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discontinuous parts, we prove theoretically that discretization error of the LSNN method using ReLU NN functions14
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jump is constant. Numerical results for both two and three dimensional problems with various discontinuous16
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phenomena along the discontinuous interface.18
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1. Introduction. Let Ω be a bounded domain in Rd (d ≥ 2) with Lipschitz boundary ∂Ω.22

Consider the linear advection-reaction equation23

(1.1)

{
uβ + γ u = f, in Ω,

u = g, on Γ−,
24

where β(x) = (β1, · · · , βd)
T ∈ C0(Ω̄)d is a given advective velocity field, uβ denotes the directional25

derivative of u along β, and Γ− is the inflow part of the boundary Γ = ∂Ω given by26

(1.2) Γ− = {x ∈ Γ : β(x) · n(x) < 0}27

with n(x) the unit outward normal vector to Γ at x ∈ Γ. Assume that γ ∈ C0(Ω̄), f ∈ L2(Ω), and28

g ∈ L2(Γ−) are given scalar-valued functions.29

When the inflow boundary data g is discontinuous, so is the solution of (1.1). The discontinuous30

interface may be determined by the characteristic curves emanating from where g is discontinuous.31

By using the location of the interface, one may design an accurate mesh-based numerical method.32

However, this type of methods is usually limited to linear problems and is difficult to be extended33

to nonlinear hyperbolic conservation laws.34

In [5], we studied the least-squares ReLU neural network method (LSNN) for solving (1.1)35

with discontinuous solution. The method is based on the L2(Ω) norm least-squares formulation36

analyzed in [12, 4] and employs a new class of approximating functions: multilayer perceptrons37

with the rectified linear unit (ReLU) activation function, i.e., ReLU neural network (NN) functions.38
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2 Z. CAI, J. CHOI, AND M. LIU

A critical and additional component of the LSNN method, differing from other NN-based methods,39

is the introduction of a proper designed discrete differential operator.40

One of the appealing features of the LSNN method is its ability of automatically approximat-41

ing the discontinuous solution without using a priori knowledge of the location of the interface.42

Hence, the method is applicable to nonlinear problems (see [8, 7]). Compared to mesh-based nu-43

merical methods including various adaptive mesh refinement (AMR) algorithms that locate the44

discontinuous interface through local mesh refinement (see, e.g., [11, 18, 25]), the LSNN method,45

a meshfree and pointfree method, is much more effective in terms of the number of the degrees of46

freedom. Theoretically, it was shown in [5] that a two- or three-layer ReLU NN function in two47

dimensions is sufficient to well approximate the discontinuous solution of (1.1) without oscillation,48

provided that the interface consists of a straight line or two-line segments and that the solution49

jump along the interface is constant.50

The assumption on at most two-line segments in [5] is very restrictive even in two dimensions.51

In general, the discontinuous solution of (1.1) has interfaces that are hyper-surfaces in d dimensions.52

The purpose of this paper has two-fold. First, we show that any step function with general interface53

may be approximated by ReLU NNs with at most ⌈log2(d + 1)⌉ + 1 layers for achieving a given54

approximation accuracy ε (see Lemma 4.3), which extends the approximation result in [5]. This is55

done by constructing a continuous piecewise linear (CPWL) function with a sharp transition layer of56

ε width and combining the main results in [32, 33] (see Proposition 2.1). Question on approximating57

piece-wise smooth functions by ReLU NNs are also arised in data science applications such as58

classification, etc. Some convergence rates were obtained in [26, 10, 20, 19, 21]. Particularly, for a59

given Cβ (β > 1) interface, [26] established approximation rates of ReLU NNs with no more than60

(3 + ⌈log2 β⌉)(11 + 2β/d) layers.61

Second, we establish a new kind of a priori error estimates (see Theorem 4.4) for the LSNN62

method in d dimensions for general discontinuous interface. To do so, we decompose the solution as63

the sum of the discontinuous and continuous parts (see (4.3)). The continuous part of the solution64

may be approximated well by (even shallow) ReLU NN functions with standard approximation65

property (see, e.g., [14, 27, 28, 30, 13]). The discontinuous part of the solution can be approximated66

accurately by the class of all ReLU NN functions from Rd to R with at most ⌈log2(d + 1)⌉ + 167

depth, provided that the solution jump is constant. Hence, the accuracy of the LSNN method is68

mainly determined by the continuous part of the solution.69

The explicit construction in this paper indicates that a ReLU NN function with at most70

⌈log2(d + 1)⌉ + 1 depth is sufficient to accurately approximate discontinuous solutions without71

oscillation. The necessary depth ⌈log2(d + 1)⌉ + 1 of a ReLU NN function is shown numerically72

through several test problems in both two and three dimensions (two hidden layers for d = 2, 3).73

At the current stage, it is still very expensive to numerically solve the discrete least-squares min-74

imization problem when using the ADAM optimization algorithm [22], even though the DoFs of75

the LSNN method is much less than mesh-based numerical methods.76

Followed by recent success of DNNs in machine learning and artificial intelligence tasks such77

as computer vision and pattern recognition, there have been active interests in using DNNs for78

solving partial differential equations (PDEs) (see, e.g., [2, 3, 9, 16, 29, 31]). Due to the fact that the79

collection of DNN functions is not a space, NN-based methods for solving PDEs may be categorized80

as the Ritz and least-squares (LS) methods. The former (see, e.g., [16]) requires the underlying81

problem having a natural minimization principle and hence is not applicable to (1.1).82

For a given PDE, there are many least-squares methods and their efficacy depends on norms83

used for PDE and for its boundary and/or initial conditions. When using NNs as approximating84

functions, least-squares methods may be traced back at least to 1990s (see, e.g., [15, 23]), where the85

discrete l2 norm on a uniform integration mesh were employed for both PDEs of the strong form86

and for their boundary/initial conditions. Along this line, it is the popular physics-informed neural87

networks (PINNs) by Raissi-Perdikaris-Karniadakis [29] in 2019 which uses auto-differentiation for88
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LEAST-SQUARES NEURAL NETWORK METHOD 3

computing the underlying differential operator at each integration point. Since the solution of89

(1.1) is discontinuous, those NN-based least-squares methods are also not applicable.90

The rest of the paper is organized as follows. In Section 2, we describe ReLU NN functions91

and CPWL functions, and introduce a known result about their relationship. Then we further92

investigate the structure of ReLU NN functions. Section 3 review the least-squares neural network93

method and formulate the method on the framework in Section 2. Then we prove the method is94

capable of locating any discontinuous interfaces of the problem in Section 4. Finally, Section 595

presents numerical results for both two and three dimensional test problems with various discon-96

tinuous interfaces.97

2. ReLU NN Functions. First we begin with the definition of the rectified linear unit98

(ReLU) activation function. The ReLU activation function σ is defined by99

σ(t) = max{0, t} =

{
0, if t ≤ 0,

t, if t > 0.
100

We say a function N : Rd → Rc with c, d ∈ N is a ReLU neural network (NN) function if the101

function N has a representation:102

(2.1) N = N (L) ◦ · · · ◦N (2) ◦N (1) with L > 1,103

where the symbol ◦ denotes the composition of functions, and for each l = 1, . . . , L, N (l) : Rnl−1 →104

Rnl with nl, nl−1 ∈ N (n0 = d, nL = c) given by:105

1. For l = L, N (L)(x) = ω(L)x− b(L) for all x ∈ RnL−1 for ω(L) ∈ RnL×nL−1 , b(L) ∈ RnL .106

2. For each l = 1, . . . , L− 1, N (l) (x) = σ
(
ω(l)x− b(l)

)
for all x ∈ Rnl−1 for ω(l) ∈ Rnl×nl−1 ,107

b(l) ∈ Rnl , where σ is applied to each component.108

We now establish some terminology as follows. Let a ReLU NN function N have a representation109

N (L) ◦ · · · ◦N (2) ◦N (1) with L > 1 as in (2.1). Then we say:110

1. The representation has depth L.111

2. The representation is said to have L layers and L− 1 hidden layers.112

3. For each l = 1, . . . , L, the entries of ω(l) and b(l) are called weights and biases, respectively.113

4. For each l = 1, . . . , L, the natural number nl is called the width or the number of neurons114

of the lth layer.115

A motivation for this terminology is illustrated in Figure 1.116

For a given positive integer n, denote the set of all ReLU NN functions from Rd to R that117

have a representation with depth L and the total number of neurons in the hidden layers n by118

M(d, 1, L, n) =

{
N : Rd → R : N = N (L) ◦ · · · ◦N (2) ◦N (1) defined in (2.1) : n =

L−1∑
l=1

nl

}
.119

Denote the set of all ReLU NN functions from Rd to R with a L-layer representation by M(d, 1, L).120

Then121

(2.2) M(d, 1, L) =
⋃
n∈N

M(d, 1, L, n).122

We now introduce another function class, which is the set of continuous piecewise linear func-123

tions, and explore a theorem about the relationship between the two function classes. We say a124

function f : Rd → R with d ∈ N is continuous piecewise linear (CPWL) if there exists a finite set125

of polyhedra with nonempty interior such that:126

1. The interiors of any two polyhedra in the set are disjoint.127

2. The union of the set is Rd.128
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... ...
...

...

...

· · ·

Input layer

x ∈ Rd

Hidden layers

N (1) N (2) · · · N (L−1)

Output layer

N (x) ∈ Rc

Fig. 1. ReLU neural network function structure

3. f is affine linear over each polyhedron in the set, i.e., in each polyhedron in the set,129

f(x) = aTx+ b for a ∈ Rd, b ∈ R.130

Here by a polyhedron, we mean a subset of Rd surrounded by a finite number of hyperplanes, i.e.,131

the solution set of a system of linear inequalities132

(2.3) {x ∈ Rd : Ax ≤ b} for A ∈ Rm×d,b ∈ Rm with m ∈ N,133

where the inequality is applied to each component. Thus the interior of the polyhedron in (2.3) is134

{x ∈ Rd : Ax < b}.135

Proposition 2.1. The set of all CPWL functions f : Rd → R is equal to M(d, 1, ⌈log2(d +136

1)⌉+1), i.e., the set of all ReLU NN functions from Rd to R that have a representation with depth137

⌈log2(d+ 1)⌉+ 1.138

Proof. M(d, 1, ⌈log2(d+1)⌉+1) is clearly a subset of the set of CPWL functions. Conversely,139

it was proved in [1] that every CPWL function is a ReLU NN function from Rd to R that has a140

representation with depth at most ⌈log2(d + 1)⌉ + 1. Now, the result follows from the fact that141

M(d, 1, L) ⊂ M(d, 1, ⌈log2(d+ 1)⌉+ 1) for any L ≤ ⌈log2(d+ 1)⌉+ 1.142

Proposition 2.1 enables us to employ ReLU NN functions with a few layer representation to the143

problems where CPWL functions are used, and to only control the number of neurons. Except the144

case d = 1 (see, e.g., [1]), there are currently no known results to give tight bounds on the number145

of neurons in the hidden layers. Therefore we suggest the following approach. The following146

proposition is a trivial fact.147

Proposition 2.2. M(d, 1, L, n) ⊂ M(d, 1, L, n+ 1).148

Now Proposition 2.1 (2.2), and Proposition 2.2 suggest how we control the number of neurons in149

the hidden layers, i.e., when approximating a function Rd → R by a CPWL function, we start150

with a class M(d, 1, ⌈log2(d + 1)⌉ + 1, n) with a small n, and then increase n to have a better151

approximation.152

3. LSNN Method. Define the least-squares (LS) functional as153

(3.1) L(v; f) = ∥vβ + γ v − f∥20,Ω + ∥v − g∥2−β,154
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where f = (f, g) and ∥ · ∥−β denotes the weighted L2(Γ−) norm over the inflow boundary given by155

∥v∥−β = ⟨v, v⟩1/2−β =

(∫
Γ−

|β ·n| v2 ds

)1/2

.156

Let Vβ = {v ∈ L2(Ω) : vβ ∈ L2(Ω)} that is equipped with the norm as157

|||v|||β =
(
∥v∥20,Ω + ∥vβ∥20,Ω

)1/2
.158

The least-squares formulation of problem (1.1) is to seek u ∈ Vβ such that159

(3.2) L(u; f) = min
v∈Vβ

L(v; f).160

Proposition 3.1 (see [4, 12]). Assume that either γ = 0 or there exists a positive constant γ0161

such that162

(3.3) γ(x)− 1

2
∇ · β(x) ≥ γ0 > 0 for almost all x ∈ Ω.163

Then the homogeneous LS functional L(v;0) is equivalent to the norm |||v|||2β, i.e., there exist164

positive constants α and M such that165

(3.4) α |||v|||2β ≤ L(v;0) ≤ M |||v|||2β for all v ∈ Vβ.166

Proposition 3.2 (see [4, 12]). Problem (3.2) has a unique solution u ∈ Vβ satisfying the167

following a priori estimate168

(3.5) |||u|||β ≤ C (∥f∥0,Ω + ∥g∥−β) .169

Note that M(d, 1, L, n) is a subset of Vβ. The least-squares approximation is to find170

u
N
∈ M(d, 1, L, n) such that171

(3.6) L
(
u

N
; f
)
= min

v∈M(d,1,L,n)
L
(
v; f
)
.172

Lemma 3.3 (see [5]). Let u and u
N

be the solutions of problems (3.2) and (3.6), respectively.173

Then we have174

(3.7) |||u− u
N
|||β ≤

(
M

α

)1/2

inf
v∈M(d,1,L,n)

|||u− v|||β,175

where α and M are constants in (3.4).176

We use numerical integration (the midpoint rule) to implement the scheme in (3.6) (see [5]).177

Denote the discrete LS functional by LT

(
v; f
)
for v ∈ Vβ . Then the discrete least-squares approx-178

imation of problem (1.1) is to find uN
T

∈ M(d, 1, L, n) such that179

(3.8) LT

(
uN

T
; f
)
= min

v∈M(d,1,L,n)
LT

(
v; f
)
.180

4. Error Estimate. In this section, we provide error estimates of the ReLU NN function181

approximation to the solution of the linear advection-reaction equation with an arbitrary discon-182

tinuous interface. To this end, we note first that the solution of the problem is discontinuous if183

the inflow boundary data g is discontinuous.184
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6 Z. CAI, J. CHOI, AND M. LIU

Lemma 4.1. For d = 2, assume that the inflow boundary data g is discontinuous at x0 ∈ Γ−185

with values g+(x0) and g−(x0) from different sides. Let I be the streamline of the vector field β186

emanating from x0 and x(s) be a parameterization of I, i.e.,187

(4.1)
dx(s)

ds
= β(x(s)), x(0) = x0.188

Then the solution u of (1.1) is discontinuous on I with jump described as189

190

|u+(x(s))− u−(x(s))| =191

exp

(
−
∫ s

0

γ(x(t)) dt

) ∣∣∣∣∫ s

0

exp

(∫ t

0

γ(x(r)) dr

)
(f+(x(t))− f−(x(t))) dt+ g+(x0)− g−(x0)

∣∣∣∣ ,192
193

where u+(x(s)) and u−(x(s)) are the solutions, and f+(x(t)) and f−(x(t)) are the values of f of194

(1.1) along I from different sides, respectively.195

Proof. Along the interface I, by the definition of the directional derivative, we have196

uβ(x(s)) =
d

ds
u(x(s)).197

Thus the solutions u±(x(s)) along the interface I satisfies the linear ordinary differential equations198

(4.2)

{
d
dsu

±(x(s)) + γ(x(s))u±(x(s)) = f±(x(s)), for s > 0,

u±(x(0)) = u±(x0) = g±(x0)
199

whose solutions are given by200

u±(x(s)) = exp

(
−
∫ s

0

γ(x(t)) dt

)[∫ s

0

exp

(∫ t

0

γ(x(r)) dr

)
f±(x(t)) dt+ g±(x0)

]
.201

Hence, u is discontinuous on I with jump202
203

|u+(x(s))− u−(x(s))| =204

exp

(
−
∫ s

0

γ(x(t)) dt

) ∣∣∣∣∫ s

0

exp

(∫ t

0

γ(x(r)) dr

)
(f+(x(t))− f−(x(t))) dt+ g+(x0)− g−(x0)

∣∣∣∣ .205
206

This completes the proof of the lemma.207

Remark 4.2. For d = 3, assume that the inflow boundary data g is discontinuous along a curve208

C(t) ⊂ Γ−. Note that the collection of the stream lines x(s) of the vector field β starting at all209

x0 = C(t) forms a surface I(s, t). Then the solution u of (1.1) is discontinuous on the surface210

I(s, t) with jump as in Lemma 4.1 for every x0 = C(t).211

Let the discontinuous interface I (in Rd) divide the domain Ω into two nonempty subdomains212

Ω1 and Ω2:213

Ω = Ω1 ∪ Ω2 and I = ∂Ω1 ∩ ∂Ω2,214

so that u is piecewise smooth with respect to the partition {Ω1,Ω2}.215

Assume that the jump of the solution is constant. Hence, u can be decomposed into216

(4.3) u(x) = û(x) + χ(x),217

where û is continuous and piecewise smooth on Ω, and χ(x) is a piecewise constant function defined218

by219

χ(x) =

{
α1, x ∈ Ω1,

α2, x ∈ Ω2

220

This manuscript is for review purposes only.



LEAST-SQUARES NEURAL NETWORK METHOD 7

with α1 = g−(x0) and α2 = g+(x0) (see Figure 2(b)). By a rotation of the coordinates x, represent221

the interface I by s = R(y). Next for any ε > 0, approximate R by a CPWL function s = c(y) with222

linear functions ci(y) for i = 1, . . . , k such that the vertical distance from ci to the corresponding223

portion of I is less than ε (see Figure 2(a)). Each linear function ci(y) of R is a hyperplane224

ξi · x = bi. By normalizing ξi, we may assume |ξi| = 1. Now divide Ω by hyperplanes passing225

through the intersections of ξi · x = bi. Let Υi be the subdomains determined by this process (see226

Figure 2(c)).227

Ω1

Ω2

I

ε

(a) Approximation along the interface I by a CPWL function

Ω1

Ω2

I

(b) Interface I on Ω ⊂ Rd

Ω1

Ω2

I

Υ1

Υ2

Υ3

ξ1 · x = b1

ξ2 · x = b2

ξ3 · x = b3

(c) Partition of Ω through the intersections of
ξi · x = bi

ε

ξi · x = bi

ξi · x = bi + ε/2

ξi · x = bi + ε

(d) Hyperplanes ξi · x = bi, ξi · x = bi + ε for
pi(x)

Fig. 2. Lemma 4.3 illustruations
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Lemma 4.3. Without loss of generality, let p(x) be a CPWL function given by (see Figure 2(d))228

pi(x) = α1 +
α2 − α1

ε

(
σ(ξi · x− bi)− σ(ξi · x− bi − ε)

)
, x ∈ Υi.229

Then we have230

(4.4) |||χ− p|||β ≤
√
2|I|

∣∣α1 − α2

∣∣√ε,231

where |I| is the d− 1 dimensional measure of the interface I.232

Proof. For each i, denote by |Pi| the d− 1 dimensional measure of the hyperplane ξi · x = bi233

in Υi. It is easy to check that234

∥χ− pi∥20,Υi
≤ (α1 − α2)

2|Pi|ε,235

which implies236

(4.5) ∥χ− p∥20,Ω =

k∑
i=1

∥χ− pi∥20,Υi
≤

k∑
i=1

|Pi|(α1 − α2)
2ε ≤ |I| (α1 − α2)

2 ε.237

We now prove238

∥χβ − pβ∥20,Ω ≤ |I| (α1 − α2)
2 ε.239

To do so, for each i, let240

Υ1
i = {x ∈ Υi : 0 < ξ · x− bi < ε} and Υ2

i = Υi \Υ1
i .241

Clearly, χβ ≡ 0 in Ω, and pi is piecewise constant in Υ2
i . For each Υi, we can a construct vector-242

field βi(x) in Υi such that for each x ∈ Υ1
i , βi(x) is parallel to the hyperplane ξi · x = bi in Υi243

and that β(x)− βi(x) is parallel to ξi in Υ1
i . Hence, (pi)βi

≡ 0 in Υi. Then244

∥(pi)β∥20,Υi
= ∥(pi)β − (pi)βi∥20,Υi

= ∥(pi)β−βi∥20,Υi
= ∥(pi)β−βi∥20,Υ1

i
245

≤
∫
Υ1

i

(
α2 − α1

ε
ξi · εξi

)2

dx ≤ (α1 − α2)
2|Pi| ε,246

where for the second inequality, we used the fact that in Υ1
i , the gradient of pi is α2−α1

ε ξi and247

further assume the magnitude of β(x)− βi(x) is less than or equal to εξi. Thus248

(4.6) ∥χβ − pβ∥20,Ω =

k∑
i=1

∥(pi)β∥20,Υi
≤

k∑
i=1

|Pi|(α1 − α2)
2ε ≤ |I| (α1 − α2)

2 ε.249

Now (4.4) follows from (4.5) and (4.6).250

Theorem 4.4. Let u and u
N

be the solutions of problems (3.2) and (3.6), respectively. Then251

we have252

(4.7) |||u− u
N
|||β ≤ C

(∣∣α1 − α2

∣∣√ε+ inf
v∈M(d,1,L,n)

|||û+ p− v|||β

)
,253

where û ∈ C(Ω) and p are given in (4.3) and Lemma 4.3, respectively. Moreover, if the depth of254

DNNs in (3.6) is at least ⌈log2(d + 1)⌉ + 1, then for a sufficiently large integer n, there exists an255

integer n̂ ≤ n such that256

(4.8) |||u− u
N
|||β ≤ C

(∣∣α1 − α2

∣∣√ε+ inf
v∈M(d,n−n̂)

|||û− v|||β

)
,257

where M(d, n− n̂) = M(d, 1, ⌈log2(d+ 1)⌉+ 1, n− n̂).258
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Proof. For any v ∈ M(d, 1, L, n), it follows from (4.3), the triangle inequality, and Lemma 4.3259

that260

|||u− v|||β = |||χ− p+ û+ p− v|||β ≤ |||χ− p|||β + |||û+ p− v|||β261

≤
√
2|I||α1 − α2|

√
ε+ |||û+ p− v|||β.262

263

Taking the infimum over all v ∈ M(d, 1, L, n), (4.7) is then a direct consequence of Lemma 3.3.264

To show the last statement, first, note that for a sufficiently large integer n, by Proposition 2.1,265

there exists an integer n̂ ≤ n such that266

p ∈ M(d, n̂) = M(d, 1, ⌈log2(d+ 1)⌉+ 1, n̂).267

Obviously we have v + p ∈ M(d, n) for any v ∈ M(d, n − n̂). Now, it follows from the coercivity268

and continuity of the homogeneous functional L
(
v;0
)
in (3.4), problems (1.1), (3.6), (4.3), and the269

triangle inequality that270

α |||u− u
N
|||2β ≤ L

(
u− u

N
;0
)
= L

(
u

N
; f
)
≤ L

(
v + p; f

)
= L

(
u− v − p;0

)
271

= L
(
(û− v) + (χ− p);0

)
≤ M |||(û− v) + (χ− p)|||2β272

≤ 2M
(
|||(û− v)|||2β + |||(χ− p)|||2β

)
,273

which, together with Lemma 4.3, implies the validity of (4.8). This completes the proof of the274

theorem.275

Remark 4.5. When the continuous part of the solution û is smooth, it is known that û can be276

approximated well by a shallow NN, i.e., with depth L = 2 (see, e.g., [14, 27, 28, 30, 13, 17]).277

Remark 4.6. The estimate in (4.7) holds even for the shallow neural network (L = 2). However,278

the second term of the upper bound, infv∈M(d,1,2,n) |||û+ p− v|||β, depends on the inverse of ε279

because the p has a sharp transition layer of width ε. For any fixed n, infv∈M(d,1,2,n) ∥p − v∥0,Ω280

could be large depending on the size of ε, even though the universal approximation theorem (see,281

e.g., [28]) implies282

lim
n→∞

inf
v∈M(d,1,2,n)

∥p− v∥0,Ω = 0.283

In other words, as ε approaches 0, p approaches χ, which is discontinuous; hence, in practice,284

the universal approximation theorem does not guarantee the convergence of the problem. On the285

other hand, by Proposition 2.1, deeper networks (with depth at least ⌈log2(d+1)⌉+1) are capable286

of approximating the solution. As an illustration, define a CPWL function p(x, y) with a sharp287

transition layer of width ε in [0, 1]2 as follows.288

p(x, y) =

{
−1 + 2

ε

(
y + 1

2x− 0.8 + ε
2

)
, y ≥ x,

−1 + 2
ε

(
1
2y + x− 0.8 + ε

2

)
, y < x.

289

In [5], we proved CPWL functions of the form p(x, y) is a ReLU NN function with the 2-4-4-1290

structure. Here and in what follows, by a 2-n1-n2-1 structure, we mean a ReLU NN function291

with depth 3 and n1, n2 neurons in the respective hidden layers. Therefore, we can expect the292

2-n1-n2-1 structure outperforms the 2-n3-1 structure (ReLU NN functions with depth 2 and n3293

neurons in the hidden layer), and Figure 3 and Table 1 demonstrate this for approximating p(x, y)294

with ε = 0.2, 0.02, 0.002 by ReLU NN functions with depth 2, 3 and various numbers of nuerons.295
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10 Z. CAI, J. CHOI, AND M. LIU

(a) p(x, y) with ε = 0.002 (b) ReLU NN with the 2-158-1 structure

(c) ReLU NN with the 2-4-4-1 structure (d) Trace of 3(b) on y = x

(e) Trace of 3(c) on y = x

Fig. 3. L2 norm approximation of p(x, y) with ε = 0.002

Lemma 4.7. Let u, u
N
, and uN

T
be the solutions of problems (3.2), (3.6), and (3.8), respec-296

tively. Then there exist positive constants C1 and C2 such that297

∣∣∣∣∣∣u− uN

T

∣∣∣∣∣∣
β
≤ C1

(∣∣(L − LT )(uN
− uN

T
,0)
∣∣+ ∣∣(L − LT )(u− u

N
,0)
∣∣)1/2

+ C2

(∣∣α1 − α2

∣∣√ε+ inf
v∈M(d,n)

|||û+ p− v|||β

)
.

(4.9)298

Proof. By the triangle inequality299 ∣∣∣∣∣∣u− uN

T

∣∣∣∣∣∣
β
≤ |||u− u

N
|||β +

∣∣∣∣∣∣u
N
− uN

T

∣∣∣∣∣∣
β
,300
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Table 1
Relative errors in the L2 norm for approximating p(x, y) with ε = 0.2, 0.02, 0.002 by ReLU NN functions with

depth 2, 3 and various numbers of neurons

2-8-1 2-58-1 2-108-1 2-158-1 2-4-4-1
ε = 0.2 0.292446 0.028176 0.021200 0.010259 1.906427× 10−7

ε = 0.02 0.254603 0.078549 0.065465 0.030623 7.536140× 10−6

ε = 0.002 0.404299 0.102757 0.100136 0.088885 9.473783× 10−7

and the fact that301 ∣∣∣∣∣∣u
N
− uN

T

∣∣∣∣∣∣
β
≤ C1

((∣∣(L − LT )(uN
− uN

T
,0)
∣∣+ ∣∣(L − LT )(u− u

N
,0)
∣∣)1/2 + |||u− u

N
|||β
)

302

from the proof of Lemma 3.4 in [5], (4.9) is a direct consequence of Theorem 4.4.303

5. Numerical Experiments. In this section, we report numerical results for both two and304

three dimensional test problems with piecewise constant, or variable advection velocity fields.305

Numerical integration used the midpoint rule on a uniform mesh with mesh size h = 10−2. The306

directional derivative vβ in the β direction was approximated by the backward finite difference307

quotient multiplied by |β|308

(5.1) vβ(xK
) ≈ |β|

v(x
K
)− v

(
x

K
− ρβ̄(x

K
)
)

ρ
,309

where β̄ = β
|β| and ρ = h/4. We used the ADAM optimization algorithm [22] to iteratively solve the310

discrete minimization problem in (3.8). For each numerical experiment, the learning rate started311

with 0.004 and was reduced by half for every 50000 iterations. Due to the possibility of the neural312

network getting trapped in a local minimum, we first trained the network with 5000 iterations 10313

times, chose the weights and biases with the minimum loss function value, and trained further to314

get the results.315

In Tables 2 to 7, parameters indicate the total number of weights and biases. We used ReLU316

NN function with width n and depth 3 = ⌈log2(d + 1)⌉ + 1 for d = 2, 3, the structure of NN317

functions is denoted by d-n-n-1, where the 1 is the dimension of the output. The basic principle318

for choosing the number of neurons is to start with a small number and increase the number to319

obtain a better approximation. For an automatic approach to design the architecture of DNNs for320

a given problem with a prescribed accuracy, see the recent work on the adaptive neural network321

method in [24, 6]. In Figures 4 to 9, by the lth layer breaking lines, we mean the set322

{x ∈ Ω : ω(l)(N (l−1) ◦ · · · ◦N (2) ◦N (1)(x))− b(l) has a zero component} with N (0) = I.323

Breaking lines are presented to provide a better understanding of the behavior of ReLU NN function324

approximation along the discontinous interface.325

5.1. Two Dimensional Problems. We present numerical results for four two dimensional326

test problems with piecewise constant or variable advection velocity fields. All four test problems327

are defined on the domain Ω = (0, 1)2 with γ = 1, and the exact solutions are the same as the328

right-hand side functions, u(x, y) = f(x, y), which are the step functions (except for the fourth test329

problem) along 3 line segment, 4 line segment, and curve interfaces. By Theorem 4.4, the LSNN330

method with 3 layer ReLU NN functions leads to331

|||u− u
N
|||β ≤ C

∣∣α1 − α2

∣∣√ε,332

because the continuous part of the solution û is zero (again, except for the fourth test problem).333
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12 Z. CAI, J. CHOI, AND M. LIU

5.1.1. Problem with a 3line segment interface. This example is a modification of one334

from [5]. Let Ω̄ = Ῡ1 ∪ Ῡ2 ∪ Ῡ3 and335

Υ1 = {(x, y) ∈ Ω : y ≥ x}, Υ2 = {(x, y) ∈ Ω : x− a
2 ≤ y < x}, and Υ3 = {(x, y) ∈ Ω : y < x− a

2}336

with a = 43/64. The advective velocity field is a piecewise constant field given by337

(5.2) β(x, y) =


(−1,

√
2− 1)T , (x, y) ∈ Υ1,

(1−
√
2, 1)T , (x, y) ∈ Υ2,

(−1,
√
2− 1)T , (x, y) ∈ Υ3.

338

The inflow boundary and the inflow boundary condition are given by339

Γ− = {(1, y) : y ∈ (0, 1)} ∪ {(x, 0) : x ∈ (0, 1)}340

and g(x, y) =

{
1, (x, y) ∈ Γ1

− ≡ {(1, y) : y ∈ [1−
√
2 +

√
2
2 a, 1)},

−1, (x, y) ∈ Γ2
− = Γ− \ Γ1

−,
341

respectively. Let342

Υ̂1 = {(x, y) ∈ Υ1 : y < (1−
√
2)x+ a}, Υ̂2 = {(x, y) ∈ Υ2 : y < 1

1−
√
2
(x− a√

2
) + a√

2
},343

and Υ̂3 = {(x, y) ∈ Υ3 : y < (1−
√
2)x+

√
2
2 a}.344

The following right-hand side function is345

(5.3) f(x, y) =

{
−1, (x, y) ∈ Ω1 ≡ Υ̂1 ∪ Υ̂2 ∪ Υ̂3,

1, (x, y) ∈ Ω2 = Ω \ Ω1.
346

The LSNN method with a random initialization and 200000 iterations was implemented with 2-347

300-1 and 2-5-5-1 ReLU NN functions. The numerical results are presented in Figure 4 and Table 2.348

The numerical error (Table 2), trace (Figure 4(e)), and approximation graph (Figure 4(c)) of349

the 2 layer ReLU NN function approximation imply that the 2 layer network structure failed to350

approximate the solution (Figure 4(b)) especially around the discontinuous interface (Figure 4(a)),351

although the breaking lines (Figure 4(g)) indicate the approximation roughly formed transition352

layers around the interface. This and the remaining examples suggest the 2 layer network structure353

may not be able to approximate discontinuous solutions well as we expected in Remark 4.6. On354

the other hand, the 3 layer ReLU NN function approximation with the 2-5-5-1 structure with355

4% of the number of parameters of the 2 layer one approximates the solution accurately. Again,356

this and the remaining examples suggest that 3 layer ReLU NN functions may be more efficient357

than 2 layer ones of even bigger sizes. In this example, because of the shape of the interface and358

û = 0, the CPWL function p with small ε, which we constructed in Lemma 4.3 is expected to359

be a good approximation of the solution, and Figure 4(d) indicates that the approximation in360

M(2, 1, 3, 10) is indeed such a function. The second layer breaking lines (Figure 4(h)) also help361

us to verify that sharp transition layers were generated along the discontinuous interface, which is362

again consistent with our convergence analysis. The trace (Figure 4(f)) of the 3 layer ReLU NN363

function approximation exhibits no oscillation.364

5.1.2. Problem with a 4 line segment interface. Let Ω̄ = Ῡ1 ∪ Ῡ2 ∪ Ῡ3 ∪ Ῡ4 and365
366

Υ1 = {(x, y) ∈ Ω : y ≥ x+ 1}, Υ2 = {(x, y) ∈ Ω, x ≤ y < x+ 1},367

Υ3 = {(x, y) ∈ Ω, x− 1 ≤ y < x}, and Υ4 = {(x, y) ∈ Ω, y < x− 1}.368369

This manuscript is for review purposes only.



LEAST-SQUARES NEURAL NETWORK METHOD 13

(a) Interface (b) Exact solution

(c) 2 layer NN approximation (d) 3 layer NN approximation

(e) 2 layer NN trace on y = x (f) 3 layer NN trace on y = x

(g) 2 layer NN breaking lines (h) 3 layer NN breaking lines

Fig. 4. Approximation results of the problem in subsection 5.1.1
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14 Z. CAI, J. CHOI, AND M. LIU

Table 2
Relative errors of the problem in subsection 5.1.1

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN

T |||β
|||u|||β

L1/2(uN

T
,f)

L1/2(uN
T
,0)

Parameters

2-300-1 0.279867 0.404376 0.300774 1201
2-5-5-1 0.074153 0.079193 0.044987 51

The advective velocity field is a piecewise constant field given by370

(5.4) β(x, y) =



(−1,
√
2− 1)T , (x, y) ∈ Υ1,

(1−
√
2, 1)T , (x, y) ∈ Υ2,

(−1,
√
2− 1)T , (x, y) ∈ Υ3,

(1−
√
2, 1)T , (x, y) ∈ Υ4.

371

The inflow boundary and the inflow boundary condition are given by372

Γ− = {(2, y) : y ∈ (0, 2)} ∪ {(x, 0) : x ∈ (0, 2)}373

and g(x, y) =

{
1, (x, y) ∈ Γ1

− ≡ {(2, y) : y ∈ (0, 2)},

−1, (x, y) ∈ Γ2
− = Γ− \ Γ1

−,
374

respectively. Let375

376

Υ̂1 = {(x, y) ∈ Υ1 : y < (1−
√
2)x+ 2}, Υ̂2 = {(x, y) ∈ Υ2 : y < 1

1−
√
2
(x− 1) + 1},377

Υ̂3 = {(x, y) ∈ Υ3 : y < (1−
√
2)(x− 1) + 1}, and Υ̂4 = {(x, y) ∈ Υ3 : y < 1

1−
√
2
x+ 2√

2−1
}.378

379

The following right-hand side function is380

(5.5) f(x, y) =

{
−1, (x, y) ∈ Ω1 ≡ Υ̂1 ∪ Υ̂2 ∪ Υ̂3 ∪ Υ̂4,

1, (x, y) ∈ Ω2 = Ω \ Ω1.
381

The LSNN method with a random initialization and 200000 iterations was implemented with 2-382

300-1 and 2-6-6-1 ReLU NN functions. The numerical results are presented in Figure 5 and Table 3.383

Since the interface has one more line segment than that of Example 5.1.1, we increased the number384

of hidden neurons to have higher expresiveness. The 2-6-6-1 structure with 6% of the number385

of parameters of the 2-300-1 structure approximated the solution (Figure 5(b)) accurately and386

Figure 5(d) indicates that the approximation in M(2, 1, 3, 12) is the CPWL function p with small387

ε in Lemma 4.3. The trace (Figure 5(f)) shows no oscillation and the second layer breaking lines388

(Figure 5(h)) along the discontinuous interface (Figure 5(a)) show where the sharp transition layers389

were generated. On the other hand, the 2-300-1 ReLU NN function approximation roughly found390

the location of the interface (Figure 5(g)) but did not approximate the solution well (Figures 5(c)391

and 5(e) and Table 3).392

5.1.3. Problem with a curve interface. The advective velocity field is a variable field393

given by394

(5.6) β(x, y) = (1, 2x), (x, y) ∈ Ω.395

This manuscript is for review purposes only.



LEAST-SQUARES NEURAL NETWORK METHOD 15

(a) Interface (b) Exact solution

(c) 2 layer NN approximation (d) 3 layer NN approximation

(e) 2 layer NN trace on y = x (f) 3 layer NN trace on y = x

(g) 2 layer NN breaking lines (h) 3 layer NN breaking lines

Fig. 5. Approximation results of the problem in subsection 5.1.2
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Table 3
Relative errors of the problem in subsection 5.1.2

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN

T |||β
|||u|||β

L1/2(uN

T
,f)

L1/2(uN
T
,0)

Parameters

2-300-1 0.288282 0.358756 0.306695 1201
2-6-6-1 0.085817 0.091800 0.069808 67

The inflow boundary and the inflow boundary condition are given by396

Γ− = {(0, y) : y ∈ (0, 1)} ∪ {(x, 0) : x ∈ (0, 1)}397

and g(x, y) =

{
1, (x, y) ∈ Γ1

− ≡ {(0, y) : y ∈ [ 18 , 1)},

0, (x, y) ∈ Γ2
− = Γ− \ Γ1

−,
398

respectively. The following right-hand side function is399

(5.7) f(x, y) =

{
0, (x, y) ∈ Ω1 ≡ {(x, y) ∈ Ω : y < x2 + 1

8},

1, (x, y) ∈ Ω2 = Ω \ Ω1.
400

The LSNN method with a random initialization and 300000 iterations was implemented with 2-401

3000-1 and 2-60-60-1 ReLU NN functions. We again increased the number of hidden neurons for402

the 3 layer network structure, assuming CPWL functions approximating a curved discontinuous403

interface (Figure 6(a)) well would be a ReLU NN function with more hidden neurons. The numer-404

ical results are presented in Figure 6 and Table 4. Figures 6(c), 6(e), and 6(g) suggest that the 2405

layer network structure failed to approximate the solution (Figure 6(b)) around the discontinuous406

interface with more than three times the number of parameters of the 3 layer network structure.407

In contrast, the 3 layer network structure shows better numerical errors (Table 4) and pointwise408

approximations (Figures 6(d) and 6(f)), locating the discontinuous interface (Figure 6(h)).409

Table 4
Relative errors of the problem in subsection 5.1.3

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN

T |||β
|||u|||β

L1/2(uN

T
,f)

L1/2(uN
T
,0)

Parameters

2-3000-1 0.134514 0.181499 0.078832 12001
2-60-60-1 0.066055 0.106095 0.030990 3901

5.1.4. Problem with a curve interface and û ̸= 0. The advective velocity field is a410

variable field given by411

(5.8) β(x, y) = (−y, x), (x, y) ∈ Ω.412

The inflow boundary and the inflow boundary condition are given by413

Γ− = {(1, y) : y ∈ (0, 1)} ∪ {(x, 0) : x ∈ (0, 1)}414

and g(x, y) =

{
−1 + x2 + y2, (x, y) ∈ Γ1

− ≡ {(x, 0) : x ∈ (0, 2
3 )},

1 + x2 + y2, (x, y) ∈ Γ2
− = Γ− \ Γ1

−,
415

respectively. The following right-hand side function is416

(5.9) f(x, y) =

 −1 + x2 + y2, (x, y) ∈ Ω1 ≡ {(x, y) ∈ Ω : y <
√

4
9 − x2},

1 + x2 + y2, (x, y) ∈ Ω2 = Ω \ Ω1.
417
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(a) Interface (b) Exact solution

(c) 2 layer NN approximation (d) 3 layer NN approximation

(e) 2 layer NN trace on y = x (f) 3 layer NN trace on y = x

(g) 2 layer NN breaking lines (h) 3 layer NN breaking lines

Fig. 6. Approximation results of the problem in subsection 5.1.3
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The LSNN method with a random initialization and 200000 iterations was implemented with418

2-4000-1 and 2-65-65-1 ReLU NN functions. The numerical results are presented in Figure 7419

and Table 5. Table 5 indicates that the 2 layer network structure is capable of approximating420

the solution (Figure 7(b)) in average, but Figures 7(c), 7(e), and 7(g) show difficulty around421

the discontinuous interface (Figure 7(a)). Again, the 3 layer network structure with 28% of the422

number of parameters of the 2 layer network structure presented better error results (Table 5) and423

approximated the solution accurately pointwise (Figures 7(d) and 7(f)). Unlike other examples,424

some of the second layer breaking lines (Figure 7(h)) of the approximation spread out on the425

whole domain in addition to those around the interface, which implies they are necessary for426

approximating the solution with û ̸= 0.427

Table 5
Relative errors of the problem in subsection 5.1.4

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN

T |||β
|||u|||β

L1/2(uN

T
,f)

L1/2(uN
T
,0)

Parameters

2-4000-1 0.088349 0.108430 0.058213 16001
2-65-65-1 0.048278 0.073095 0.015012 4551

5.2. Three Dimensional Problems. We present numerical results for two three dimen-428

sional test problems with piecewise constant or variable advection velocity fields whose solutions429

are piecewise constant along a connected series of planes or surfaces. Both test problems are de-430

fined on the domain Ω = (0, 1)3, approximation results are depicted on z = 0.5, and again, we431

have432

|||u− u
N
|||β ≤ C

∣∣α1 − α2

∣∣√ε.433

5.2.1. Problem with a piecewise plane interface. Let γ = f = 0, Ω̄ = Ῡ1 ∪ Ῡ2, and434

Υ1 = {(x, y, z) ∈ Ω : y < x}, Υ2 = {(x, y, z) ∈ Ω : y ≥ x}.435

The advective velocity field is a piecewise constant field given by436

(5.10) β(x, y, z) =

{
(1−

√
2, 1, 0)T , (x, y, z) ∈ Υ1

(−1,
√
2− 1, 0)T , (x, y, z) ∈ Υ2.

437

The inflow boundary and the inflow boundary condition are given by438

Γ− = {(x, 0, z) : x, z ∈ (0, 1)} ∪ {(1, y, z) : y, z ∈ (0, 1)}439

and g(x, y, z) =

{
0, (x, y, z) ∈ Γ1

− ≡ {(x, 0, z) : x ∈ (0, 0.7), z ∈ (0, 1)},

1, (x, y, z) ∈ Γ2
− = Γ− \ Γ1

−,
440

respectively. Let441

Ω1 = {(x, y, z) ∈ Ω : y < (1−
√
2)x+ 0.7, y < 1

1−
√
2
(x− 0.7)}.442

The exact solution is a unit step function in three dimensions443

(5.11) u(x, y, z) =

{
0, (x, y, z) ∈ Ω1,

1, (x, y, z) ∈ Ω2 = Ω \ Ω1.
444

The LSNN method with a random initialization and 100000 iterations was implemented with 3-445

300-1 and 3-5-5-1 ReLU NN functions (depth ⌈log2(d+1)⌉+1 = 3 for d = 3). For three dimensions446
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(a) Interface (b) Exact solution

(c) 2 layer NN approximation (d) 3 layer NN approximation

(e) 2 layer NN trace on y = x (f) 3 layer NN trace on y = x

(g) 2 layer NN breaking lines (h) 3 layer NN breaking lines

Fig. 7. Approximation results of the problem in subsection 5.1.4
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again, the 2 layer network structure with a large number of parameters generated transition layers447

along the discontinuous interface (Figures 8(a) and 8(g)) but had an issue with approximating the448

solution (Figure 8(b)) accurately pointwise (Figures 8(c) and 8(e)). The 3 layer network structure449

with 4% of the number of parameters of the 2 layer network approximated the solution accurately450

(Table 6). As explained in Example 5.1.1, Figures 8(d), 8(f), and 8(h) also indicate that the451

function p in Lemma 4.3 appears to be the approximation and in this example, be contained in452

M(3, 1, 3, 10).453

Table 6
Relative errors of the problem in subsection 5.2.1

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN

T |||β
|||u|||β

L1/2(uN

T
,f)

L1/2(uN
T
,0)

Parameters

3-300-1 0.185006 0.214390 0.189820 1501
3-5-5-1 0.055365 0.055370 0.045902 56

5.2.2. Problem with a cylindrical interface. Let γ = 1. The advective velocity field is a454

variable field given by455

(5.12) β(x, y, z) = (−y, x, 0)T , (x, y, z) ∈ Ω.456

The inflow boundary and the inflow boundary condition are given by457

Γ− = {(x, 0, z) : x, z ∈ (0, 1)} ∪ {(1, y, z) : y, z ∈ (0, 1)}458

and g(x, y, z) =

{
0, (x, y, z) ∈ Γ1

− ≡ {(x, 0, z) : x ∈ (0, 0.7), z ∈ (0, 1)},

1, (x, y, z) ∈ Γ2
− = Γ− \ Γ1

−.
459

respectively. Let460

Ω1 = {(x, y, z) ∈ Ω : y <
√
0.72 − x2.}461

The following right-hand side function is462

(5.13) f(x, y, z) =

{
0, (x, y, z) ∈ Ω1,

1, (x, y, z) ∈ Ω2 = Ω \ Ω1.
463

The exact solution is464

u(x, y, z) = f(x, y, z), (x, y, z) ∈ Ω.465

The LSNN method with a random initialization and 150000 iterations was implemented with 3-466

1500-1 and 3-50-50-1 ReLU NN functions. Again to minimize the loss function over a larger subset467

of CPWL functions, we increased the number of hidden neurons. The numerical results are pre-468

sented in Figure 9 and Table 7. Even though the 2 layer ReLU NN function approximation provides469

an approximate location of the discontinuous interface (Figures 9(a) and 9(g)), the structure failed470

to approximate the solution (Figure 9(b)) around the interface accurately (Figures 9(c) and 9(e)).471

The 3 layer network structure with less than 40% of the number of parameters approximated the472

solution well, locating the discontinuous interface (Figures 9(d), 9(f), and 9(h) and Table 7).473
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