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1. Prove that 12 + 22 + · · ·+ n2 = 1
6
n(n+ 1)(2n+ 1) for all n ∈ N.

Show true for n = 1.
1
6
(1)(2)(3) = 1

6
(6) = 1, and 12 = 1. Thus the identity is true for n = 1

Assume 12 + · · ·+ n2 = n(n+1)(2n+1)
6

is true for a given n ∈ N. Hence,

12 + · · ·+ n2 + (n+ 1)2

= n(n+1)(2n+1)
6

+ (n+ 1)2

= n+1
6
(n(2n+ 1) + 6(n+ 1))

= n+1
6
(2n2 + n+ 6n+ 6)

= n+1
6
(2n2 + 7n+ 6)

= n+1
6
(2n+ 3)(n+ 2)

= (n+1)(n+2)(2n+3)
6

which proves the identity for n+ 1

Thus the identity is true for all n ∈ N.



2. (a) A sequence (xn) is Cauchy if

for every ǫ > 0 there is an integer H ∈ N such that if m,n ≥ H then |xm − xn| < ǫ.

(b) Show that if (xn) is convergent, then (xn) is Cauchy.

Suppose that lim xn = x. Then if ǫ > 0, there is an integer K ∈ N such that if
m ≥ K, then |xm − x| < ǫ

2
. Similarly, |xn − x| < ǫ

2
if n ≥ K. Hence,

|xm − xn| = |(xm − x)− (xn − x)| ≤ |xm − x| − |xn − x| < ǫ

2
+ ǫ

2
= ǫ



3. (a) A sequence of closed intervals I1, I2, · · · is nested if

I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · ·

(b) State the Nested Interval Property.

The Nested Interval Property states that there is a number η ∈ R such that η ∈ In
for all n = 1, 2, · · ·

(c) State the Bolzano-Weierstrass Theorem.

The Bolzano-Weierstrass Theorem states that if (xn) is a closed bounded sequence,
then there is a subsequence (xnk

) that converges to a number x.



4. Let x1 = 6 and xn+1 =
1
2
xn + 2 for n ∈ N.

(a) Show that (xn) is bounded and decreasing.

It is clear that if xn > 0, then xn+1 > 0. Thus (xn) is bounded below.

Note also that x2 = 5. To show that (xn) is decreasing, note that x2 < x1. Suppose
by induction that xn+1 < xn.

Then 1
2
xn+1 <

1
2
xn, so

1
2
xn+1 + 2 < 1

2
xn + 2. Hence, xn+2 < xn+1.

(b) Find the limit.

The Monetone Convergence Theorem implies that there is an x so that lim(xn) = x,
which implies that lim(xn+1) = x. Hence, x = 1

2
x+ 2 which implies that x = 4.



5. State and prove the Uniqueness of Limits.

The Uniqueness Theorem states that a sequence (xn) can have at most one limit.

Suppose that a sequence has two distinct limits x′ and x′′. Let ǫ > 0. Then there is
an integer K1 so that |xn−x′| < ǫ

2
if n > K1 and an integer K2 so that |xn−x′′| < ǫ

2

if n > K2.

If n ≥ K = Max {K1, K2} then

|x′ − x′′| = |(x′ − xn) + (x′′ − xn)| ≤ |x′ − xn|+ |x′′ − xn| < ǫ

2
+ ǫ

2
= ǫ.

Thus |x′ − x′′| < ǫ for all ǫ, which implies that x′ − x′′ = 0.



6. Show that if (xn) is a bounded increasing sequence, then there is a number x such
that lim(xn) = x.

Since (xn) is a bounded increasing sequence, we can set x =sup S, where S =
{xn, n = 1, 2, · · ·}. Let ǫ > 0. Then x − ǫ is not an upper bound. Hence, there is
an integer k so that xk > x − ǫ. Since (xn) is increasing, it follows that if n ≥ k,
then x−ǫ < xk ≤ xn ≤ x < x+ǫ. Hence we get that x−ǫ < xn < x+ǫ for all n ≥ k.

Thus limn→∞ xn = x.



7. State and prove the Product Rule for Sequences.

The Product Rule states that if (xn) and (yn) are sequences with lim(xn) = x and
lim(yn) = y then lim(xnyn) = xy.

Note that

|xnyn − xy| = |(xn − x)yn + x(yn − y)| = |(xnyn − xyn) + (xyn − xy)|

≤ |xn − x||yn|+ |x||yn − y|

Let M1 = sup {|yn|} and M2 = |x|. Let M =sup{M1,M2}. (The Boundedness
Theorem states that (yn) is bounded.)

Choose K sufficiently large so that if n ≥ K then |xn−x| < ǫ

2M
and |yn− y| < ǫ

2M
.

Hence |xnyn − xy| < ǫ

2M
M + ǫ

2M
M < ǫ

2
+ ǫ

2
= ǫ

Therefore, lim xnyn = xy



8. Consider the series
∑∞

n=1

√
n2+1

n2+(−1)n
.

Does the series converge or diverge? To receive credit, you must state the theorems
you use to justify your answer.

Let an =

√

1+ 1
n2

1+
(−1)n

n

. The original series can be written as
∑∞

n=1
an

n
.

Using the Product Rule and the Sum Rule, it follows that lim(1 + 1
n2 ) = 1.

Since
√
x is continuous at x = 1, we have lim

√

1 + 1
n2 = 1.

Similarly the Squeeze Rule and the Sum Rule imply that lim(1 + (−1)n

n
) = 1, and

then the Quotient Rule implies that lim

√

1+ 1
n2

1+
(−1)n

n

= lim an = 1

Recall that the series can be written as
∑∞

n=1
an

n
.

Since lim
an

n

1
n

= 1 and since
∑

1
n
diverges, it follows from the Limit Comparison Test

that
∑

an

n
diverges.

Therefore
∑∞

n=1

√
n2+1

n2+(−1)n
diverges.


