Today we show that if

\[\int_{\alpha} \tag{\alpha} \tag{\charton} \tag{\charton

when IXILR, then SLXJ

is differentiable when IxIZR

and $S'(x) = \sum_{k=1}^{\infty} k a_k x^{k-1}$.

Thus we compute the series of 5'(x) by differentiating term.

But first :

Thm.1. Suppose that & Sn} is

a sequence of functions each of which is continuously differentiable on an interval I: {a < x < b} Suppose further that { Snf converges at one point xo in I and that fsn } converges uniformly in I.

Then {Sn} converges

Uniformly in I to a

function S, and that

5' = lim 5'n.

Proof: By the Fundamental

Theorem of Calculus,

for any x E I, we have

 $S_n(x) = \int_{x_0}^{x} S_n'(t) dt - S_n(x_0).$

Thus

$$S_{n}(x) - S_{m}(x) = \int_{x_{0}}^{x} [S_{n}'(t) - S_{m}'(t)] dt$$

+ $[S_{n}(x_{0}) - S_{m}(x_{0})]$

$$|S_n(x) - S_m(x)| \le \int_{x_0}^{x} |S_n(t) - S_m(t)| dt$$

+ $|S_n(x_0) - S_m(x_0)|$

Let & ro, then the Cauchy
Criterion implies there is an
integer N(E) such that
if m,n > N

thene 15,1ts - 5,1t) 1 4 8

and | Sn 1x01 - Sm 1x01 | < 8.

Thus

 $|S_n(x) - S_m(x)| = E(x - x_0) + E$ $\leq E(b - \alpha + 1).$

and so, $\{S_n\}_{(x)}$ converges uniformly to a number S(x), for each $X \in I$. We denote the limit of S'_n by σ . It remains

to show that $S' = \sigma$. We see that

 $S_n(x) - S_n(x_0) = \int_{X_0}^{X} S_n'(t) dt$

After taking limits on both sides, we get

 $S(x) - S(x_0) = \int_{x_0}^{x} \sigma(t) dt.$

By the Fundamental Theorem of Calculus,

S'(x) = o(x).

Theorem. Let \(\sum_{n=0}^{n=00} a_n \times^n \)

have a nonzero radius of convergence R. Denote its sum by fixs. Then f is differentiable for $\{-R < x < R\}$ and $f'(x) = \sum_{n=0}^{\infty} o_n \frac{d}{dx} (x^n)$

 $= \sum_{n=1}^{\infty} n a_n x^{n-1}.$

Proof. Let xo be ony point in (-R, R). Then there is an h70, so that the interval J= {xo-h &x & xo+h} is in (-R, R). Hence both I Gn Xn and I nan Xn-1 are uniformly convergent in J, so that by Theorem 1, the termwise differentiable

is justified in J, in particular at Xo. Since Xo is an arbitrary point in f-RexeR}, the differentiable at all points in this interval.