MA341 Spring 2018 Theorems for Final Exam

You must be able to state and prove the Fundamental Theorem of Calculus.

Theorem. Let f be integrable on [a, b] and let f be continuous at a point $c \in [a, b]$. Then the indefinite integral, defined by

$$F(z) = \int_{a}^{z} f \text{ for } z \in [a, b]$$

is differentiable at c and F'(c) = f(c).

Proof. We will suppose that $c \in [a, b]$ and consider the right-hand derivative of F at c. Since f is continuous at c, given $\epsilon > 0$ there exists $\eta_{\epsilon} > 0$ such that if $c \le x \le c + \eta_{\epsilon}$ then

(1)
$$f(c) - \epsilon < f(x) < f(c) + \epsilon$$

Let h satisfy $0 < h < \eta_{\epsilon}$. The Additivity Theorem implies that f is integrable on the intervals [a, c], [a, c+h] and [c, c+h] and that

$$F(c+h) - F(c) = \int_{c}^{c+h} f.$$

Now on the interval [c, c + h] the function f satisfies inequality (1), so that we have

$$(f(c) - \epsilon) \cdot h \le F(c + h) - F(c) = \int_{c}^{c+h} f \le (f(c) + \epsilon) \cdot h$$

If we divide by h > 0 and subtract f(c), we obtain

$$\left| \frac{F(c+h) - F(c)}{h} - f(c) \right| \le \epsilon$$

But, since $\epsilon > 0$ is arbitrary, we conclude that the right-hand limit is given by

$$\lim_{x\to 0^+} \frac{F(c+h)-F(c)}{h} = f(c).$$

It is proved in the same way that the left-hand limit of this difference quotient also equale f(c) when $c \in [a, b]$. QED

I will state the following theorem and you must be able to prove it.

Theorem. If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], then f is integrable.

Proof. It follows from the Uniform Continuity Theorem that f is uniformly continuous on [a,b]. Therefore given $\epsilon > 0$ there exists $\delta_{\epsilon} > 0$ such that if $u,v \in [a,b]$ and $|u-v| < \delta_{\epsilon}$ then we have

$$|f(u) - f(v)| < \frac{\epsilon}{(b-a)}$$
.

Let $\mathbb{P} = \{I_i\}_{i=1}^n$ be a partition such that $\|\mathbb{P}\| < \delta_{\epsilon}$. Applying the Maximum-Minimum Theorem we let $u_i \in I_i$ be a point where f attains its minimum value on I_i and let $v_i \in I_i$ be a point where f attains its maximum value on I_i .

Let α_{ϵ} be the step function defined by $\alpha_{\epsilon}(x) = f(u_i)$ for $x \in [x_{i-1}, x_i)$ for $i = 1, \ldots, n-1$ and $\alpha_{\epsilon}(x) = f(u_n)$ for $x \in [x_{n-1}, x_n]$. Let ω_{ϵ} be defined similarly using the points v_i instead of the u_i . Then one has

$$\alpha_{\epsilon}(x) \leq f(x) \leq \omega_{\epsilon}(x)$$
 for all $x \in [a, b]$.

Moreover, it is clear that

$$0 \le \int_a^b (\omega_\epsilon - \alpha_\epsilon)$$
$$= \sum_{i=1}^n (f(v_i) - f(u_i))(x_{i-1} - x_i)$$

$$= \sum_{i=1}^{n} \left(\frac{\epsilon}{(b-a)}\right) (x_{i-1} - x_i) = \epsilon.$$

Therefore, it follows from the Squeeze Theorem that f is integrable.

QED

Math 341 Fall 2017 Study Guide for Final Exam

- 1. (a) Given a set S of real numbers, define $\sup S = u$.
 - (b) Show that for any $\epsilon > 0$ there is a number $x_{\epsilon} \in S$ such that $u \epsilon < x_{\epsilon} \le u$. pages 37,38
- 2. Define the Nested Interval Property. page 48
- 3. Suppose that (x_n) converges to x and (y_n) converges to y. Show that (x_ny_n) converges to xy. pages 61,62
- 4. Show that if (x_n) is an increasing sequence and that $x_n \leq M$ for all n, then there is a number $L \leq M$ such that $\lim_{n\to\infty} x_n = L$. pages 71, 72
- 5. Suppose $\sum_{n=1}^{\infty} x_n$ is a series with $x_n \geq 0$ such that $\sum_{n=1}^{N} x_n \leq M$ for all N=1,2,... Show there is an $L\leq M$ such that $\sum_{n=1}^{\infty} x_n$ converges to L. page 98
- 6. Define the Thomae function by setting

$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ in lowest terms} \\ 0 & \text{when } x \text{ is irrational} \end{cases}$$

Show that f is continuous at x if x is irrational and f is discontinuous at x if x is rational. pages 127, 128

- 7. Suppose that f is an increasing bounded function on (a,b). Show there is an L such that $\lim_{x\to b^-} f(x) = L$. pages 117,118
- 8. Show that $S(x) = \sqrt{x}$ is Lipschitz on the interval $[a, \infty)$, where a > 0. pages 143, 144 (Hint: Mean Value Theorem)
- 9. Show that if f is Lipschitz on any interval, then f is uniformly continuous. page 143
- 10. Find all functions that satisfy $|f(x) f(y)| \le |x y|^2$ when x and y are in an interval I. page 162
- 11. Suppose that f is differentiable at x_0 and that $f(x_0) \neq 0$. Calculate $(\frac{1}{f})'$ at x_0 . page 164
- 12. Let n be a positive integer and b > 1. Use L'Hopital's Rule to show that $\lim_{x\to\infty} \left(\frac{x^n}{b^x}\right) \le M$, i.e., $x^n \le b^x$, if x is sufficiently large. page 187

- 13. Use $\ln x$ and L'Hopital's Rule to show that $\lim_{n\to\infty} (1+\frac{a}{n})^{bn} = e^{ab}$. (Hint: set $x=\frac{1}{n}$). page 183
- 14. If the Taylor polynomial of order 3 of $\ln(1+x)$ is used to calculate the approximate value of $\ln\frac{3}{2}$, what is the maximum error allowed by the Remainder estimate? page 189
- 15. Show that on every interval [-d, d], the Taylor series of $\cos x$ converges to $\cos x$. page 189
- 16. Define

$$g(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Is g continuous at 0? Is g differentiable at 0? Is g uniformly continuous on the interval [0, 1]?

- 17. Suppose f is differentiable at all $x \in (a, b)$. If f'(x) > 0 in (a, b) show f is increasing. page 174
- 18. Let f be a bounded function on [a,b] and let P be a partition of [a,b]. What are U(f,P) and L(f,P)? What are U(f) and L(f)? pages 200, 201
- 19. State the Integrability Criterion for a function to be Darboux-integrable.
- 20. Let

$$g(x) = \begin{cases} 3 & \text{if } 0 \le x < 2\\ 1 & \text{if } 2 \le x \le 4 \end{cases}$$

Use the criterion above with a partition P having just 4 points to show g is Darboux-integrable. pages 228, 229

- 21. To solve the differential equation y'(x) = f(x, y(x)) with $y(x_0) = y_0$, we defined a sequence of curves $y_n(x)$. How are the curves $y_n(x)$ defined? (class notes online)
- 22. Complete the definition:

A sequence (x_n) is Cauchy if pages 86,87

- 23. Prove that if (x_n) is Cauchy, then there is an x^* so that $\lim(x_n) = x^*$.
- 24. Suppose that c is a cluster point of A. Suppose that $\lim_{n\to c} f(x) = L$. Show that if (x_n) is any sequence in A such that $\lim_{n\to\infty} (x_n) = c$ then $\lim_{n\to\infty} f(x_n) = L$. pages 107,108