0108  Lesson 1 
12.1  12.4 Review

0110  Lesson 2 
12.5 Lines & Planes in Space

0112  Lesson 3 
12.5 Lines & Planes in Space (cont') & 12.6 Cylinders & Quadric Surfaces

0115  No Class 

0117  Lesson 4 
12.6 Cylinders & Quadric Surfaces (cont')

0119  Lesson 5 
13.1 Vector Functions & Space Curves

0122  Lesson 6 
13.2 Derivatives & Integrals of Vector Functions

0124  Lesson 7 
13.3 Arclength & Curvature

0126  Lesson 8 
13.4 Velocity & Acceleration

0129  Lesson 9 
14.1 Functions of Several Variables

0131  Lesson 10 
14.2 Limits & Continuity

0202  Lesson 11 
14.3 Partial Derivatives

0205  Lesson 12 
14.4. Tangent Planes & Approximations

0207  Lesson 13 
14.5. Chain Rule

0209  Lesson 14 
14.6. Directional Derivatives

0212  Lesson 15 
14.6. Directional Derivatives (cont')

0213  Lesson 16 
14.7. Maximum & Minimum Values

0216  Lesson 17 
14.7. Maximum & Minimum Values (cont')

0219  Lesson 18 
14.8. Lagrange Multipliers 
0221  Review 
Review Problems for Exam 1

0223  Lesson 19 
15.1 Multiple and Iterated Integrals

0226  Lesson 20 
15.2 Double Integrals in General Regions

0228  Lesson 21 
15.3 Double Integrals in Polar Coords

0302  Lesson 22 
15.45 Appl. Double Integrals; Surface Area (part of the Polar Coords lesson will be given today)

0305  Lesson 23 
15.6 Triple Integrals
(contains examples for Density & Mass and Surface Integrals, covers Triple Integrals)

0307  Lesson 24 
15.7 Triple Integrals Cylind Coords

0309  No Class 

0312 to 0316  Break 

0319  Lesson 25 
15.8 Triple Integrals in Spherical Coords

0321  Lesson 26 
16.1 Vector Fields

0323  Lesson 27 
16.2 Line Integrals

0326  Lesson 28 
16.2 Line Integrals (cont')

0328  Lesson 29 
16.3 Fundamental Theorem for Line Integrals

0330  Lesson 30 
16.4 Green's Theorem

0402  Review 
Review Problems for Exam 2 
0404  No Class 

0406  Lesson 31 
16.5 Curl & Divergence

0409  Lesson 32 
16.6 Parametric Surfaces & their Areas

0411  Lesson 33 
16.6 Parametric Surfaces & their Areas (cont')

0413  Lesson 34 
16.7 Surface Integrals

0416  Lesson 35 
16.7 Surface Integrals (cont')

0418  Lesson 36 
16.8 Stoke's Theorem

0420  Lesson 37 
16.9 The Divergence Theorem

0423 to 0427  Review 
Final Exam Review 