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Highlights

• The hybrid estimator resolves unreliability of ZZ type estimators on coarse meshes.
• The hybrid estimator extends the improved ZZ estimator to higher order elements.
• The hybrid estimator is explicit and is more accurate than the residual estimator.

Abstract

This paper introduces a hybrid a posteriori error estimator for the conforming finite element method, which may be regarded as
a combination of the explicit residual and the improved ZZ error estimators. With comparable cost, the hybrid estimator is more
accurate than the residual estimator. It is shown that the hybrid estimator is reliable on all meshes, unlike estimators of the ZZ type.
Moreover, the reliability constant is independent of the jump of the diffusion coefficients for elliptic interface problems under the
monotonicity assumption of the coefficients. Finally, numerical examples confirm the robustness of the estimator with respect to
coefficient jumps and also better effectivity index compared to the residual estimator.
c⃝ 2018 Elsevier B.V. All rights reserved.

Keywords: Finite element method; A posteriori error estimation; Adaptive mesh refinement; Diffusion problem

1. Introduction

Adaptive mesh refinement is necessary in the discretization of partial differential equations (PDEs) in order to
handle computational challenges [1]. A posteriori error estimates play a crucial role in adaptive mesh refinement,
where one tries to estimate the error by computing quantities (called error estimators) based on numerical solution as
well as data from the underlying PDE. It is well known that the explicit residual error estimators (see, e.g., [2–6]) are
computationally inexpensive with applications to a large class of problems. Moreover, for computationally challenging
problems such as interface problems, proper weighted residual estimators (see, e.g., [5,7]) generate efficient meshes.
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However, it is also known that residual estimators usually overestimate the true error by a large margin compared to
estimators of the Zienkiewicz–Zhu (ZZ) type (cf. [8]). In this paper we introduce a hybrid a posteriori error estimator
for the conforming finite element method, which is more accurate than the residual error estimator and is reliable on
all meshes unlike the ZZ estimators.

By first recovering a gradient in the conforming C0 linear vector finite element space from the numerical gradient,
the Zienkiewicz–Zhu (ZZ) estimator [9] is defined as the L2 norm of the difference between the recovered and
the numerical gradients. Due to its simplicity, universality, and asymptotic exactness for smooth problems, the ZZ
estimator enjoys a high popularity in the engineering community (see, e.g., [6,10–12]).

Despite its popularity, it is also well known that estimators of the ZZ type have several major drawbacks. First,
adaptive mesh refinement (AMR) algorithms using the ZZ estimator are not efficient to reduce global error for non-
smooth problems, e.g., interface problems (see, e.g., [13]). By exploring the mathematical structure of the underlying
problem and the characteristics of finite element approximations, [14] identified the reason for this failure, and [15]
introduced an improved ZZ estimator for the lowest order conforming elements which is explicit and efficient for
non-smooth problems. Second, estimators of the ZZ type are not reliable on coarse meshes relative to the underlying
problem. A simple one-dimensional example in [4] shows that the ZZ estimator equals zero but the true error is
arbitrarily large. For a two-dimensional example, see Section 5.4. Moreover, estimators of the ZZ type work only for
elements of the lowest order and research for higher order elements is still in its infancy (see, e.g., [16,17]). Bank, Xu,
and Zheng in [16] recovered higher order derivatives, and Naga and Zhang in [17] approximated the numerical solution
by a higher order polynomial. Both the approaches demonstrate some appealing features like super-convergence and
asymptotic exactness under certain smoothness assumptions of the exact solution.

Comparing with the residual estimator, we realized that the scaled element residual is no longer higher order when
the recovered flux is the L2 projection of the numerical flux in an H (div)-conforming space. By simply adding an
appropriately weighted element residual to the improved ZZ estimator, it was shown in [18] that the resulting estimator
for higher order elements is reliable on all meshes and more accurate than the residual estimator. Computing the L2

projection of the numerical flux in an H (div)-conforming space requires solving a global problem and, hence, the
estimator in [18] is more expensive than the residual estimator.

The purpose of this paper is to introduce an explicit flux recovery in an H (div)-conforming space so that the
resulting hybrid error estimator is more accurate than the residual estimator with similar computational cost and
applicability. To do so, we first specify the desired normal component of the recovered flux on each face as a weighted
average of the normal components of the numerical fluxes. Then the recovered flux is chosen to satisfy a compatible
divergence equation on each element. In particular, we are able to derive an explicit formula for a recovered flux in
an H (div)-conforming space and the formula is automatically valid for higher order finite element approximations.
Unlike existing ZZ-type estimators, which are not reliable on coarse meshes, we incorporate the divergence error in
the estimator and the resulting error estimator of hybrid type is proved to be reliable on all meshes.

This hybrid estimator displays a strong connection to the explicit residual estimator as we can prove that the
proposed estimator is actually equivalent to the residual estimator [5] with constants independent of the diffusion
coefficients (see Section 4.2). As a result, the robustness of the residual estimator with respect to coefficient jumps
carries over to the hybrid estimator. Despite the theoretical equivalence, numerical results show that the hybrid
estimator is more accurate than the residual estimator. Hence the hybrid estimator can be viewed as a substitute of the
residual estimator with an improved accuracy. The innate link to the residual estimator lends comparable generality
to the hybrid estimator and future work includes applying the technique to convection–diffusion problems.

The rest of the paper is organized as follows. In Section 2, we introduce the model problem with a conforming
finite element discretization and some notation. In Section 3, we present the explicit flux recovery. In Section 4,
after defining the element indicator and the resulting global error estimator, we prove the robust local efficiency and
global reliability. The equivalence between the proposed local indicator and the standard residual-based indicator
is established in Section 4.2. Numerical results are presented in Section 5 to demonstrate the performance of the
proposed estimator and a counter example is included in the end to illustrate the unreliability of ZZ-type estimators
on a coarse mesh.

2. Problem and finite element approximation

Let Ω be a bounded polygonal domain in Rd (d = 2, 3) with Lipschitz boundary ∂Ω , where ∂Ω = Γ̄D ∪ Γ̄N and
ΓD ∩ ΓN = ∅. For simplicity, assume that meas(ΓD) > 0. Consider the diffusion equation

− div(A∇u) = f in Ω (2.1)
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with boundary conditions

u|ΓD = 0 and − A∇u · n|ΓN = gN . (2.2)

Here, f ∈ L2(Ω ), gN ∈ L2(ΓN ), n denotes the unit outward vector normal to ΓN ; A is piecewise constant in Ω and
for almost all x ∈ Ω , A(x) is a symmetric positive definite matrix. If A is a scalar multiple of the identity matrix in a
region, we would simply say A is a scalar in that region. Let

⋃L
i=1Ωi be a disjoint partition of the domain Ω such that

A is constant on each subdomain Ωi .
The corresponding weak formulation for the problem in (2.1)–(2.2) is to find u ∈ H 1

D(Ω ) := {v ∈ H 1(Ω ) : v|ΓD =

0} such that

a(u, v) :=

∫
Ω

A∇u · ∇vdx =

∫
Ω

f vdx −

∫
ΓN

gN vds, ∀ v ∈ H 1
D(Ω ). (2.3)

The well-posedness of the weak formulation in (2.3) follows from the Riesz Representation Theorem.
Let T be a regular triangulation of Ω (see, e.g., [19]). For simplicity, assume that K ∈ T is either a triangle (d = 2)

or a tetrahedron (d = 3). Define the following sets associated with the triangulation T :

N : the set of all vertices,
E : the set of all edges (d = 2)/faces (d = 3),
EI : the set of all interior edges (d = 2)/faces (d = 3),
ED : the set of edges (d = 2)/faces (d = 3) on ΓD,

EN : the set of edges (d = 2)/faces (d = 3) on ΓN ,

EK : the set of edges (d = 2)/faces (d = 3) in an element K ∈ T .
Let hK and he denote the diameters of K ∈ T and e ∈ E , respectively. Similar to [5], assume that for each K ∈ T ,
A|K is a symmetric, positive definite constant matrix that is nearly scalar, i.e., there exists a moderate constant κ > 0
such that

ρmax(A|K ) ≤ κρmin(A|K ), ∀ K ∈ T , (2.4)

where ρmax and ρmin denote maximal and minimal eigenvalues of a matrix, respectively. Obviously, if A is piecewise
scalar with respect to T , then (2.4) holds with κ ≡ 1. Let (·, ·)S and ∥ · ∥S denote the L2 inner product and norm on
set S, respectively, and the subscript S is omitted when S = Ω . Set

αmax := max
K∈T

ρmax(A|K ), αmin := min
K∈T

ρmin(A|K ),

and define the piecewise constant function α ∈ L2(Ω ) such that

α = αK := ρmax(A|K ) in K ∈ T . (2.5)

Furthermore, as in [5], for each e ∈ E , define

αe := max
K⊆ωe

αK ,

where ωe denotes the union of elements adjacent to e.
Let Pk(K ) and Pk(e) denote the sets of polynomials of degree less than or equal to k ≥ 0 on K ∈ T and e ∈ E ,

respectively. The conforming finite element space of order k is defined by

VT = {v ∈ H 1
D(Ω ) : v|K ∈ Pk(K ), ∀ K ∈ T }.

The finite element solution uT ∈ VT satisfies

a(uT , v) =

∫
Ω

f vdx −

∫
ΓN

gN vds, ∀ v ∈ VT . (2.6)

Similarly, the well-posedness of (2.6) follows from the Riesz Representation Theorem.
Let f̄ be the L2 projection of f onto the piecewise polynomial space of degree k − 1 with respect to T and denote

by ḡN the L2 projection of gN onto the piecewise polynomial space of degree k − 1 with respect to EN . That is,

f̄ |K := Π k−1
K f, ∀ K ∈ T and ḡN |e := Π k−1

e gN , ∀ e ∈ EN ,
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where Π k−1
K and Π k−1

e denote the L2 projection from L2(K ) to Pk−1(K ) and from L2(e) to Pk−1(e), respectively. The
so-called data oscillations in f and gN are defined by

osc( f, K ) :=
hK

α
1/2
K

∥ f − f̄ ∥K , osc( f, T ) :=

(∑
K∈T

osc( f, K )2

)1/2

,

and

osc(gN , e) :=
h1/2

e

α
1/2
e

∥gN − ḡN ∥e, osc(gN , EN ) :=

⎛⎝∑
e∈EN

osc(gN , e)2

⎞⎠1/2

,

respectively.

3. Element-based flux recovery

Denote the true and the numerical fluxes by

σ = −A∇u and σ T = −A∇uT ,

respectively. It is well-known that σ ∈ H (div;Ω ) = {τ ∈ L2(Ω )d
: div τ ∈ L2(Ω )} and that σ T ̸∈ H (div;Ω ) in

general. Hence as considered in [14], it is reasonable to find a flux σ̂ ∈ H (div;Ω ) such that σ̂ is the projection of the
numerical flux σ T with respect to the weighted L2 inner product (A−1

·, ·). Equivalently, with

HN ,g(div;Ω ) :=
{
τ ∈ H (div;Ω ) : τ · n = gN on ΓN

}
,

the projection σ̂ ∈ HN ,g(div;Ω ) satisfies

∥A−1/2(σ̂ − σ T )∥ = min
τ∈HN ,g (div;Ω)

∥A−1/2(τ − σ T )∥. (3.1)

Since HN ,g(div;Ω ) is a nonempty closed convex subset of the Hilbert space H (div;Ω ), there exists a unique solution
σ̂ ∈ HN ,g(div;Ω ) for (3.1).

Let RTk−1(K ) and BDMk(K ) be the Raviart–Thomas space of index k −1 (k ≥ 1) and the Brezzi–Douglas–Marini
space of index k on element K ∈ T , respectively. Namely,

RTk−1(K ) := Pk−1(K )d
+ xPk−1(K ) and BDMk(K ) := Pk(K )d .

Let W(K ) := RTk−1(K ) or BDMk(K ) and define

Wg := {τ ∈ H (div;Ω ) : τ |K ∈ W(K ), ∀ K ∈ T and τ · n|e = ḡN , ∀ e ∈ EN }.

Corresponding to the finite element space VT of order k (k = 1, 2, . . . ), the approximation of the desired flux will be
based on Wg .

The finite element approximation of problem (3.1) is to find σ̂ ∈ Wg such that

∥A−1/2(σ̂ − σ T )∥ = min
τ∈Wg

∥A−1/2(τ − σ T )∥. (3.2)

The global minimization in (3.2) was employed in [18] to perform flux recovery for higher order finite element
approximations. However, a global recovery procedure is computationally expensive, while a local procedure,
especially an element-based one, is more appealing for engineering practice.

We show in the rest of this section how to construct a flux in Wg that solves a boundary value problem imposed
in each element K ∈ T . A desired flux can be obtained via either a minimization on K (Section 3.3.1) or an explicit
formula with degrees of freedom properly assigned (Section 3.3.2).

For each e ∈ E , associate a unit normal vector ne, where ne is chosen as the unit outward normal if e ∈ EN . For an
interior edge (d = 2) /face (d = 3) e ∈ EI , denote by K +

e and K −
e the two elements with common edge/face e such

that the unit outward normal of K +
e on e coincides with ne. Moreover, |K | and |e| denote the area (d = 2) / volume

(d = 3) of an element K and length of an edge e (d = 2) / area of a face e (d = 3), respectively.
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For each element K ∈ T and e ∈ EK , in order to determine if the unit normal ne is an outward normal with respect
to K , we define below a sign function in L2(∂K ):

sK : ∂K → {−1, 1} , sK |e =

{
1, if ne is an outward normal on ∂K ,
−1, if ne is an inward normal on ∂K .

That is to say, if n is the unit outward normal on e ∈ EK in terms of K , then we have the expression n = sK |ene.
The flux recovery procedure is element-based. To be more specific, we impose a simple boundary value problem

for the desired flux σ̂ in each element K ∈ T and then choose a solution that satisfies certain stability estimate as our
desired flux.

We are looking for a flux σ̂ ∈ Wg that satisfies in each element K ∈ T :{
div σ̂ = f̂K in K ,
σ̂ · ne = ĝe on e ∈ EK ,

(3.3)

where ĝe ∈ Pk−1(e) and f̂K ∈ Pk−1(K ) will be given in Section 3.1 and Section 3.2, respectively. The choice of a
particular recovered flux among all solutions to (3.3) is presented in Section 3.3.

3.1. Choice of ĝe

The normal component of the recovered flux on each e ∈ E is defined as a weighted average of the normal
components of the numerical fluxes, i.e.,

ĝe :=

⎧⎨⎩
(1 − λe)σ T |K +

e
· ne + λeσ T |K −

e
· ne, if e ∈ EI ,

ḡN , if e ∈ EN ,

σ T · ne, if e ∈ ED,

(3.4)

where, as in [15], the weight λe is defined by

λe :=
γ−

e

γ+
e + γ−

e
, ∀ e ∈ EI , with γ±

e := (A−1φe,φe)K ±
e
. (3.5)

Here, φe is the nodal basis function in RT0 associated with e, i.e.,∫
e′

φe · ne′ds = δee′ , ∀ e′
∈ E .

Apart from the weight defined in (3.5), a similar but easier-to-compute weight is given in Remark 3.2.

3.2. Choice of f̂K

Having determined the boundary data ĝe in boundary value problem (3.3), we see that the right-hand side f̂K must
satisfy the compatibility condition:∫

K
f̂K dx =

∫
∂K

σ̂ · nds =

∑
e∈EK

∫
e

sK ĝeds, ∀ K ∈ T . (3.6)

We choose f̂K to be the L2-projection of f̄ onto the following admissible set

FK :=

⎧⎨⎩p ∈ Pk−1(K ) :

∫
K

pdx =

∑
e∈EK

∫
e

sK ĝeds

⎫⎬⎭ .
That is, f̂K is the solution of

∥ f̂K − f̄ ∥K = min
p∈FK

∥p − f̄ ∥K . (3.7)

We next show that the solution of (3.7) is given by

f̂K := f̄ + JK , with JK := |K |
−1

⎛⎝∑
e∈EK

∫
e

sK ĝeds −

∫
K

f̄ dx

⎞⎠ . (3.8)
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Proposition 3.1. With JK defined in (3.8), we have f̄ + JK ∈ FK and

min
p∈FK

∥p − f̄ ∥K = ∥JK ∥K .

Proof. For any p ∈ FK , it follows immediately from (3.8) and the Cauchy–Schwarz inequality that

|K ||JK | =

⏐⏐⏐⏐ ∑
e∈EK

∫
e

sK ĝeds −

∫
K

f̄ dx
⏐⏐⏐⏐ =

⏐⏐⏐⏐ ∫
K

p − f̄ dx
⏐⏐⏐⏐ ≤ |K |

1/2
∥p − f̄ ∥K ,

which is equivalent to

min
p∈FK

∥p − f̄ ∥K ≥ ∥JK ∥K .

A simple calculation shows that f̄ + JK ∈ FK . Hence the lower bound ∥JK ∥K can be achieved at f̄ + JK and the
minimizer is unique as FK is a closed convex subset of Pk−1(K ). □

3.3. Choice of recovered flux

3.3.1. Choosing σ̂ T as the solution of a local minimization problem
With ĝe and f̂K defined in (3.4) and (3.8), respectively, for each element K ∈ T , we define the set of discrete

solutions to (3.3) by

S(K ) := {τ ∈ W(K ) : div τ = f̂K in K and τ · ne = ĝe on e ∈ EK }. (3.9)

Since the solution to the local problem in (3.3) may not be unique, we can choose a solution σ̂ T ∈ Wg such that it
also solves the local minimization problem in each element K ∈ T :

∥A−1/2(σ̂ T − σ T )∥K = min
τ∈S(K )

∥A−1/2(τ − σ T )∥K , ∀ K ∈ T . (3.10)

3.3.2. Explicit construction of σ̃ T
Instead of looking for a local minimizer as in (3.10), below we present an explicit construction of a flux σ̃ T that

solves (3.3) by assigning degrees of freedom in W(K ) = RTk−1(K ) or BDMk(K ) for each K ∈ T . Though σ̃ T may
not necessarily minimize the quantity in (3.10), it can be seen later in Section 4.1 that the quantity ∥A−1/2(σ̃ T −σ T )∥K

is also small enough to guarantee the local efficiency.
To this end, we introduce the following spaces :

Hk(K ) := {q ∈ Pk(K )d
: div q = 0 in K and q · n|∂K = 0} (k ≥ 1) (3.11)

and

Qk−2(K ) := {q ∈ Pk−2(K )d
: (q,∇ p)K = 0, ∀ p ∈ Pk−1(K )} (k ≥ 2). (3.12)

The space Hk(K ) is defined in [20] to fix the degrees of freedom in BDMk(K ), and the space Qk−2(K ) gives the
following orthogonal decomposition of Pk−2(K )d with respect to the L2 inner product:

Pk−2(K )d
= {∇ p : p ∈ Pk−1(K )} ⊕ Qk−2(K ). (3.13)

The recovered flux σ̃ T ∈ Wg is defined as follows in each K ∈ T (k ≥ 1):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ̃ T · ne = ĝe, ∀ e ∈ EK ,∫
K

σ̃ T · ∇ pdx =

∑
e∈EK

(sK ĝe, p)e − ( f̂K , p)K , ∀ p ∈ Pk−1(K ),∫
K

σ̃ T · qdx =

∫
K

σ T · qdx, ∀ q ∈ Q(K ),

(3.14)
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where

Q(K ) =

{
Qk−2(K ), if W(K ) = RTk−1(K ), k ≥ 2,
Hk(K ), if W(K ) = BDMk(K ). (3.15)

This choice of recovered flux ensures that the quantity ∥σ̃ T −σ T ∥K is small enough to fulfill certain stability estimate
explained in Section 4.1. Besides, it is easily seen that σ̃ T does solve (3.3), i.e., σ̃ T |K ∈ S(K ).

Remark 3.1. For the lowest order (k = 1) conforming finite element discretization of interface problem (2.1),
the explicit recovery procedure in [14] can be viewed as a special case of the procedure in Section 3 when
W(K ) = RT0(K ) except that the weight λe was chosen differently from the one in (3.5). In fact, the degrees of freedom
in RT0(K ) imply that σ̂ ∈ RT0(K ) is uniquely determined by its normal components on ∂K , hence expressing σ̂ in
terms of basis functions in RT0(K ) [14] is equivalent to imposing normal components on ∂K as in (3.3) and (3.4). In
this case, f̂K in (3.3) is a constant uniquely determined by ĝe according to (3.6).

Remark 3.2. In addition to (3.5), another choice of the weight λe in (3.4) can be:

λe :=

α−1
K −

e
hK −

e

α−1
K +

e
hK +

e
+ α−1

K −
e

hK −
e

. (3.16)

With this choice, it can be verified that the resulting ĝe in (3.4) satisfies the following minimization property for any
e ∈ EK ∩ EI :

ĝe = argmin
g̃∈L2(e)

{
α−1

K +
e

hK +
e
∥g̃ − σ T |K +

e
· ne ∥

2
e +α−1

K −
e

hK −
e
∥g̃ − σ T |K −

e
· ne ∥

2
e

}
.

Remark 3.3. In addition to (3.8), we can also choose

f̂K := div σ T + JK ,

where JK is a constant such that (3.6) is satisfied. It can be seen later from the proof of Theorem 4.1 that this
choice of f̂K also guarantees the robust efficiency of the proposed local indicator in next section. However, as we
shall see in Theorem 4.3, the quantity ∥ f̂K − f̄ ∥K appears in the upper bound of the exact error, so it is more
desirable to minimize this quantity as in (3.7) when choosing f̂K . Hence we believe that f̂K defined in (3.8) is a better
choice.

4. Error estimator

Let σ̂ T and σ̃ T be the fluxes derived in (3.10) and (3.14), respectively. Define the local indicators corresponding
to σ̂ T and σ̃ T by

ξK :=

(
h2

Kα
−1
K ∥ f̄ − f̂K ∥

2
K +∥A−1/2(σ̂ T − σ T ) ∥

2
K

)1/2
(4.1)

and

ξ̃K :=

(
h2

Kα
−1
K ∥ f̄ − f̂K ∥

2
K +∥A−1/2(σ̃ T − σ T ) ∥

2
K

)1/2
, (4.2)

respectively. The corresponding global estimators are then defined by

ξ :=

(∑
K∈T

ξ 2
K

)1/2

and ξ̃ :=

(∑
K∈T

ξ̃ 2
K

)1/2

. (4.3)

Due to the minimization property of σ̂ T in (3.10), it immediately follows that

ξK ≤ ξ̃K and ξ ≤ ξ̃ . (4.4)

We prove the robust local efficiency of the local indicators and the global reliability of the global estimators in
Section 4.1 and Section 4.3, respectively.
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4.1. Efficiency

Let ηR,K denote the residual-based error indicator in K (cf. [5–7]). Namely,

η2
R,K :=

h2
K

αK
∥ f̄ − div σ T ∥

2
K +

1
2

∑
e∈EK ∩EI

hK

αe
∥ je ∥

2
e +

∑
e∈EK ∩EN

hK

αe
∥ je ∥

2
e, (4.5)

where je is the jump of the normal components of the numerical fluxes defined by

je :=

⎧⎨⎩
(σ T |K +

e
− σ T |K −

e
) · ne, if e ∈ EI ,

σ T · ne − ḡN , if e ∈ EN ,

0, if e ∈ ED.

We first bound ξ̃K from above by inter-element jumps and element residuals, then the local efficiency of ξ̃K follows
immediately from that of ηR,K .

4.1.1. A lemma on a stability estimate
The following lemma plays a crucial role in the proof of the efficiency of ξ̃K . We will use c (or C) with or

without subscripts in this paper to denote a generic positive constant, possibly different at different occurrences, that
is independent of αmax/αmin, but may depend on shape parameter of the mesh T , the polynomial degree k, and κ in
(2.4).

Lemma 4.1. For k ≥ 1, let f ∈ Pk−1(K ) and g|e ∈ Pk−1(e) for all e ∈ EK satisfy the following compatibility
condition∫

K
f dx =

∫
∂K

gds.

With W(K ) = RTk−1(K ) or BDMk(K ), if the vector field τ ∈ W(K ) is defined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ · n = g, on ∂K ,∫

K
τ · ∇ p dx = (g, p)∂K − ( f, p)K , ∀ p ∈ Pk−1(K ),∫
K

τ · q dx = 0, ∀ q ∈ Q(K ),

(4.6)

where Q(K ) is defined in (3.15), then τ satisfies the following divergence equation{
div τ = f in K ,
τ · n = g on ∂K (4.7)

and the following stability estimate

∥τ∥K ≤ c
(

hK ∥ f ∥K + h1/2
K ∥g∥∂K

)
. (4.8)

To prove Lemma 4.1, we make use of a norm equivalence result of W(K ) in [21]. To this end, for k ≥ 1 and
τ ∈ W(K ), if W(K ) = RTk−1(K ), let

G(τ ) = h1/2
K

∑
e∈EK

sup
p∈Pk−1(e)
∥p∥e=1

⏐⏐⏐⏐∫
e
(τ · n) p ds

⏐⏐⏐⏐+ sup
q∈Pk−2(K )d

∥q∥K =1

⏐⏐⏐⏐∫
K

τ · q dx
⏐⏐⏐⏐ ,

where if k = 1, the second term in G(τ ) above vanishes because P−1(K ) is considered empty (the degrees of freedom
for RT0(K ) are on the boundary ∂K ). If W(K ) = BDMk(K ), let

G(τ ) = h1/2
K

∑
e∈EK

sup
p∈Pk (e)
∥p∥e=1

⏐⏐⏐⏐∫
e
(τ · n)p ds

⏐⏐⏐⏐+ sup
p∈Pk−1(K )
∥∇ p∥K =1

⏐⏐⏐⏐∫
K

τ · ∇ p dx
⏐⏐⏐⏐+ sup

q∈Hk (K )
∥q∥K =1

⏐⏐⏐⏐∫
K

τ · q dx
⏐⏐⏐⏐ .

Then a standard scaling argument (cf. [21, Lemma 3.5]) implies that G(τ ) is equivalent to the L2-norm in W(K ) with
constants independent of hK , i.e.,

1
c
∥τ∥K ≤ G(τ ) ≤ c∥τ∥K . (4.9)
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Proof of Lemma 4.1. Let τ ∈ W(K ) be given in (4.6). Obviously, τ satisfies the boundary condition in (4.7). To
show the validity of the first equation in (4.7), it follows from integration by parts and the first two equations in (4.6)
that for any p ∈ Pk−1(K ),

(div τ , p)K = (τ · n, p)∂K − (τ ,∇ p)K = ( f, p)K .

Next we prove that τ satisfies the stability estimate in (4.8) for the case W(K ) = RTk−1(K ). (For W(K ) =

BDMk(K ), (4.8) can be established in a similar fashion.) According to (4.9), the degrees of freedom defined in (4.6),
and the orthogonal decomposition of Pk−2(K )d in (3.13), we have

∥τ∥K ≤ c G(τ ) ≤ c

⎛⎜⎝h1/2
K

∑
e∈EK

∥g∥e + sup
p∈Pk−1(K )
∥∇ p∥K =1

⏐⏐⏐⏐∫
K

τ · ∇ p dx
⏐⏐⏐⏐
⎞⎟⎠

≤ c

⎛⎜⎜⎜⎝h1/2
K ∥g∥∂K + sup

p∈Pk−1(K )
∥∇ p∥K =1∫

K pdx=0

⏐⏐⏐⏐∫
∂K

gp ds −

∫
K

f p dx
⏐⏐⏐⏐
⎞⎟⎟⎟⎠ . (4.10)

For p ∈ Pk−1(K ) with
∫

K pdx = 0 and ∥∇ p∥K = 1, it follows from the Poincaré and the trace inequalities (cf. [22])
that

∥p∥∂K ≤ ch1/2
K ∥∇ p∥K = ch1/2

K and ∥p∥K ≤
1
π

hK ∥∇ p∥K =
1
π

hK ,

which, together with the Cauchy–Schwarz inequality, implies⏐⏐⏐⏐∫
∂K

gpds −

∫
K

f pdx
⏐⏐⏐⏐ ≤ c

(
h1/2

K ∥g∥∂K + hK ∥ f ∥K

)
.

Now (4.8) is a direct consequence of (4.10). This completes the proof of the lemma. □

4.1.2. Proof of local efficiency
We first simplify the expression of JK to reveal its relation to the jumps of normal components of σ T across e ∈ EK

as well as element residual, and then derive estimates for JK .
By the divergence theorem, JK in (3.8) can be expressed as

JK = |K |
−1

⎛⎝∫
K

(div σ T − f̄ )dx +

∑
e∈EK

∫
e

sK (ĝe − σ T |K · ne)ds

⎞⎠ . (4.11)

A simple calculation implies that

ĝe − σ T |K · ne =

⎧⎪⎪⎨⎪⎪⎩
−γ−

e

γ+
e + γ−

e
je, if K = K +

e ,

γ+
e

γ+
e + γ−

e
je, if K = K −

e

(4.12)

for e ∈ EI and ĝe − σ T · ne = − je for e ∈ EN ∪ ED .
To this end, for e ∈ EK , define

µK ,e :=

⎧⎨⎩
(A−1φe,φe)K ′

e

(A−1φe,φe)K + (A−1φe,φe)K ′
e

, if e ∈ EI ,

1, if e ∈ EN ∪ ED,

where K ′
e denotes the element adjacent to K that shares e with K . Since ∥φe∥K (or ∥φe∥K ′

e ) only depends on K (or
K ′

e), it can be computed that

µK ,e ≤ c
α−1

K ′
e

α−1
K + α−1

K ′
e

≤ c
(
αK

αe

)1/2

, ∀ e ∈ EK ∩ EI , (4.13)

where c may depend on κ , but is independent of α.
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Thus it follows immediately from (4.12) and (4.13) that

∥ĝe − σ T |K · ne∥e ≤ µK ,e∥ je∥e ≤ c
(
αK

αe

)1/2

∥ je∥e, ∀ e ∈ EK , (4.14)

which, together with (4.11) and the triangle and the Cauchy–Schwarz inequalities, implies that

∥JK ∥K ≤ ∥div σ T − f̄ ∥K + ch−1/2
K

∑
e∈EK

(
αK

αe

)1/2

∥ je∥e. (4.15)

Now we are able to prove the local efficiency of ξ̃K and of ξK .

Theorem 4.1. For the local indicators ξK and ξ̃K defined in (4.1) and (4.2), respectively, there exists a constant c
independent of αmax/αmin such that

ξ 2
K ≤ ξ̃ 2

K ≤ c

⎛⎝∥A1/2
∇(u − uT ) ∥

2
ωK

+

∑
K ′⊂ωK

osc( f, K ′)2
+

∑
e∈EK ∩EN

osc(gN , e)2

⎞⎠ ,
where ωK denotes the union of elements that share at least one edge (d = 2) or one face (d = 3) with K .

Proof. Since σ̃ T solves (3.3), the error flux σ̃∆
:= σ̃ T − σ T satisfies (4.7) with

f = f̄ − div σ T + JK and g = ĝe − σ T |K · ne on e ∈ EK .

Moreover, by the definition of σ̃ T in (3.14), the error flux satisfies the third equation in (4.6). Hence, it follows from
Lemma 4.1, the triangle inequality, (4.15), and (4.14) that

∥A−1/2(σ̃ T − σ T )∥K ≤ cα−1/2
K

⎛⎝hK ∥ f̄ − div σ T + JK ∥K + h1/2
K

∑
e∈EK

∥ĝe − σ T |K · ne∥e

⎞⎠
≤ c

⎛⎝hKα
−1/2
K ∥div σ T − f̄ ∥K +

∑
e∈EK

h1/2
K

√
αe

∥ je∥e

⎞⎠ ,
(4.16)

where c may depend on κ , but is independent of α.
Analogously, by recalling in (3.8) that f̂K − f̄ = JK and applying (4.15), we have

hKα
−1/2
K ∥ f̄ − f̂K ∥K ≤ c

⎛⎝hKα
−1/2
K ∥div σ T − f̄ ∥K +

∑
e∈EK

h1/2
K

√
αe

∥ je∥e

⎞⎠ . (4.17)

It is easily seen from the definition of ξ̃K in (4.2), the property in (4.4) and the estimates in (4.16) and (4.17) that

ξ 2
K ≤ ξ̃ 2

K ≤ c η2
R,K , (4.18)

with c independent of α. The local efficiency of ξK or ξ̃K now follows immediately from that of ηR,K (cf. [5–7]). This
completes the proof of the theorem. □

Remark 4.1. In terms of Lemma 4.1, different from the explicit construction in (4.6), the existence of a vector field
τ ∈ W(K ) that satisfies the divergence equation (4.7) and the stability estimate (4.8) was shown in [22, Lemma 3.1]
via an indirect argument, which requires solving a Poisson equation with Neumann boundary conditions. Hence no
explicit formula for such a vector field τ was given in [22, Lemma 3.1].

4.2. Equivalence between residual estimator ηR,K and hybrid estimators ξK , ξ̃K

It is shown in (4.18) that the local error indicators, ξK and ξ̃K , based on flux recovery can be bounded from above
by the residual-based indicator ηR,K with a constant independent of α. In this section, we prove the opposite direction,
thus establishing the equivalence between ξK , ξ̃K and ηR,K with constants independent of α.
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Theorem 4.2. Let ηR,K be the residual indicator in (4.5) and ξK and ξ̃K be the hybrid indicators in (4.1) and (4.2),
respectively. Then there exist positive constants C1 and C2 independent of α such that

C1ξK ≤ ηR,K ≤ C2

∑
K ′⊂ωK

ξK ′ and C1ξ̃K ≤ ηR,K ≤ C2

∑
K ′⊂ωK

ξ̃K ′ , (4.19)

where ωK is same as in Theorem 4.1.

Proof. The lower bounds in (4.19) were established in (4.18). To prove the validity of the upper bounds in (4.19), we
adopt the idea on the proof of local efficiency of ηR,K in [5]. To this end, let φe denote the edge/face bubble function
associated with edge (d = 2)/face (d = 3) e and φK the element bubble function associated with element K . For each
element K contained in ωe, by extending je to be a polynomial in K with stability estimate (cf. [6,23])

∥ je∥K ≤ Ch1/2
e ∥ je∥e, K ⊆ ωe,

we deduce from integration by parts, the Cauchy–Schwarz and the inverse inequalities that

∥ je ∥
2
e ≤ C

∫
e
φe j2

e ds = C
∑

K⊆ωe

(∫
K

(σ T − σ̂ T ) · ∇(φe je)dx +

∫
K
φe jediv(σ T − σ̂ T )dx

)
≤ C

∑
K⊆ωe

(
α

1/2
K h−1/2

e ∥A−1/2(σ T − σ̂ T )∥K + h1/2
e ∥div σ T − f̂K ∥K

)
∥ je∥e

and that

∥ f̂K − div σ T ∥
2
K ≤ C

∫
K
φK (divσ̂ T − divσ T )2dx

= −C
∫

K
∇(φK (divσ̂ T − divσ T )) · (σ̂ T − σ T )dx

≤ Cα1/2
K h−1

K ∥ f̂K − div σ T ∥K ∥A−1/2(σ̂ T − σ T )∥K ,

where C may depend on κ , but is independent of α. Hence we conclude that

hKα
−1/2
K ∥ f̂K − div σ T ∥K ≤ C∥A−1/2(σ̂ T − σ T )∥K ,

and

h1/2
e α−1/2

e ∥ je∥e ≤ C∥A−1/2(σ̂ T − σ T )∥ωe

with C independent α. Now the upper bounds in (4.19) are a direct consequence of the definition of ηR,K and ξK in
the respective (4.1) and (4.5), the triangle inequality, and (4.4). This completes the proof of the theorem. □

4.3. Reliability

Due to the equivalence result in Theorem 4.2, the robust global reliability of ξ or ξ̃ follows immediately from that
of the residual-based estimator ηR [6] under the monotonicity assumption (Hypothesis 2.7 in [5]) of α:

for any two different subdomains Ω i and Ω j that share at least one point, there exists a connected path passing
from Ω i to Ω j through adjacent subdomains such that α is monotone along this path.

In fact, the assumption can be further weakened to the quasi-monotonicity condition [7].

Theorem 4.3. Assume that α defined in (2.5) satisfies the monotonicity assumption. Then the estimators ξ and ξ̃
defined in (4.3) satisfy the following reliability bound:

∥A1/2
∇(u − uT )∥ ≤ c

(
ξ + osc( f, T ) + osc(gN , EN )

)
≤ c

(
ξ̃ + osc( f, T ) + osc(gN , EN )

)
with c independent of αmax/αmin.
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Fig. 1. Example 1: P1 - error - ηR .

5. Numerical experiments

We consider adaptive finite element for solving three examples in Section For all examples, Ω = (−1, 1)2 and the
initial mesh consists of 4 × 4 congruent squares, each of which is partitioned into two triangles connecting bottom-left
and top-right corners. Dörfler’s marking strategy [24] is used with θD = 0.5 as in [24,25]. Namely, in the refinement
of T , a minimal subset T̂ of T is constructed such that⎛⎝∑

K∈T̂

η2
K

⎞⎠1/2

≥ θD

(∑
K∈T

η2
K

)1/2

, (5.1)

where ηK denotes an error indicator on element K . The newest-vertex bisection [26] is used in the refinement. The
following notation will be used:

• exact error e := u − uT ;
• effectivity index is denoted by: eff-ind;
• degrees of freedom: DOFs;
• stopping criterion: ∥A1/2

∇e∥ ≤ ϵrel∥A1/2
∇u∥ where ϵrel is a prescribed tolerance.

Examples in Sections 5.1 and 5.2 are designed to illustrate the well-known fact that residual estimator usually
overestimates the true error by a large margin [8] and also to show the improved accuracy by using the proposed
hybrid estimator. In Section 5.3 we solve the numerical benchmark known as Kellogg’s example [25,27] to justify the
robustness and generality of the proposed estimator.

5.1. Example 1

To illustrate the effectivity of residual estimator, we first consider the Poisson equation with Dirichlet boundary
condition and the data is chosen such that the exact solution is a quadratic polynomial

u(x, y) = −x2
− y2.

The tolerance in the stopping criterion is chosen as ϵrel = 0.01. With P1 finite element approximation, the numerical
results are shown in Table 1 and Figs. 1–2. It can be seen from Table 1 that, for such a smooth problem, the residual
estimator ηR is much less accurate compared to the proposed hybrid estimator ξ .
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Fig. 2. Example 1: P1 - error - ξ .

Fig. 3. Example 2: P2 - error - ηR .

Table 1
Example 1 — quadratic solution and P1 discretization (ϵrel = 0.01).

Estimator DOFs ∥A1/2
∇e∥/∥A1/2

∇u∥ eff-ind

ηR 7926 9.6E−3 5.35
ξ 8520 9.4E−3 1.11

5.2. Example 2

We consider again the Poisson equation as in Section 5.1, where the exact solution is now a quartic polynomial

u(x, y) = −(x2
− 1)(y2

− 1).

The tolerance is chosen as ϵrel = 0.001 and P2 discretization is used. The numerical results are presented in Table 2
and Figs. 3–4, from which we see that the residual estimator ηR overestimates the true error by a factor of 9.87, while
the proposed estimator ξ remains accurate.
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Fig. 4. Example 2: P2 - erro - ξ .

Fig. 5. Example 3: P1 - mesh - ηR .

Table 2
Example 2 — quartic solution and P2 discretization (ϵrel = 0.001).

Estimator DOFs ∥A1/2
∇e∥/∥A1/2

∇u∥ eff-ind

ηR 3037 9.9E−4 9.87
ξ 3193 9.5E−4 2.36

5.3. Example 3—Kellogg’s example

We consider solving the Kellogg’s example [27]. The parameters are same as in [25] and are collected here for
completeness. The domain is Ω = (−1, 1)2 and the diffusion coefficient is chosen as A = α1 I in the first and third
quadrants, and A = α2 I in the second and fourth quadrants, where

α1 ≈ 161.4476387975881 and α2 = 1.
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Fig. 6. Example 3: P1 - mesh - ξ .

Fig. 7. Example 3: P1 - error - ηR .

For f = 0, an exact solution in polar coordinate is given by u(r, θ) = rβψ(θ ) with

ψ(θ ) :=

⎧⎪⎪⎨⎪⎪⎩
cos((π/2 − τ )β) cos((θ − π/4)β), if 0 ≤ θ ≤ π/2,
cos(πβ/4) cos((θ − π + τ )β), if π/2 ≤ θ ≤ π,

cos(τβ) cos((θ − 5π/4)β), if π ≤ θ ≤ 3π/2,
cos((π/2 − τ )β) cos((θ − 3π/2 − τ )β), if 0 ≤ θ ≤ π/2,

β = 0.1 and τ ≈ 14.92256510455152.

The regularity of u is quite low as u ̸∈ H 1.1(Ω ).
We perform numerical tests by using both P1 and P2 conforming elements. For Pk(k = 1, 2) element and RTk−1

flux recovery, the recovered fluxes in Section 3.3 are identical, i.e., σ̂ T = σ̃ T , consequently, ξK = ξ̃K . The relative
error tolerance is chosen as ϵrel = 0.05.

The numerical results are collected in Table 3 and Figs. 5–12.
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Fig. 8. Example 3: P1 - error - ξ .

Fig. 9. Example 3: P2 - mesh - ηR .

Table 3
Example 3 — Kellogg’s Example with P1 and P2 discretizations (ϵrel =

0.05).

uT Estimator DOFs ∥A1/2
∇e∥/∥A1/2

∇u∥ eff-ind

P1
ηR 35707 4.9E−2 1.96
ξ 29072 4.8E−2 1.35

P2
ηR 5133 4.9E−2 2.48
ξ 4429 4.9E−2 1.50

From the meshes in Figs. 5–6 and Figs. 9–10, we see that both estimators are robust with respect to the large jump
of the diffusion coefficient. Moreover, optimal convergence rates are observed from Figs. 7–8 for P1 element and from
Figs. 11–12 for P2 element. From Table 3, Figs. 7–8 and Figs. 11–12, we observe that, although the two estimators
are proved to be equivalent in Section 4.2, ξ (or ξ̃ ) is more accurate than ηR .
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Fig. 10. Example 3: P2 - mesh - ξ .

Fig. 11. Example 3: P2 - error - ηR .

Next we present numerical results to demonstrate that, for the estimator ξ (as well as ξ̃ ), the term ξ f defined below,
which measures the divergence error between recovered flux and exact flux (actually JK in (3.8)), is not a higher order
term.

ξ f : =

(∑
K∈T

h2
Kα

−1
K ∥ f̄ − f̂K ∥

2
K

)1/2

=

(∑
K∈T

h2
Kα

−1
K ∥JK ∥

2
K

)1/2

=

(∑
K∈T

h2
Kα

−1
K |K |JK |

2

)1/2

.

It can be seen from Figs. 13 and 14 that ξ f is of the same order as the true error.
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Fig. 12. Example 3: P2 - error - ξ .

Fig. 13. Example 3: P1 - error, ξ and ξ f .

Remark 5.1. When computing ĝe in (3.4), we use the weight λe defined in (3.16) for the ease of implementation.

5.4. Loss of reliability for ZZ-type estimators

This section aims to show that all ZZ-type estimators, without incorporating f , are in general not reliable on
coarse meshes. A counter example is constructed below, where all estimators solely computed from the finite element
solution vanish everywhere while the true error is not zero.

Let Ω be the unit square. Consider a triangulation T of Ω as illustrated in Fig. 15, where the top-left element is
denoted by K1.

Consider the P1 conforming finite element discretization associated with mesh T of the following homogeneous
Dirichlet problem:{

∆u = f in Ω ,

u = 0 on ∂Ω ,
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Fig. 14. Example 3: P2 - error, ξ and ξ f .

Fig. 15. Initial mesh T and element K1.

where f = 2018 in K1 and f = 0 in Ω \ K1. Note that for any v ∈ VT , v|K1 = 0, which implies that

( f, v) = 0, ∀ v ∈ VT .

Therefore, the finite element solution is uT = 0 in Ω . All ZZ-type estimators computed solely from uT are equal
to zero. On the other hand, the true error in energy norm is ∥∇u∥ > 0. Hence those estimators are not reliable
and consequently can not lead to a convergent adaptive finite element algorithm. In fact, based on Dörfler’s marking
strategy as before, since those estimators vanish everywhere, it suffices to choose an arbitrary element to form T̂ and
(5.1) automatically holds true. With the initial mesh T in Fig. 15, if the element in T̂ is chosen as the bottom-left
element on the horizontal boundary, then the mesh after 100 refinement steps based on unreliable estimators is shown
in Fig. 16, where the numerical solution (as well as the resulting estimator) is always zero and convergence can never
be achieved.
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Fig. 16. The mesh after 100 refinement steps with unreliable estimators.

Remark 5.2. Note that there is no oscillation error in f in the counter example above, so the MNS marking strategy
proposed in [25] coincides with Dörfler’s marking strategy. Also, it is easy to see that such a counter example can
always be constructed by choosing f to be orthogonal to VT no matter the mesh T is considered coarse or fine.
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