Exam 1 Math 341

Name
Spring 2018

1. Prove that $1^{2}+2^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$ for all $n \in \mathbb{N}$.

Show true for $n=1$.
$\frac{1}{6}(1)(2)(3)=\frac{1}{6}(6)=1$, and $1^{2}=1$. Thus the identity is true for $n=1$

Assume $1^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ is true for a given $n \in \mathbb{N}$. Hence,

$$
\begin{aligned}
& 1^{2}+\cdots+n^{2}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{n+1}{6}(n(2 n+1)+6(n+1)) \\
& =\frac{n+1}{6}\left(2 n^{2}+n+6 n+6\right) \\
& =\frac{n+1}{6}\left(2 n^{2}+7 n+6\right) \\
& =\frac{n+1}{6}(2 n+3)(n+2) \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

which proves the identity for $n+1$

Thus the identity is true for all $n \in \mathbb{N}$.
2. (a) A sequence $\left(x_{n}\right)$ is Cauchy if
for every $\epsilon>0$ there is an integer $H \in \mathbb{N}$ such that if $m, n \geq H$ then $\left|x_{m}-x_{n}\right|<\epsilon$.
(b) Show that if $\left(x_{n}\right)$ is convergent, then $\left(x_{n}\right)$ is Cauchy.

Suppose that $\lim x_{n}=x$. Then if $\epsilon>0$, there is an integer $K \in \mathbb{N}$ such that if $m \geq K$, then $\left|x_{m}-x\right|<\frac{\epsilon}{2}$. Similarly, $\left|x_{n}-x\right|<\frac{\epsilon}{2}$ if $n \geq K$. Hence,

$$
\left|x_{m}-x_{n}\right|=\left|\left(x_{m}-x\right)-\left(x_{n}-x\right)\right| \leq\left|x_{m}-x\right|-\left|x_{n}-x\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

3. (a) A sequence of closed intervals I_{1}, I_{2}, \cdots is nested if

$$
I_{1} \supset I_{2} \supset \cdots \supset I_{n} \supset \cdots
$$

(b) State the Nested Interval Property.

The Nested Interval Property states that there is a number $\eta \in \mathbb{R}$ such that $\eta \in I_{n}$ for all $n=1,2, \cdots$.
(c) State the Bolzano-Weierstrass Theorem.

The Bolzano-Weierstrass Theorem states that if $\left(x_{n}\right)$ is a closed bounded sequence, then there is a subsequence $\left(x_{n_{k}}\right)$ that converges to a number x.
4. Let $x_{1}=6$ and $x_{n+1}=\frac{1}{2} x_{n}+2$ for $n \in \mathbb{N}$.
(a) Show that $\left(x_{n}\right)$ is bounded and decreasing.

It is clear that if $x_{n}>0$, then $x_{n+1}>0$. Thus $\left(x_{n}\right)$ is bounded below.

Note also that $x_{2}=5$. To show that $\left(x_{n}\right)$ is decreasing, note that $x_{2}<x_{1}$. Suppose by induction that $x_{n+1}<x_{n}$.

Then $\frac{1}{2} x_{n+1}<\frac{1}{2} x_{n}$, so $\frac{1}{2} x_{n+1}+2<\frac{1}{2} x_{n}+2$. Hence, $x_{n+2}<x_{n+1}$.
(b) Find the limit.

The Monetone Convergence Theorem implies that there is an x so that $\lim \left(x_{n}\right)=x$, which implies that $\lim \left(x_{n+1}\right)=x$. Hence, $x=\frac{1}{2} x+2$ which implies that $x=4$.
5. State and prove the Uniqueness of Limits.

The Uniqueness Theorem states that a sequence $\left(x_{n}\right)$ can have at most one limit.

Suppose that a sequence has two distinct limits x^{\prime} and $x^{\prime \prime}$. Let $\epsilon>0$. Then there is an integer K_{1} so that $\left|x_{n}-x^{\prime}\right|<\frac{\epsilon}{2}$ if $n>K_{1}$ and an integer K_{2} so that $\left|x_{n}-x^{\prime \prime}\right|<\frac{\epsilon}{2}$ if $n>K_{2}$.

If $n \geq K=\operatorname{Max}\left\{K_{1}, K_{2}\right\}$ then
$\left|x^{\prime}-x^{\prime \prime}\right|=\left|\left(x^{\prime}-x_{n}\right)+\left(x^{\prime \prime}-x_{n}\right)\right| \leq\left|x^{\prime}-x_{n}\right|+\left|x^{\prime \prime}-x_{n}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.
Thus $\left|x^{\prime}-x^{\prime \prime}\right|<\epsilon$ for all ϵ, which implies that $x^{\prime}-x^{\prime \prime}=0$.
6. Show that if $\left(x_{n}\right)$ is a bounded increasing sequence, then there is a number x such that $\lim \left(x_{n}\right)=x$.

Since $\left(x_{n}\right)$ is a bounded increasing sequence, we can set $x=\sup S$, where $S=$ $\left\{x_{n}, n=1,2, \cdots\right\}$. Let $\epsilon>0$. Then $x-\epsilon$ is not an upper bound. Hence, there is an integer k so that $x_{k}>x-\epsilon$. Since $\left(x_{n}\right)$ is increasing, it follows that if $n \geq k$, then $x-\epsilon<x_{k} \leq x_{n} \leq x<x+\epsilon$. Hence we get that $x-\epsilon<x_{n}<x+\epsilon$ for all $n \geq k$.

Thus $\lim _{n \rightarrow \infty} x_{n}=x$.
7. State and prove the Product Rule for Sequences.

The Product Rule states that if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences with $\lim \left(x_{n}\right)=x$ and $\lim \left(y_{n}\right)=y$ then $\lim \left(x_{n} y_{n}\right)=x y$.

Note that
$\left|x_{n} y_{n}-x y\right|=\left|\left(x_{n}-x\right) y_{n}+x\left(y_{n}-y\right)\right|=\left|\left(x_{n} y_{n}-x y_{n}\right)+\left(x y_{n}-x y\right)\right|$
$\leq\left|x_{n}-x\right|\left|y_{n}\right|+|x|\left|y_{n}-y\right|$

Let $M_{1}=\sup \left\{\left|y_{n}\right|\right\}$ and $M_{2}=|x|$. Let $M=\sup \left\{M_{1}, M_{2}\right\}$. (The Boundedness Theorem states that $\left(y_{n}\right)$ is bounded.)

Choose K sufficiently large so that if $n \geq K$ then $\left|x_{n}-x\right|<\frac{\epsilon}{2 M}$ and $\left|y_{n}-y\right|<\frac{\epsilon}{2 M}$.
Hence $\left|x_{n} y_{n}-x y\right|<\frac{\epsilon}{2 M} M+\frac{\epsilon}{2 M} M<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$

Therefore, $\lim x_{n} y_{n}=x y$
8. Consider the series $\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+1}}{n^{2}+(-1)^{n}}$.

Does the series converge or diverge? To receive credit, you must state the theorems you use to justify your answer.

Let $a_{n}=\frac{\sqrt{1+\frac{1}{n^{2}}}}{1+\frac{(-1)^{n}}{n}}$. The original series can be written as $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$.
Using the Product Rule and the Sum Rule, it follows that $\lim \left(1+\frac{1}{n^{2}}\right)=1$.
Since \sqrt{x} is continuous at $x=1$, we have $\lim \sqrt{1+\frac{1}{n^{2}}}=1$.
Similarly the Squeeze Rule and the Sum Rule imply that $\lim \left(1+\frac{(-1)^{n}}{n}\right)=1$, and then the Quotient Rule implies that $\lim \frac{\sqrt{1+\frac{1}{n^{2}}}}{1+\frac{(-1)^{n}}{n}}=\lim a_{n}=1$

Recall that the series can be written as $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$.
Since $\lim \frac{\frac{a_{n}}{n}}{\frac{1}{n}}=1$ and since $\sum \frac{1}{n}$ diverges, it follows from the Limit Comparison Test that $\sum \frac{a_{n}}{n}$ diverges.

Therefore $\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+1}}{n^{2}+(-1)^{n}}$ diverges.

