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Highlights

• Counterexamples are presented to demonstrate inefficiency of the ZZ indicator.
• Efficient new estimators of the ZZ type are analyzed and applicable to diffusion problems with full tensor.
• Computational costs of the new and original ZZ estimators are comparable.

Abstract

In Cai and Zhang (2009), we introduced and analyzed an improved Zienkiewicz–Zhu (ZZ) estimator for the conforming linear
finite element approximation to elliptic interface problems. The estimator is based on the piecewise “constant” flux recovery in the
H(div;Ω) conforming finite element space. This paper extends the results of Cai and Zhang (2009) to diffusion problems with full
diffusion tensor and to the flux recovery both in piecewise constant and piecewise linear H(div) space.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

A posteriori error estimation for finite element methods has been extensively studied for the past four decades (see,
e.g., books by Ainsworth and Oden [1], Babuška and Strouboulis [2], and Verfürth [3] and references therein). Due to
easy implementation, generality, and ability to produce quite accurate estimation, the Zienkiewicz–Zhu (ZZ) recovery-
based error estimator [4] has been widely adapted in engineering practice and has been the subject of mathematical
study (e.g., [5–18]). By first recovering a gradient (flux) in the conforming C0 linear vector finite element space from
the numerical gradient (flux), the ZZ estimator is defined as the L2 norm of the difference between the recovered and
the numerical gradients/fluxes.
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Despite popularity of the ZZ estimator, it is also well known (see, e.g., [19,20]) that adaptive mesh refinement
(AMR) algorithms using the ZZ estimator are not efficient to reduce global error for non-smooth problems, e.g., in-
terface problems. This is because they over-refine regions where there are only small errors. By exploring the math-
ematical structure of the underlying problem and the characteristics of finite element approximations, in [21,22] we
identified that this failure of the ZZ estimator is caused by using a continuous function (the recovered gradient (flux))
to approximate a discontinuous one (the true gradient (flux)) in the recovery procedure. Therefore, to fix this structural
failure, we should recover the gradient (flux) in proper finite element spaces. More specifically, for the conforming
linear finite element approximation to the interface problem we recovered the flux in the H(div;Ω) conforming finite
element space. It was shown in [21] that the resulting implicit and explicit error estimators are not only reliable but
also efficient. Moreover, the estimators are robust with respect to the jump of the coefficients.

In [21], the implicit error estimator requires solution of a global L2 minimization problem, and the explicit error es-
timator uses a simple edge average. This averaging approach of the explicit estimator is limited to the Raviart–Thomas
(RT ) [23] element of the lowest order, i.e., the piecewise “constant” vector. In this paper, we introduce a general ap-
proach of constructing explicit flux recoveries using either the piecewise “constant” vector or the piecewise linear
vector (the Brezzi–Douglas–Marini (BDM) [23] element of the lowest order) for the diffusion problem with the full
diffusion coefficient tensor. With the recovered fluxes, the improved ZZ estimators are defined as a weighted L2

norm of the difference between the recovered and the numerical fluxes. These estimators are theoretically shown to be
locally efficient and globally reliable. Moreover, when the diffusion coefficient is piecewise constant scalar and its dis-
tribution is locally quasi-monotone, these estimators are robust with respect to the size of jumps. For a benchmark test
problem, whose coefficient is not locally quasi-monotone, numerical results also show the robustness of the estimators.

A related, sophisticated a posteriori error estimator is based on recovering an equilibrated flux over vertex patches
(see, e.g., [24–26]). Estimators of this type are reliable on coarse meshes and, hence, perfect for error control.
Nevertheless, they are not asymptotically exact.

The paper is organized as follows. Section 2 describes the diffusion problem, variational form, and conforming
finite element approximation. Section 3 describes the a posteriori error estimators of the ZZ type and two counter-
examples. Two explicit flux recoveries and their corresponding improved ZZ estimators are introduced in Section 4.
Efficiency and reliability of those estimators are established in Section 5. Section 6 is devoted to explicit formulas of
the recovered fluxes, the indicators, and the estimators. Finally, Section 7 presents numerical results on the Kellogg’s
benchmark test problem.

2. Finite element approximation to diffusion problem

Let Ω be a bounded polygonal domain in ℜ
d with d = 2 or 3, with boundary ∂Ω = Γ D ∪ Γ N , ΓD ∩ ΓN = ∅, and

measd−1 (ΓD ) ≠ 0, and let n be the outward unit vector normal to the boundary. Consider diffusion equation

−∇ · (A(x)∇u) = f in Ω (2.1)

with boundary conditions

−A∇u · n = gN on ΓN and u = gD on ΓD , (2.2)

where the ∇· and ∇ are the divergence and gradient operators, respectively, and f ∈ L2(Ω). In this paper, we consider
only simplicial elements. Let T = {K } be a regular triangulation of the domain Ω , and denote by hK the diameter of
the element K . For simplicity of presentation, assume that gD and gN are piecewise affine functions and constants,
respectively, and that A is a piecewise constant matrix that is symmetric, positive definite.

Let

H1
g,D

(Ω) = {v ∈ H1(Ω) : v = gD on ΓD } and H1
D
(Ω) = H1

0,D
(Ω).

Then the corresponding variational problem is to find u ∈ H1
g,D

(Ω) such that

a(u, v) ≡ (A∇u, ∇v) = ( f, v) − (gN , v)ΓN
≡ f (v) ∀ v ∈ H1

D
(Ω), (2.3)

where (·, ·)ω is the L2 inner product on the domain ω. The subscript ω is omitted when ω = Ω .
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For each K ∈ T , let Pk(K ) be the space of polynomials of degree less than or equal to k. Denote the linear
conforming finite element space [27] associated with the triangulation T by

S = {v ∈ H1(Ω) : v|K ∈ P1(K ) ∀ K ∈ T }.

Let

Sg,D = {v ∈ S : v = gD on ΓD } and S D = S0,D .

Then the conforming finite element approximation is to seek uT ∈ Sg,D such that

(A∇uT , ∇v) = f (v) ∀ v ∈ S D . (2.4)

3. ZZ error estimator and counterexamples

Let ũT ∈ Sg,D be an approximation to the finite element solution uT ∈ Sg,D of (2.4). Denote the numerical
gradient and the numerical flux by

ρ̃T = ∇ũT and σ̃ T = −A ∇ũT , (3.1)

respectively, which are piecewise constant vectors in ℜ
d with respect to the triangulation T . It is common in

engineering practice to smooth the piecewise constant gradient or flux in a post-process so that they are continuous.
More precisely, denote by N the set of all vertices of the triangulation T . For each vertex z ∈ N , denote by ωz the
union of elements having z as the common vertex. The recovered (smoothed) gradient or flux are defined as follows:
for τ = ρ̃T or σ̃ T

G(τ ) ∈ S d
⊂ C0(Ω)d with nodal values G(τ )(z) =

1
|ωz |


ωz

τ dx ∀ z ∈ N , (3.2)

where |ωz | = measd(ωz). There are many post-processing, recovery techniques (see survey article [16] by Zhang and
references therein). With the recovered gradient (flux), the ZZ error indicator and estimator are defined as follows:

ξZ Z ,K = ∥G(τ ) − τ∥0,K ∀ K ∈ T and ξZ Z = ∥G(τ ) − τ∥0,Ω

for τ = ρ̃T or σ̃ T , respectively.
Despite many attractive features of the ZZ error estimator, it is well known (see Figs. 3 and 4 in Section 7 that

adaptive mesh refinement (AMR) algorithms using the above ZZ estimator are not efficient to reduce global error for
interface problems. In this section, we demonstrate this failure of the ZZ estimator by two counterexamples for which
the finite element solution is exact while the ZZ indicators along interface could be arbitrarily large.

The first example is a one-dimensional interface problem defined on the domain Ω = (0, 1) with the Dirichlet
boundary condition:

u(0) = 0 and u(1) = (k + 1)/2

for an arbitrary constant k > 1 and with piecewise constant diffusion coefficient

A = 1 in (0, 1/2) and A = k > 0 in (1/2, 1).

The exact solution and its derivative of this example are piecewise linear and piecewise constant functions,
respectively, depicted in Figs. 1 and 2 and given by

u =


k x x ∈ (0, 1/2 ],

x +
k − 1

2
x ∈ (1/2, 1),

and u′
=


k x ∈ (0, 1/2),

1 x ∈ (1/2, 1).

For any triangulation T with x = 1/2 as one of its vertices, the conforming linear finite element approximation
is identical to the exact solution: uT = u, and hence the true error equals to zero. Without loss of generality, assume
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Fig. 1. Solution u = uT .

Fig. 2. u′

T (x) and G(u′

T ).

that the size of two interface elements is h. Then the recovered gradient is depicted in Fig. 2 and its value at x = 1/2
is (k + 1)/2. A simple calculation yields the ZZ error indicator:

ξZZ ,K = ∥G(u′

T ) − u′

T ∥0,K =


1

2
√

3
(k − 1) h1/2, x ∈ (1/2 − h, 1/2),

1

2
√

3
(k − 1) h1/2, x ∈ (1/2, 1/2 + h),

0, otherwise.

Hence, no matter how small the mesh size h is, the ZZ indicators at two interface elements could be arbitrarily
large.

For this simple one-dimensional example, to overcome the inefficiency of the estimator, one may use the ZZ
estimator based on the flux. However, this idea could not be extended to two or three dimensions. To see this, consider
the second example defined on the domain Ω = (−1, 1)2 with scalar piecewise constant diffusion coefficient

A = k I for y > 0 and A = I for y < 0,

where k > 1 is an arbitrary constant. Choose proper Dirichlet boundary data such that the exact solution of (2.1) is
piecewise linear function given by

u =


x + y if y > 0,

x + k y if y < 0.
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The conforming linear finite element approximation on any triangulation aligned with the interface y = 0 is identical
to the exact solution, and hence the true error vanishes. Since the exact gradient and flux

∇u =


(1, 1)t , for y > 0,

(1, k)t , for y < 0
and σ = −A∇u =


(k, k)t , for y > 0,

(1, k)t , for y < 0

are not continuously across the interface, similar calculation to the first example yields that the ZZ error indicators on
the interface elements based on continuous gradient or flux recovery could be arbitrarily large no matter how small
the mesh sizes of the interface elements are.

4. Improved ZZ estimators

The second example of the previous section shows that the gradient and the flux of the exact solution of (2.1) are
not continuously across interfaces. This means that inefficiency of the ZZ estimator is caused by using continuous
functions (the recovered gradient or flux) to approximate discontinuous functions (the true gradient or flux). In this
section, we introduce improved ZZ estimator that is efficient.

To this end, let

H(div;Ω) = {τ ∈ L2(Ω)d
: ∇ · τ ∈ L2(Ω)} ⊄ H1(Ω)d

with the norm ∥τ∥H(div;Ω) =


∥τ∥

2
0,Ω + ∥∇ · τ∥

2
0,Ω

1/2
and let

Hg,N (div;Ω)= {τ ∈ H(div;Ω) : τ · n|ΓN
= gN }.

Denote the H(div; Ω) conforming Raviart–Thomas (RT ) and Brezzi–Douglas–Marini (BDM) spaces [23] of the
lowest order by

RT = {τ ∈ H(div; Ω) : τ |K ∈ RT (K ) ∀ K ∈ T }

and BDM = {τ ∈ H(div; Ω) : τ |K ∈ BDM(K ) ∀ K ∈ T },

respectively, where RT (K ) = P0(K )d
+ (x1, . . . , xd)t P0(K ) and BDM(K ) = P1(K )d . Let

RTg,N = RT ∩ Hg,N (div;Ω) and BDMg,N = BDM ∩ Hg,N (div;Ω).

Let u ∈ H1(Ω) be the exact solution of (2.1), it is well known that the tangential components of the gradient and
the normal component of the flux are continuous. Mathematically, we have

“u ∈ H1(Ω) H⇒ ∇u ∈ H(curl;Ω)” and σ = −A∇u ∈ H(div;Ω),

where H(curl;Ω) ⊄ H1(Ω)d is the collection of vector-valued functions that are square integrable and whose curl
are also square integrable. This suggests that proper finite element spaces for recovering the gradient and the flux are
the respective H(curl;Ω) and H(div;Ω) conforming finite element spaces.

For the conforming finite element approximation, the numerical gradient ρ̃T is already in H(curl;Ω) and, hence,
the resulting improved ZZ estimator based on the gradient recovery is identical to zero. Since the numerical flux
σ̃ T is not in Hg,N (div;Ω), the improved ZZ estimators introduced in [21] are based on either explicit or implicit
flux recoveries in RTg,N and BDMg,N . The explicit recovery is limited to the scalar diffusion coefficient and the RT
element. The implicit recovery requires to solve the following global L2 minimization problem: find σ̄ T ∈ V such that

∥A−1/2(σ̄ T − σ̃ T )∥0,Ω = min
τ∈V

∥A−1/2(τ − σ̃ T )∥0,Ω , (4.1)

where V = RTg,N or BDMg,N . With the recovered flux σ̄ T ∈ V , the improved ZZ estimator introduced in [21] is
given by

ξ (σ̄ T ) = ∥A−1/2(σ̄ T − σ̃ T )∥0,Ω . (4.2)

Even though the solution of (4.1) may be computed efficiently by a simple iterative solver, in the remainder of
this section, we derive two new explicit and efficient flux recoveries applicable to the problem with the full diffusion
tensor based on the respective RT and BDM elements of the lowest order.
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Here, we introduce some notations. Denote the set of all edges (faces) of the triangulation by E := E I ∪ E D ∪ E N ,

where E I is the set of all interior element edges (faces), and E D and E N are the sets of all boundary edges (faces)
belonging to the respective ΓD and ΓN . For each F ∈ E , denote by nF the unit vector normal to F . For each F ∈ E I ,
let K −

F
and K +

F
be two elements sharing the common edge (face) F such that the unit outward normal vector of K −

F

coincides with nF ; and let x−

F and x+

F be the vertex of K +

F and K −

F opposite to F , respectively. When F ∈ E D ∪ E N ,
nF is the unit outward vector normal to ∂Ω and denote by K −

F
the element having the edge (face) F and by x−

F the
vertex in K −

F opposite to F .
Let δ be the Kronecker delta function. For each F ∈ E , denote by φ

F
the global nodal basis function of RT

associated with F , i.e.,
F ′


φ

F
· nF

′


ds = δ

F F ′ , ∀ F ′
∈ E ; (4.3)

denote by ψ
1,F

, . . . , ψ
d,F

global basis functions of BDM satisfying

ψ
1,F

+ · · · + ψ
d,F

= φ
F
, ∀ F ∈ E ; (4.4)

and let

RTF = span{φ
F
} and BDMF = span{ψ

1,F
, . . . , ψ

d,F
}.

Since gN is piecewise constant, for any τ ∈ RTg,N or BDMg,N , we have that

τ =


F∈ E I ∪ E D

τ F +


F∈ E N

gN ,F |F |φ
F

with τ F ∈ RTF or BDMF , (4.5)

where gN ,F = gN |F and |F | = measd−1 (F).
For any K ∈ T , restriction of the numerical flux σ̃ T on K is a constant vector and has the following representation

in RT (K ) (see Lemma 4.4 of [21]):

σ̃ T |K =


F⊂∂K

σ̃F,K |F |φ
F
,

where σ̃F,K =

σ̃ T |K · nF


F

is the normal component of σ̃ T |K on F . On each interior edge (face) F ∈ E I , the normal
component of the numerical flux has two values

σ̃−

F
= σ̃

F,K−

F
and σ̃+

F
= σ̃

F,K+

F
.

Denote by φ−

F
and φ+

F
the restriction of φ

F
on K −

F
and K +

F
, respectively. Then the numerical flux also has the following

edge (face) representation:

σ̃ T =


F∈E

σ̃ F with σ̃ F =


σ̃−

F
|F |φ−

F
+ σ̃+

F
|F |φ+

F
, ∀ F ∈ E I ,

σ̃−

F
|F |φ−

F
, ∀ F ∈ E D ∪ E N .

(4.6)

For any τ ∈ RTg,N or BDMg,N , (4.5) and (4.6) give

τ − σ̃ T =


F∈E I


τ F − σ̃ F


+


F∈E D


τ F − σ̃−

F
|F |φ−

F


+


F∈E N


gN ,F − σ̃−

F


|F |φ−

F
,

which, together with the triangle inequality and the choice of τ F = σ̃−

F
|F |φ−

F
for all F ∈ E D , implies

ξ̄ = min
τ∈V

∥A−1/2 τ − σ̃ T


∥0,Ω

≤


F∈E I

min
τ F ∈V F

∥A−1/2 τ F − σ̃ F


∥0,ωF

+


F∈E N

∥A−1/2 gN ,F − σ̃−

F


|F |φ−

F
∥0,K −

F
, (4.7)

where ωF is the union of elements sharing the edge (face) F for all F ∈ E , V = RTg,N or BDMg,N and V F = RTF or
BDMF .
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For each F ∈ E I , let σ̂ F ∈ V F = RTF or BDMF be the solution of the following local minimization problem:

∥A−1/2 σ̂ F − σ̃ F


∥0,ωF

= min
τ∈V F

∥A−1/2 τ − σ̃ F


∥0,ωF

, (4.8)

by (4.7), it is then natural to introduce the following edge (face) based estimator and indicators

ξ̂2
=


F∈E I ∪ E N

ξ2
F

with ξF =


∥A−1/2 σ̂ F − σ̃ F


∥0,ωF

F ∈ E I ,

∥A−1/2 gN ,F − σ̃−

F


|F |φ−

F
∥0,K −

F
F ∈ E N ,

(4.9)

which satisfies

ξ̄ ≤ ξ̂ . (4.10)

To introduce the element based estimator, define the recovered flux σ̂ T ∈ RTg,N or BDMg,N as follows:

σ̂ T =


F∈E I

σ̂ F +


F∈E D

σ̃−

F
|F |φ

F
+


F∈E N

gN ,F |F |φ
F
. (4.11)

Then the element based indicators and estimator are given by

ξK = ∥A−1/2(σ̂ T − σ̃ T )∥0,K , ∀ K ∈ T and ξ = ∥A−1/2(σ̂ T − σ̃ T )∥0,Ω . (4.12)

The minimization problem in (4.8) is equivalent to the following variational problem: find σ̂ F ∈ V F such that
A−1 σ̂ F , τ


ωF

=


A−1 σ̃ F , τ


ωF

∀ τ ∈ V F . (4.13)

The local problem in (4.13) has only one unknown if V F = RTF and d unknowns if V F = BDMF . The explicit
formula of the solution σ̂ F will be given in Section 6.

5. Efficiency and reliability

This section establishes efficiency and reliability bounds of the indicators and estimators defined in (4.9) and (4.12),
respectively, for the diffusion problem with the coefficient matrix A being locally similar to the identity matrix.

To this end, for each K ∈ T , denote by λmax,K and λmin,K the maximal and minimal eigenvalues of AK = A

K ,

respectively. Let

λmax = max
K ∈ T

λmax,K and λmin = min
K ∈ T

λmin,K .

Assume that each local matrix AK is similar to the identity matrix in the sense that its maximal and minimal
eigenvalues are almost of the same size, i.e., there exists a moderate size constant κ > 0 such that

λmax,K

λmin,K
≤ κ, ∀ K ∈ T . (5.1)

Nevertheless, the ratio of the global maximal and minimal eigenvalues, λmax

λmin, could be very large. In order to

show that the reliability constant is independent of the ratio, we assume that the distribution of λmin(x) is quasi-
monotone (see [28]).

Let ΓI be the set of all interfaces of the diffusion coefficient that are assumed to be aligned with element interfaces,
and denote by fz =

1
measd (ωz)


ωz

f dx the average of f over ωz . Let

H f =




z∈N \(Γ I ∪Γ D)

measd(ωz)

λmin,ωz

∥ f − fz∥
2
0,ωz

+


z∈N ∩(Γ I ∪Γ D)


K⊂ωz

h2
K

λmin,K
∥ f ∥

2
0,K


1/2

.

Note that A is a constant matrix in ωz if z ∈ N \ (Γ I ∪ Γ D).
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Remark 5.1. For various lower order finite element approximations, the first term in H f is of higher order than ηF

(defined below in (5.5)) for f ∈ L2(Ω) and so is the second term for f ∈ L p(Ω) with p > 2 (see [29]).

Theorem 5.2 (Global Reliability). Assume that the distribution of λmin,K is quasi-monotone. Then the error
estimators ξ̂ and ξ defined in (4.9) and (4.12), respectively, satisfies the following global reliability bound:

∥A1/2
∇(u − uT )∥0,Ω ≤ C


ξ + H f


, (5.2)

and

∥A1/2
∇(u − uT )∥0,Ω ≤ C


ξ̂ + H f


, (5.3)

where the constant C depends on the shape regularity of T and κ , but not on λmax

λmin.

Proof. It follows from (4.6), (4.11), and Young’s inequality that

ξ2
=

 
F∈E I ∪E N

A−1/2(σ̂ F − σ̃ F )


2

0,Ω

=


F∈E I ∪E N

 
F ′⊂∂K −

F


A−1(σ̂ F − σ̃ F ), (σ̂

F ′ − σ̃
F ′ )


K −

F

+


F ′⊂∂K +

F


A−1(σ̂ F − σ̃ F ), (σ̂

F ′ − σ̃
F ′ )


K +

F


≤


F∈E I ∪ E N


d

2
+ 1


∥A1/2(σ̂ F − σ̃ F )∥2

0, ωF
=


d

2
+ 1


ξ̂2.

Now, (5.3) is a consequence of (5.2). To prove the validity of (5.2), note that for any K ∈ T and for any vector field
τ , we have that

λ
1/2
min,K ∥τ∥0,K ≤ ∥A1/2 τ∥0,K ≤ λ

1/2
max,K ∥τ∥0,K ,

and that

λ
−1/2
max,K ∥τ∥0,K ≤ ∥A−1/2 τ∥0,K ≤ λ

−1/2
min,K ∥τ∥0,K . (5.4)

With the above inequalities, (5.2) may be proved in a similar fashion as in [21,7] with the constant C also depending
on κ . �

In the remaining part of this section, we will establish the efficiency of the indicators ξF and ξK given in (4.9)
and (4.12), respectively, by proving that the indicators ξF and ξK are bounded above by the classical residual
based indicators of the flux jump on edges (faces) given in (5.5), which is well known to be efficient for interface
problems [30], (i.e., A = α(x) I with α(x) being a piecewise constant function). More specifically, Petzoldt (see (5.7)
in [28]) proved that the edge (face) flux indicator

ηF =


|F | |σ̃−

F
− σ̃+

F
|


α+
F

+ α−
F
, F ∈ E I ,

|F | |σ̃−

F
− gN |


α−

F
, F ∈ E N ,

0, F ∈ E D,

(5.5)

where α±

F = αK ±

F
, is locally efficient without assumption on the distribution of the coefficient α. More specifically,

there exists a constant C > 0 independent of α and the mesh size such that

η2
F

≤ C


∥α−1/2

∇(u − uT )∥2
0,ωF

+


K ⊂ ωF

h2
K

αK

∥ f − fT ∥
2
0,K


(5.6)

where fT is the L2 projection of f onto the space of piecewise constant with respect to T .
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Remark 5.3. For the diffusion problem, define the edge (face) estimator ηF according to (5.5) with α±

F = λmin,K ±

F
,

then the local efficiency in (5.6) holds with α = A and the constant C depending on κ .

Theorem 5.4 (Local Efficiency). The local edge (face) and element indicators defined in (4.9) and (4.12),
respectively, are efficient, i.e., there exists a constant C > 0 depending only on the shape regularity of T and κ

such that

ξbdm
F

≤ ξ r t
F

≤ C

∥A1/2
∇eT ∥0,ωF

+

 
K ′⊂ωF

h2
K ′

α
K ′

∥ f − fT ∥
2
0,K ′

1/2
 , ∀ F ∈ E (5.7)

and that

ξbdm
K

, ξ r t
K

≤ C

∥A1/2
∇eT ∥0,ωK

+

 
K ′⊂ωK

h2
K ′

α
K ′

∥ f − fT ∥
2
0,K ′

1/2
 , ∀ K ∈ T , (5.8)

where ωK is the union of all elements that shares at least one edge (face) with K .

Proof. It follows from (4.6), (4.11), and the triangle inequality that

ξK = ∥A−1/2(σ̂ T − σ̃ T )∥0,K ≤


F⊂∂K

∥A−1/2(σ̂ F − σ̃ F )∥0,K ≤


F⊂∂K

ξF , ∀ K ∈ T .

Hence, (5.8) is a direct consequence of (5.7).
To prove the validity of (5.7), first note that the first inequality is a direct consequence of the minimization problem

in (4.8) and the fact that V r t
F

⊂ V bdm
F

. To prove the second inequality in (5.7), without loss of generality, assume that
F ∈ E I and that λmin,K −

F
≥ λmin,K +

F
. By (5.4) and the fact that ∥φF∥0,K −

F
≤ C with constant C > 0 depending only

on the shape regularity of T , we have

ξ r t
F

= min
τ∈RTF

∥A−1/2(τ − σ̃ F )∥0,ωF
≤ ∥A−1/2(σ̃+

F
φ

F
− σ̃ F )∥0,ωF

= ∥(σ̃+

F
− σ̃−

F
)A−1/2

|F |φ
F
∥0,K −

F
≤
σ̃+

F
− σ̃−

F

 λ
−1/2
min,K −

F
|F |∥φ

F
∥0,K −

F

≤ C |F |
σ̃+

F
− σ̃−

F

 λmin,K −

F
+ λmin,K +

F

−1/2
.

Combining with Remark 5.3 implies the second inequality in (5.7) and, hence, (5.8). This completes the proof of the
theorem. �

6. Explicit formulas

This section presents explicit formulas of the recovered fluxes defined in (4.11) (see (6.1) and (6.5)) and the
corresponding indicators and estimators defined in (4.9) and (4.12), respectively. In particular, the explicit formulas
for the indicators and, hence, the estimators are written in terms of the current approximation uT and geometrical
information of elements. For simplicity, we only consider the two-dimensional case.

For each edge F ∈ E , denote by sF and eF the globally fixed initial and terminal points of F , respectively, such that
sF − eF = |F | tF with tF = (t1,F , t2,F )t being a unit vector tangent to F ; by nF = (t2,F , −t1,F ) a unit vector normal to
F ; and by x±

F
the opposite vertices of F in K ±

F
, respectively.

Denote by λsF
and λeF

the nodal basis functions of the continuous linear element associated with vertices sF and eF

of N , respectively. For any v ∈ H1(Ω), denote the formal adjoint of the curl operator by ∇
⊥v = (∂v/∂y, −∂v/∂x)t .

For the RT space of the lowest index, the nodal basis function associated with F ∈ E is given by

φ
F

=


λsF

∇
⊥λeF

− λeF
∇

⊥λsF


.

For the BDM space of the lowest index, two basis functions associated with the edge F ∈ E are given by

ψ s,F
= λsF

∇
⊥λeF

and ψe,F
= −λeF

∇
⊥λsF

,
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respectively, which satisfy
ψ

s,F
· nF

′

 
F ′

= λsF
δ

F F ′ /|F
′
| and


ψ

e,F
· nF

′

 
F ′

= λeF
δ

F F ′ /|F
′
|

for any F ′
∈ E . It is easy to check that (4.3) and (4.4) hold. This choice of the basis functions for the BDM leads

to a recovered flux whose normal components are weighted averages of the numerical flux (see (6.6)). For a detailed
discussion and implementation of these basis functions, see [31], and [32] that employs the iFEM package of [33].

6.1. Indicator and estimator based on RT

For all F ∈ E I , let

γ ±

F
=


A−1φ

F
, φ

F


K ±

F

and aF =
γ −

F

γ −
F

+ γ +
F

.

Using the basis function φ
F

defined above, a straightforward calculation gives

γ ±

F =
1

48|K ±

F |

 
F ′⊂∂K ±

F

A−1/2(x±

F ′
− x±

F
)

2
+

A−1/2

 
F ′⊂∂K ±

F

x±

F ′
− 3x±

F


2
 ,

where ∥ · ∥ is the standard Euclidean norm in R2. Solving the local problem in (4.13) with V F = RTF gives the
following recovered flux in RTg,N :

σ̂
r t

T =


F∈E I

σ̂ r t
F

|F |φ
F

+


F∈E D

σ̃−

F
|F |φ−

F
+


F∈E N

gN ,F |F |φ−

F
(6.1)

with the normal component of the recovered flux, σ̂ r t
F

, on each edge F ∈ E I given by the following weighted average:

σ̂ r t
F

= aF σ̃−

F
+

1 − aF


σ̃+

F
. (6.2)

The edge indicator ξ r t
F

has the following explicit formula:

ξ r t
F

=


|σ̃−

F
− σ̃+

F
| |F |


(1 − aF )2γ −

F + a2
F
γ +

F

1/2
, F ∈ E I ,

0, F ∈ E D,

|σ̃−

F
− gN ,F | |F |


γ −

F
, F ∈ E N .

Next, we introduce explicit formula of the element indicator ξ r t
K

in terms of the current approximation uT and
geometrical information of elements. To this end, for any K ∈ T , denote the sign function by

sign
K
(F) =


1 if nF = nK |F ,

−1 if nF = −nK |F ,
∀ F ⊂ ∂K ,

where nK is the unit outward vector normal to K , and let

R
F F ′ =

 
F ′′⊂∂K

x
F ′′ − 3x

F ′

t

A−1
K

 
F ′′⊂∂K

x
F ′′ − 3xF


+


F ′′⊂∂K

(x
F ′′ − x

F ′ )
t A−1

K
(x

F ′′ − xF ),

T
F F ′ = nt

F ′


3

F ′′⊂∂K

x
F ′′ − 3xF


, and S

F F ′ = nt
F ′

AK nF .

For each element K ∈ T , the indicator ξ r t
K

is given by

ξ r t
K

=


A−1σ̂

r t
T , σ̂

r t
T


K

+ 2

σ̂

r t
T , ∇uT


K

+


A∇uT , ∇uT


K

1/2

(6.3)
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with explicit formula for each term as follows
A−1σ̂

r t
T , σ̂

r t
T


K

=
1

48 |K |


F⊂∂K


F ′⊂∂K

signK (F) signK (F ′) |F ||F ′
|σ̂ r t

F
σ̂ r t

F ′
R

F F ′ ,


σ̂

r t
T , ∇uT


K

= −
1

12 |K |


F⊂∂K


F ′⊂∂K

signK (F) signK (F ′) |F ||F ′
| σ̂ r t

F
uT (x

F ′ ) T
F F ′ ,

and


A∇uT , ∇uT


K

=
1

4 |K |


F⊂∂K


F ′⊂∂K

uT (xF ) uT (x
F ′ )signK (F)signK (F ′) |F ||F ′

|S
F F ′ .

Remark 6.1. For interface problems, the recovered flux in (6.1) and the resulting estimator defined in (4.12) are
equivalent to those introduced and analyzed in [21]. To see that, let A|K = αK I for any K ∈ T , where αK and I are
constant and the identity matrix, respectively. Let

α−

F
= α

K−

F
and α+

F
= α

K+

F
,

then

γ −

F
=

1
α−

F


φ

F
, φ

F


K −

F
and γ +

F
=

1
α+

F


φ

F
, φ

F


K +

F
.

For a regular triangulation, the ratio of

φ

F
, φ

F


K −

F
and


φ

F
, φ

F


K +

F
is bounded above and below by constants. Thus

aF =
γ −

F

γ −
F

+ γ +
F

≈
α+

F

α−
F

+ α+
F

and 1 − aF =
γ +

F

γ −
F

+ γ +
F

≈
α−

F

α−
F

+ α+
F

. (6.4)

(Here, we use x ≈ y to mean that there exist two positive constants C1 and C2 independent of the mesh size such

that C1x ≤ y ≤ C2x .) (6.4) indicates that the weights in (6.1) may be replaced by the respective
α+

F
α−

F
+α+

F
and

α−

F
α−

F
+α+

F
Hence, it is equivalent to the explicit estimator introduced in [21].

6.2. Indicator and estimator based on BDM

For all F ∈ E I and for i, j ∈ {s, e}, let

β±

i j,F
=


A−1ψ i,F

, ψ j,F


K ±

F

and βi j,F = β−

i j,F
+ β+

i j,F
,

and let

bs,F =
(β−

ss,F
+ β−

se,F
) βee,F − (β−

se,F
+ β−

ee,F
) βse,F

βss,F βee,F − β2
se,F

and be,F =
(β−

se,F
+ β−

ee,F
) βss,F − (β−

ss,F
+ β−

se,F
) βse,F

βss,F βee,F − β2
se,F

.

Using the basis functions ψ s,F
and ψe,F

defined at the beginning of this section, a straightforward calculation gives
that

β±
ss,F

=
1

24|K ±
F

|
∥A−1/2(x±

F
− sF )∥2, β±

ee,F
=

1
24|K ±

F
|
∥A−1/2(x±

F
− eF )∥2

and β±
se,F

=
(x±

F
− sF ) A−1

K
(x±

F
− eF )

48 |K ±
F

|
.

Solving the local problems in (4.13) with V F = BDMF gives the following recovered flux in BDMg,N :

σ̂
bdm
T =


F∈E I


σ̂ bdm

s,F
ψ s,F

+ σ̂ bdm
e,F

ψe,F


|F | +


F∈E D

σ̃−

F
|F |φ−

F
+


F∈E N

gN ,F |F |φ−

F
(6.5)
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with the normal components of the recovered flux given by the weighted averages:

σ̂ bdm
s,F

= bs,F σ̃−

F
+ (1 − bs,F ) σ̃+

F
and σ̂ bdm

e,F
= be,F σ̃−

F
+ (1 − be,F ) σ̃+

F
. (6.6)

The edge indicator ξbdm
F

has the following explicit formula:

ξbdm
F

=


|σ̃−

F
− σ̃+

F
| |F | w

1/2
F F ∈ E I ,

0, F ∈ E D,

|σ̃−

F
− gN ,F | |F |


β−

ss,F
+ 2β−

se,F
+ β−

ee,F

1/2
, F ∈ E N ,

where wF is given by

wF = (1 − bs,F )2β−

ss
+ 2(1 − bs,F )(1 − be,F )β−

se
+ (1 − be,F )2β−

ee
+ b2

s,F
β+

ss
+ 2bs,F be,F β+

se
+ b2

e,F
β+

ee
.

Next, we present explicit formula of the element indicator ξbdm
K

in terms of the current approximation uT and
geometrical information of elements. For each F ⊂ ∂K , denote by Fs and Fe the remaining two edges of K that is
opposite to sF and eF , respectively. Then the indicator ξbdm

K
is computed by three terms as follows:

ξbdm
K

=


A−1σ̂

bdm
T , σ̂

bdm
T


K

+ 2

σ̂

bdm
T , ∇uT


K

+


A∇uT , ∇uT


K

1/2

. (6.7)

The third term above is given in the previous section, and the other two terms may be computed by

(A−1σ̃ T , σ̃ T )K =


F⊂∂K


F ′⊂∂K

|F | |F ′
|

B

F F ′ − D
F F ′ + M

F F ′


and (σ̂ T , ∇uT )K = −


F⊂∂K

1
12 |K |

uT (xF ) sign
K
(F) |F |


nt

F
L

F ′


.

Here, the B
F F ′ , D

F F ′ , M
F F ′ , and L

F ′ have the following formulas:

B
F F ′ = σ̂ bdm

s,F
σ̂ bdm

s,F ′

(1 + δsF ,s
F ′

)

48 |K |


A−1

K tFe
, t

F ′
e


signK (Fe) signK (F ′

e)|Fe||F
′
e|,

D
F F ′ = σ̂ bdm

s,F
σ̂ bdm

e,F ′

(1 + δsF ,e
F ′

)

48 |K |


A−1

K tFe
, t

F ′
s


signK (Fe) signK (F ′

s)|Fe||F
′
s |

+ σ̂ bdm
e,F

σ̂ bdm
s,F ′

(1 + δeF ,s
F ′

)

48 |K |


A−1

K tFs
, t

F ′
e


signK (Fs) signK (F ′

e)|Fs||F
′
e|,

M
F F ′ = σ̂ bdm

e,F
σ̂ bdm

e,F ′

(1 + δeF ,e
F ′

)

48 |K |


A−1

K tFs
, t

F ′
s


signK (Fs) signK (F ′

s)|Fs||F
′
s |,

and L
F ′ =


F ′⊂∂K

|F ′
|


σ̂ bdm

s,F ′
signK (F ′

e)|F
′
e|tF ′

e
− σ̂ bdm

e,F ′
signK (F ′

s)|F
′
s |tF ′

s


.

7. Numerical experiments

In this section, we report some numerical results for the Kellogg benchmark test problem [34]. Let Ω = (−1, 1)2

and

u(r, θ) = rγ µ(θ)

in the polar coordinates at the origin with µ(θ) being a smooth function of θ . The function u(r, θ) satisfies the diffusion
equation in (2.1) with A = α I , ΓN = ∅, f = 0, and

α(x) =


R in (0, 1)2

∪ (−1, 0)2,

1 in Ω \ ([0, 1]
2
∪ [−1, 0]

2).
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Fig. 3. Mesh generated by the ZZ indicator ξ ZZ
K .

Fig. 4. Mesh generated by the modified ZZ indicator ξ̃ ZZ
K .

The γ depends on the size of the jump. In the test problem, γ = 0.1 is chosen and is corresponding to R ≈

161.4476387975881. Note that the solution u(r, θ) is only in H1+γ−ϵ(Ω) for some ϵ > 0 and, hence, it is very
singular for small γ at the origin. This suggests that refinement is centered around the origin.

This problem is tested by the standard ZZ estimator and its variation:

ξZZ = ∥∇uT − G(∇uT )∥0,Ω and ξ̃ZZ = ∥α1/2
∇uT − α−1/2G(α∇uT )∥0,Ω .

Here, ξZZ is the standard ZZ estimator, i.e., the L2 norm of the difference between the numerical and recovered
gradients; and the ξ̃ZZ is a modified version, where the flux is recovered in C0 continuous finite element space. Both
versions of the ZZ estimators perform badly with many unnecessary over-refinements along the interfaces.

Meshes generated by ξK and ξF for both RT and BDM recovery are shown in Figs. 5, 7, 9 and 11, respectively. The
refinements are centered at the origin and there is no over-refinements along the interfaces. Similar meshes for this
test problem generated by other error estimators can be found in [21,22,26]. The comparisons between the true error
in the energy norm and the estimators, ξ and ξ̂ , are shown in Figs. 6, 8, 10 and 12, respectively. All the estimators
have effectivity indexes very close to one. Here, the effectivity index is defined as the ratio of the estimator and the
true error in the energy norm. Moreover, the slope of the log(dof)- log (the relative error) for both ξ and ξ̂ are very
close to −1/2, which indicates the optimal decay of the error with respect to the number of unknowns.
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Fig. 5. Mesh generated by ξr t
K

.

Fig. 6. Error and estimator ξr t .

Fig. 7. Mesh generated by ξbdm
K

.
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Fig. 8. Error and estimator ξbdm .

Fig. 9. Mesh generated by ξr t
F

.

Fig. 10. Error and estimator ξ̂r t .
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Fig. 11. Mesh generated by ξbdm
F

.

Fig. 12. Error and estimator ξ̂bdm .
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