c−1/2∇·τ‖20,Ω.

Theorem 5.2. Let η̂2 = η2 +‖uT −gD‖21/2,ΓD
+‖σ̂T ·n+gN‖2−1/2,ΓN

. There exists a constant
Cr > 0 such that

(5.8) |||e||| ≤ Cr η̂ and |||e|||∗ ≤ Cr η̂.

Moreover, if ‖uT − gD‖1/2,ΓD
and ‖σ̂T · n + gN‖−1/2,ΓN

are higher order comparing to |||e||| and
|||e|||∗, then we have

(5.9) |||e||| ≤ η + h.o.t and |||e|||∗ ≤ η + h.o.t.

Proof. By the definition of the negative norm and the trace inequality, we have∣∣∣∣∫
ΓD

e (e·n) ds

∣∣∣∣ ≤ ‖e‖1/2,ΓD
‖e · n‖−1/2,ΓD

≤ C ‖e‖1/2,ΓD
|||e|||∗ ≤

1

4
|||e|||2∗ + 2C2‖e‖21/2,ΓD

,

where C is a constant depending on the diffusion and reaction coefficients A and c. In a similar
fashion, we have ∣∣∣∣∫

ΓN

e (e·n) ds

∣∣∣∣ ≤ 1

4
|||e|||2 + 2C2‖e · n‖2−1/2,ΓN

.

Hence, we have∣∣∣∣2 ∫
∂Ω

e (e·n) ds

∣∣∣∣ ≤ 1

2

(
|||e|||2 + |||e|||2∗

)
+ C

(
‖uT − gD‖21/2,ΓD

+ ‖σ̂T · n + gN‖2−1/2,ΓN

)
which, together with (5.7), implies (5.8).

If ‖uT − gD‖1/2,ΓD
and ‖σ̂T · n + gN‖−1/2,ΓN

are higher order comparing to |||e||| and |||e|||∗, so

is
∣∣2 ∫

∂Ω
e (e·n) ds

∣∣. Now, (5.9) is a direct consequence of (5.7). This completes the proof of the
theorem.

6. Adaptive Neuron Enhancement (ANE) Method. Let u(x) and uT (x,θ
∗
T ) ∈ M1

n(τk)

be the solutions of (2.3) and (4.1), respectively. For a given tolerance ε > 0, this section describes
the ANE method (see [6] for the best least-squares approximation) to generate a two-layer spline
NN such that the approximation accuracy is within the prescribed tolerance, i.e.,

(6.1) ‖u− uT ‖a ≤ ε ‖uT ‖a.

For simplicity of presentation, assume that the numerical integration based on a partition T is
sufficiently accurate (see [6] on how to adaptively generating a numerical integration mesh).

The procedure of the ANE method is similar to the widely used adaptive mesh refinement
(AMR) method for traditional, well-studied mesh-based numerical methods. Unlike the mesh-
based methods, the NN method is based on the NN structure determined by the number of neurons
in the case of two-layer NNs. This observation suggests that the key question for developing the
ANE method is: how many new neurons will be added at each adaptive step?
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To address this question, we introduce the concept of the physical partition of the domain Ω
for a function in M1

n(τk). To this end, let

uT (x, θ∗
T

) = c0 +

n∑
i=1

ciτk(ωi ·x− bi).

The physical partition for uT (x,θ
∗
T ) is determined by the n hyper-planes {ωi ·x− bi = 0}ni=1 plus

the boundary of the domain Ω, and is denoted by Kn = {K}. Clearly, Kn forms a partition of the
domain Ω; i.e., the union of all subdomains in Kn equals the whole domain Ω and that any two
distinct subdomains of Kn have no intersection.

For each element K ∈ Kn, denote by ξ
K

the local indicator defined in either (5.2) or (5.5). We
then define a subset K̂n of Kn by using either the following average marking strategy:

(6.2) K̂n =

{
K ∈ Kn : ξ

K
≥ 1

#Kn

∑
K∈Kn

ξ
K

}
,

where #Kn is the number of elements of Kn, or the bulk marking strategy: finding a minimal
subset K̂n of Kn such that

(6.3)
∑
K∈K̂n

ξ2
K
≥ γ1

∑
K∈Kn

ξ2
K

for γ1 ∈ (0, 1).

With the subset K̂n, the number of new neurons to be added to the NN is equal to the number of
elements in K̂n. With an accurate numerical integration, the ANE method is defined in Algorithm
5.1.

Algorithm 6.1 Adaptive Neuron Enhancement Method.
Given a tolerance ε > 0 and a numerical integration mesh T , starting with a two-layer spline NN
with a small number of neurons,

(1) solve the optimization problem in (4.1);

(2) estimate the total error by computing ξ =

( ∑
K∈K

ξ2
K

)1/2

;

(3) if ξ < ε ‖uT ‖a, then stop; otherwise, mark K̂n using (6.2) or (6.3), go to Step (4);
(4) add #K̂n neurons to the network, then go to Step (1).

7. Initialization. The high dimensional, non-convex optimization problem in (4.1) is often
solved by iterative optimization methods such as gradient descent (GD), Stochastic GD, Adam, etc.
(see, e.g., [17] for a review paper in 2018 and references therein). Usually nonlinear optimizations
have many solutions, and the desired one is obtained only if we start from a close enough first
approximation. The ANE method provides a natural process for obtaining a good initialization.

We employ the initialization approach introduced for the best least-squares approximation in
[6]. For readers’ convenience, we briefly describe it here. First, we specify the size of the initial
NN and its input and output weights and bias. Input weights and bias are chosen so that the
corresponding hyper-planes form a uniform partition of the domain Ω. The output weights and
bias is chosen as the solution of the system of linear equations to be given in (7.1).

When the NN is enhanced by adding new neurons in Step (4) of Algorithm (6.1), clearly,
parameters corresponding to old neurons will use the current approximation as their initial. Each
new neuron is associated with a subdomain K ∈ K̂n and its initial is chosen so that the correspond-
ing hyper-plane passes through the centroid of K and orthogonal to the direction vector with the
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smallest variance of quadrature points in K. This direction vector may be computed by the Prin-
cipal Component Analysis method (or PCA [18]). For output weights and biases corresponding to
new neurons, a simple initial is to set them zero. This means that the initial of the approximation
is the current approximation. A better way is to solve problem (7.1) for all output weights and
bias.

In the remainder of this section, we describe the system of algebraic equations, that determines
the initial of the output weights and bias when the corresponding hyper-planes are fixed. Denote
by ω0 = (ω0

1, ...,ω
0
n) and b0 = (b01, ..., b

0
n) the initial of the input weights and bias, respectively.

Let

u0
T

(x) = c00 +

n∑
i=1

c0i τk(ω0
i · x− b0i ) ≡

n∑
i=0

c0iϕi(x; ω0
i , b

0
i )

be the initial approximation to the solution, uT (x) ∈ M1
n(τk), of (4.1). Then c0 = (c00, c

0
1, ..., c

0
n)

is the solution of the following algebraic equations

(7.1) aT (u0
T
, ϕi) = fT (ϕi) for i = 0, 1, ..., n.

Lemma 7.1. Assume that the hyper-planes {ω0
i · x = b0i }ni=1 are distinct. Then the stiffness

matrix K =
(
aT (ϕi(·; ω0

i , b
0
i ), ϕj(·; ω0

j , b
0
j ))
)

(n+1)×(n+1)
is symmetric, and positive definite.

Proof. Clearly, K is symmetric. For any v = (v0, v1, ..., vn)t, we have

vtKv = aT (v, v),

where v(x) =
n∑
i=0

viϕi(x; ω0
i , b

0
i ). Since {ϕi}ni=0 are linearly independent (see Lemma 2.1 in [6])

when the hyper-planes {ω0
i · x = b0i }ni=1 are distinct, aT (v, v) is positive for any nonzero v, which,

in turn, implies that K is positive definite.

Remark 7.2. If there are two hyper-planes are almost linearly dependent, then the stiffness
matrix K is ill-conditioned even though it is symmetric, positive definite. This is because basis
function ϕi(x; ω0

i , b
0
i ) = τk(ω0

i · x− b0i ) has a non-local support.

In one dimension, this difficulty may be overcome by transforming the non-local basis functions
to the local nodal basis functions and solving (7.1) using the local basis function. More specifically,
assume that b00 < b01 < · · · < b0n. Denote by hi = bi+1 − bi the length of subinterval [bi, bi+1], and
set

li(x) = h−1
i ϕi −

(
h−1
i + h−1

i+1

)
ϕi+1 + h−1

i+1ϕi+2 for i = 1, ..., n− 2,

ln−1(x) = h−1
n−1

(
ϕn−1 − ϕn

)
, ln(x) = h−1

n ϕn, and l0(x) = ϕ0 −
n−1∑
i=1

li(x).

Let ĉ = (ĉ0, ĉ1, ..., ĉn)t be the solution of

n∑
i=0

ĉjaT (lj , li) = fT (li) for i = 0, 1, ..., n,

and let T be the linear transformation from ϕ = (ϕ0, ..., ϕn)t to l = (l0, ..., ln)t. Then

(7.2) c0 = (c00, ..., c
0
n)t = T tĉ.



ADAPTIVE RITZ METHOD 11

8. Numerical Experiments. In this section, we present our numerical results on using
the adaptive neuron enhancement (ANE) method to solve diffusion problems based on the Ritz
approximation. In all experiments, the minimization problems are iteratively solved by the Adam
optimizer [19]. The integrals of the energy functionals are computed numerically using composite
mid-point quadrature rules with uniformly distributed quadrature points. For each run during
the adaptive enhancement process, the training stops when the value of the energy functional
decreases within 0.1% in the last 2000 iterations. And the ANE process stops when the user
specified accuracy tolerance ε is obtained, where the error is estimated using the relative recovery
error estimator ξrel = ξ/‖σ̂T ‖0, where ‖σ̂T ‖0 ≈ ‖uT ‖a.

8.1. One-dimensional Poisson Equation. The first test problem (see [20, 2, 6]) is a one-
dimensional Poisson equation with homogeneous Dirichlet boundary condition defined on the unit
interval Ω = (0, 1). For f(x) = −40000(x3 − 2x2/3 + 173x/1800 + 1/300)e−100(x−1/3)2 , the exact
solution of the test problem is given by

u(x) = x
(
e−(x− 1

3 )2/0.01 − e− 4
9/0.01

)
.

A fixed numerical integration partition T of 1000 uniformly distributed quadrature points is
utilized to calculate the energy functional in (2.2) with γD = 2000. For training (optimizing) this
primary problem in (2.3), the learning rate of the Adam optimizer is fixed at 0.002.

We start from 10 neurons with their breakpoints distributed uniformly and then solve the
linear system in (7.1) for the initial of the output weights and bias; the initial NN model of uT is
depicted in Fig. 1(a). After optimizing all the parameters in the network, the 10 breakpoints move
themselves and the NN outputs an optimized model of non-uniformly distributed breakpoints as
shown in Fig. 1(b).

Local error indicator ξK is calculated using the recovered σT from −u′
T

(see Fig. 1(c) and
1(e) for a graphical illustration). Elements with large errors are marked by the average marking
strategy (see (5.4) in [6]) and the corresponding neurons are added with proper initialization. This
adaptive process repeats itself three runs until our target approximation accuracy ε = 0.08 is
reached. Fig.1(d) shows the final approximation of adaptive two-layer ReLU NN with 25 neurons.

For comparison, we also report numerical results using fixed two-layer ReLU NNs with 25 and
50 neurons. Table 1 clearly shows that the accuracy of the adaptive ReLU NN is about the same as
that of the fixed NN with twice parameters. The approximation of the fixed NN with 25 neurons
is depicted in Fig. 1(f); the fact that, only 17 out of 25 neurons contribute to the approximation,
explains why the fixed NN is not as accurate as the adaptive NN. Finally, we report numerical
results from our previous paper [2] using an over-parametrized DNN of four layers in the last row
of Table 1. Even though the over-parametrized DNN is powerful in approximation, attainable
approximation may not be as accurate as that of a proper adaptive/fixed NN with significant less
parameters due to the difficulty of non-convex optimization.

Table 1
Poisson equation: comparing adaptive network with fixed networks using Energy functional

NN (hidden layer neurons) #Parameters
‖u− uτ‖0
‖u‖0

‖u′ − u′τ‖0
‖u′‖0

ξrel =
‖σT + u′

T
‖0

‖σT ‖0
Fixed 2-layer (25) 51 0.012943 0.149020 0.164645
Fixed 2-layer (50) 101 0.006108 0.089470 0.095394
Adaptive 2-layer (25) 51 0.007794 0.075847 0.076366
Fixed 4-layer (24-14-14) [2] 623 0.029161 0.160666 -
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(a) Initial model uT with 10 neurons
‖u′ − u′T ‖0
‖u′‖0

=0.522380

(b) Optimized model uT with 10 neurons,
‖u′ − u′T ‖0
‖u′‖0

=0.229533

(c) Recovered flux σT and the calculated −u′T of

10 neurons,
‖σT + u′T ‖0
‖σT ‖0

=0.278647

(d) Adaptive model uT with 25 neurons,
‖u′ − u′T ‖0
‖u′‖0

=0.075847

(e) Recovered flux σT and the calculated −u′T of

25 neurons,
‖σT + u′T ‖0
‖σT ‖0

=0.076366

(f) A fixed model uT with 25 neurons,
‖u′ − u′T ‖0
‖u′‖0

=0.151279

Fig. 1. Poisson equation approximation results using energy functional as the loss function.

8.2. Two-dimensional Poisson Equation with Re-entrant Corner. The second test
problem is a two-dimensional Poisson equation with pure Dirichlet boundary condition defined on
a domain with re-entrant corner Ω = {(r, θ)| r ∈ (0, 1), θ ∈ (0, 3π

2 )}. The exact solution

u(r, θ) = r
2
3 sin(

2θ + π

3
),
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is harmonic, i.e., ∆u = 0.

Table 2
Poisson equation with re-entrant corner: comparing adaptive ReLU NN with a fixed NN.

NN (neurons) #Parameters
‖u− uT ‖0
‖u‖0

‖∇(u− uT )‖0
‖∇u‖0

ξrel =
‖σT +∇uT ‖0
‖σT ‖0

Adaptive 2-layer (20) 61 0.033947 0.230226 0.233191
Adaptive 2-layer (42) 127 0.021939 0.154129 0.158150
Adaptive 2-layer (86) 259 0.014162 0.064652 0.132546
Fixed 2-layer (86) 259 0.025932 0.217009 0.162507

Numerical integration is calculated using a partition T with 50 × 270 quadrature points uni-
formly distributed along radial and circumferential directions in a polar coordinate framework.
The γD is set as 200 and the learning rate of the optimizer is fixed at 0.001. The target approx-
imation accuracy is set as ε = 0.15 for this problem considering the difficulty posed by the point
singularity at the origin.

Our adaptive model starts from 20 neurons which are initialized such that the corresponding
break lines are distributed uniformly along circumferential direction as shown in Fig. 3(a). The
initial NN model obtained after solving (7.1) is illustrated in Fig. 2(d). This initial model gives
a fair approximation of u and the relative error in the L2 norm is 0.13, while approximation to
∇u (see Fig. 2(e) and 2(f)) still presents relatively large errors (the relative error in the energy
norm is 0.49). After optimization in the first run, the break lines of these 20 neurons move and
form a non-uniform partition of the domain as shown in Fig. 3(b), which results in an NN model
of improved performance, see Table 2, first row for the numerical results. The graphical results of
uT and ∇uT approximate by a NN of 20 neurons are depicted in Fig. 2(g) - Fig. 2(i).

During the neuron enhancement step, elements with relative large local error ξK are marked
using the bulk marking strategy with γ1 = 0.5 (see (5.5) in [6]). After two runs of the ANE, adding
22 and 44 neurons respectively, the ANE process stops at 86 neurons with a relative recovery error
estimator ξrel = 0.13. Intermediate results are recorded in Table 2 and the final visual results of
uT and ∇uT approximated by a NN of 86 neurons are illustrated in Fig. 2(j) - Fig. 2(l).

Comparing to a two-layer fixed ReLU NN with the same number of neurons in the hidden
layer, the proposed adaptive method converges to a better approximation result (see the last two
rows in Table 2). This experiment also shows that for a Poisson equation containing a corner
singularity, a two-layer ReLU NN is capable of generating a good approximation to the solution.
Fig.3(e) shows the final arrangement generated by the adaptive ReLU NN of 86 neurons in which
we observe that the break lines adapt themselves to account for the singular point at the origin.
This self-adaptivity of generated physical meshes is a highly desirable feature of using NN model
to approximate problems with singularities or discontinuities.

To verify that the proposed error estimator of the recovery type provides a valid indicator for
neuron enhancement, we compare the elements marked using the proposed error indicator (5.2)
and those marked using the exact error, the element marking results for the two intermediate runs
in the adaptive process are illustrated in Fig. 3(b)-3(e). The comparison results show similar sets
of elements being marked for further enhancement, which indicates the validity of the proposed
recovery error indicator.

8.3. Two Dimensional Interface Problem. The third test problem is the intersecting
interface problem defined on the unit disk Ω = {(r, θ)| r ∈ [0, 1), θ ∈ [0, 2π])} and satisfying (2.1)
with c = f = 0, ΓN = ∅, and A = α(θ)I, where the diffusion coefficient α(θ) equals to 1 in the
second and forth quadrants and R = 161.4476387975881 in the first and third quadrants. This is
a difficult benchmark test problem for adaptive mesh refinement (see, e.g., [21, 22]) and the exact
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(a) The exact solution u (b) The exact ∂ru (c) The exact ∂θu

(d) Initial uT (20 neurons) (e) Initial ∂ruT (20 neurons) (f) Initial ∂θuT (20 neurons)

(g) Optimal uT (20 neurons) (h) ∂ruT (20 neurons) (i) ∂θuT (20 neurons)

(j) Adaptive NN of uT (86 neurons) (k) ∂ruT (86 neurons) (l) ∂θuT (86 neurons)

Fig. 2. Poisson equation with re-entrant corner: Exact solution and results of adaptive two-layer ReLU NN
from 20 to 86 neurons.

solution is u(r, θ) = rβµ(θ) with

µ(θ) =


cos((π/2− σ)β) · cos((θ − π/2 + ρ)β), if 0 ≤ θ ≤ π/2,

cos(ρβ) · cos((θ − π + σ)β), if π/2 ≤ θ ≤ π,
cos(θβ) · cos((θ − π − ρ)β), if π ≤ θ ≤ 3π/2,

cos((π/2− ρ)β) · cos((θ − 3π/2− σ)β), if 3π/2 ≤ θ ≤ 2π.
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(a) Initial break lines of 20 neurons (b) Optimal break lines of 20 neu-
rons with marked elements using
(5.2)

(c) Elements marked with the exact
local error

(d) Optimal break lines of 42 neu-
rons with marked elements using
(5.2)

(e) Elements marked with the exact
local error

(f) Final break lines of 86 neurons

Fig. 3. Poisson equation with re-entrant corner: break lines generated in the ANE process.

Considering the inherent difficulty introduced by the intersecting interfaces along x-axis and
y-axis and the fact that the recovery estimator over-estimate the true error, we set the stopping
criterion as ξrel ≤ ε = 0.6. Numerical integration is calculated on an uniform partition T of 50×360
quadrature points. The γD is set at 200 and a constant learning rate of 0.001 is used throughout
the training. For the error estimator of recovery type in (5.2), we use the identity matrix for D.
A bulk marking strategy is adopted in the adaptive process with γ1 = 0.7 (see (5.5) of [6]).

Again, we start from a small size NN of 20 neurons, the adaptive process enhances four runs
and stops at 150 neurons with the relative error estimator ξrel = 0.55 < ε. The initial NN model,
the optimized NN model of 20 neurons and the final model of 150 neurons are all illustrated in
Fig. 4, and the values of the relative error estimator in each run, from 20 neurons to 150 neurons,
are recorded in Table 3.

As shown in Table 3, the adaptive model of 150 neurons yields a better approximation than
the fixed model of the same size. Comparing to the adaptive finite element method adopted in [22]
which uses more than three thousands of grid points (parameters) in an adaptive refined mesh to
achieve a similar result in the relative energy norm, the adaptive ReLU NN presents a more efficient
model since all break lines are allowed to move and to adapt to the characteristics of the target
function. In this problem, the singularity at the origin and the intersecting interface along axes
are captured well through the moving break lines, see Fig. 4(g) for the optimized arrangements
generated by the break lines of those 150 neurons.

We notice that the final adaptive model of uT contains certain degrees of oscillation on the



16 M. LIU AND Z. CAI

boundary (see Fig. 4(h)). To seek a remedy, we further test a fixed three-layer ReLU NN with
20 neurons in each hidden layer. The oscillation is reduced (see Fig. 4(l)) and the relative error
in the L2 norm is also improved. The reduction in oscillation is presumably due to the facts
that the neurons in deeper layers provide fine scale approximation while those in the first hidden
layer provide only coarse scale approximation. Nevertheless, it is also noticed that the adaptive
two-layer NN achieves better accuracy in the energy norm comparing to the fixed three-layer NN
of similar size (see the last three rows in Table 3). This result is perhaps caused by training of
difficult nonlinear optimization problem, because a good initialization is systematically provided
through our ANE method for adaptive two-layer NN, but is not available for the fixed three-layer
NN. To extend our ANE method to multi-layer NN is our current research project and requires a
deeper understanding on the role of depth in a neural network.

Table 3
Interface Problem: comparing adaptive network with fixed networks using the Ritz formulation.

NN (neurons) #Para.
‖u− ūτ‖0
‖u‖0

‖A1/2∇(u− uτ )‖0
‖A1/2∇u‖0

ξrel =
‖(σT +A∇uT )‖0

‖σT ‖0
Adaptive (20) 61 0.212283 0.985976 0.817516
Adaptive (31) 94 0.168116 0.760418 0.749148
Adaptive (52) 157 0.129946 0.546362 0.714189
Adaptive (92) 277 0.107181 0.362692 0.634297
Adaptive (150) 451 0.087608 0.047335 0.549564
Fixed (150) 451 0.160656 0.826836 0.717022
Fixed (20-20) 481 0.070198 0.624581 0.535260

9. Discussion and Conclusion. To adaptively construct a two-layer spline NN with a nearly
minimum number of neurons and parameters such that its approximation accuracy is within the
prescribed tolerance, we develop and test the adaptive neuron enhancement (ANE) method for the
Ritz approximation to elliptic PDEs in this paper. A key component of the ANE method for its
application in PDEs is the development of computable local indicators since the solution of a PDE
is unknown. The recovery and the least-squares estimators are introduced. Numerical results
for the ReLU NN approximation to problems with corner or intersecting interface singularities
show that the recovery estimator is effective. When using other activation functions, the recovery
estimator need to be modified by adding weighted L2 norm of the residual of the original equation
(see the hybrid estimator in [23, 10]) since the recovery estimator may not be reliable. The least-
squares estimator provides a constant free, guaranteed upper bound of the true error in the energy
norm, and hence it is useful to serve as a stopping criterion.

When a PDE has an underlying minimization principle, our experience suggests that the
Ritz formulation is better than various manufactured least-squares formulations as stated in the
introduction due to the number of independent variables and the smoothness of the solution.
Moreover, a loss functional with fewer independent variables is easier to train than one having
more variables. Unlike existing NN methods, we approximate the integral of the loss functional
by numerical integration. Effect of numerical integration is analyzed for both approximations to a
given function and PDE (see Theorem 4.1 of [6] and Theorem 4.3 of this paper).

Universal approximation theorem shows that a two-layer ReLU NN is able to accurately ap-
proximate any continuous function defined on a compact set in Rd provided that there are enough
neurons in the NN. Indeed, our numerical results demonstrate that problems with corner or in-
tersecting interface singularities may be approximated accurately by the ANE method with fewer
degrees of freedom than that of adaptive finite element method. On the other hand, numerical
results for problems with sharp circular transition layer [6] and discontinuous solution [24] show
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(a) Initial break lines (20 neu-
rons)

(b) Initial uT (20 neurons) (c) Initial −α∂xuT (20 neurons)

(d) Optimal break lines (20 neu-
rons) with marked elements

(e) Optimal uT (20 neurons) (f) Optimal −α∂xuT (20 neurons)

(g) Final adaptive NN of 150 neu-
rons: break lines

(h) Adaptive model of uT (150 neu-
rons)

(i) Final −α∂xuT (150 neurons)

(j) Final −α∂yuT (150 neurons) (k) Recovered flux σxT (150 neu-
rons)

(l) Fixed NN model of ūT with two
hidden layers(20 neurons in each)

Fig. 4. Kellogg problem: Results of an adaptive 2-layer ReLU NN and a fixed 3-layer ReLU NN.
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that a three-layer NN is needed in order to approximate the target function well without unde-
sired oscillation. Extension of our ANE method to multi-layer ReLU NN will be presented in a
forthcoming article.
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