1. Evaluate $\lim \frac{2 n+3}{\sqrt{3 n^{2}+2}}$.
2. Suppose $\lim \left(x_{n}\right)=0$ and $\left(y_{n}\right)$ is a bounded sequence with no limit.
(a) Find $\lim \left(x_{n} y_{n}\right)$. Prove that your answer is correct.
(b) Evaluate $\lim \frac{2 x_{n}+3}{2+x_{n} y_{n}}$. Prove your answer.
3. Suppose $\lim \left(z_{n}\right)=z$ and $z \neq 0$.

Show that if n is sufficiently large, then $\left|z_{n}\right|>\frac{|z|}{2}$.
4. Using problem 3 , show that $\lim \frac{1}{z_{n}}=\frac{1}{z}$.
5. Suppose that a sequence $\left(x_{n}\right)$ is defined by $x_{n+1}=\frac{2}{5} x_{n}+\frac{3}{2}, x_{1}=1$
(a) Find a positive number p so that if $x_{n}<p$ then $x_{n+1}<p$
(b) Show by induction that for all $n, x_{n}<x_{n+1}$
(c) Why does $\lim \left(x_{n}\right)$ exist?
(d) What is $\lim \left(x_{n}\right)$?
6. (a) State the Bolzano-Weierstrass Theorem.
(b) Give the definition of an "upper bound" of a set S.
(c) Give the definition of the supremum of a set S.
7. (a) State the Ratio Test for a sequence $\left(x_{n}\right)$.
(b) Use the Ratio Test to compute $\lim \left(\frac{2 n-1}{3^{n}}\right)$.
8. (a) Find a bijection of N onto Z.
(b) Using the standard "diangonal" argument which shows that the set of positive rational numbers is denumerable, what is the 7 -th rational number?

