Thm. For every real x > 0 and every integer n > 0. there is one and only one positive real y such that y" = x. This number y is written Vx or xn.

Proof. That there is at most one such y is clear

Since $0 4 Y_1 2 Y_2$ implies $0 4 Y_1^n 2 Y_2^n$.

Let E be the set of all positive real numbers to such that the ex.

If $t = \frac{x}{1+x}$, then 0 < t < 1.

Hence to < t < x. Thus

teE, and E is not empty.

If t > 1+x, then $t^n > t > x$,

so that $t \notin E$. Thus

1+x is an upper bound of E.

The Least Upper Bound

Property implies that

there is y = 1.v.b. E

To prove that Y" = x, we show that each of the

inequalities yn ex and
yn x leads to a contradiction

The identity

 $b^{n} - a^{n} = (b - a)(b^{n-1} + b^{n-2}a + a^{n-1})$

Yields the inequality

 $b^n-a^n + (b-a)nb^{n-1}$ when 0 < a < b.

Assume ynex. Choose

h > 0 so that Och < 1 and

h < X-Yh
n(y+1)n-1

Put a = y and b = y + h. Then

the second of the

(1) (y+h)n-yn < hn(y+h)n-1

< hn (y+1) n-1 < x-yn

Thus (y+h)" < x and y+h E E.

Since yth >y, this

contradicts the fact that y is an upper bound of E.

Assume now that yn > x.

Put $k = \frac{y^n - x}{ny^{n-1}}$

Then Ockey. The above

identity (1) becomes

 $Y^n - (y-k)^n < kn y^{n-1} = Y^n - x$ Thus $(y-k)^n > x$ and $y-k \notin E$.

Moreover, if t 2 y-k, then th 2 /y-k]" >x. It follows that y-k is an upper bound af E which contradicts the fact that Y is the least upper bound of E.

It follows that yn = x

2.5 Intervals
We need to prove a theorem
about "nested intervals"
before we study 3.4.

We say a sequence of closed intervals bounded are nested if

 $I_1 \supseteq I_2 \supseteq ... \supset I_n \supset I_{n+1} \supset ...$

If In = [an, bn], then

(bn) is decreasing, and (an) is increasing, i.e.

we have the picture

We prove the

Nested Interval Property:

Given a sequence of nested closed intervals as above, there is a point of in Inforall neN

Proof. Since $I_n \in I_n$, we get

an ≤ bn ≤ b, for all n ∈ N.

Hence the sequence (an)

is increasing and bounded.

By the Monotone Convergence

Thm., there is an massatisfying m= lim(an).

Clearly an & M, all n & N. (1)

We want to show that

n < bn for all n.

We do this by showing that for any particular n,

 $b_n \geq a_k$, k=1,2,...

There are 2 Lases.

(i) If nek, then since

In 2 Ik, we have

ak & bk & bn.

(ii) If k < n. then since

Ik 2 In, we have

ak & an & bn

We conclude that $a_k \notin b_n$.

for all k,

so that b_n is an upper bound for $\{a_k; k \in \mathbb{N}\}$

Passing to the limit as kapproaches oo, we obtain

M = bn, for all n E N. (2)

Cumbing (1) and (2),

we have

 $a_n \leq m \leq b_n$, all $n \in N$.

Hence m & In for all n.

We can use nested intervals to show that

the set IR of real numbers

is NOT countable.

Suppose that there is a

sequence I = { x1, x2, ... }

such that for any x in [0,1],

there is an integer in such that $X_n = x$.

Choose a closed subinterval

I, c [o,1] such that x, \$ I1.

Closed Now choose a *subinterval

I2 CI, such that X2 4 I2.

In this way we obtain

a sequence of subintervals
closed

such that

I, 2 I, 2 ... 2 I,

such that for all n=1,2,...

$$X_n \notin I_n \quad \left[\cdot \left[\cdot \right] \right]$$

$$I_{n-1}$$

The Nested Interval Theorem

implies that there is a

point $\eta \in I_n$, for all n=1,2,...

Since Xn & In for all n, it follows that

for all n=1,2,...

 $x_n \neq m$.

It follows that I = [0.1]

is not countable