Let f, g be defined on $A \subset \mathbb{R}$ to \mathbb{R} and let c be a cluster point of A. Suppose that f is bounded on a neighborhood of c and that $\lim _{x \rightarrow c} g=0$.

Prove that $\lim _{x \rightarrow c} f g=0$.

Solution

Since f is bounded, it follows that there is a constant $M>0$ and a constant $\delta_{1}>0$ so that $|f(x) \leq M|$ for all $x \in A$ with $0<|x-c|<\delta_{1}$.

Since $\lim _{x \rightarrow c} g=0$, it follows that there is a $\delta_{2}>0$ so that $|g(x)-0|<\frac{\epsilon}{M}$ when $x \in A$ and $0<|x-c|<\delta_{2}$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then
$|f(x) g(x)-0|=|f(x) g(x)| \leq M \frac{\epsilon}{M}=\epsilon$ when $x \in A$ and $0<|x-c|<\delta$.
Thus, $\lim _{x \rightarrow c} f(x) g(x)=0$.

