Prove that $5^{2 n}-1$ is divisible by 8 for all $n \in N$.

Solution

To prove by induction, we must

1. Show it is true for $n=1$
2. Assume true for n and prove it is true for $n+1$.

Let $P(n)$ be the statement $5^{2 n}-1$ is divisible by 8 .

When $n=1,5^{2}-1=24$, which is divisible by 8 .
This proves $P(1)$.
Suppose that $P(n)$ is true, i.e., $5^{2 n}-1$ is divisible by 8 .
Then $5^{2(n+1)}-1=5^{2} \cdot 5^{2 n}-1=5^{2}\left(5^{2 n}-1\right)+\left(5^{2}-1\right)$.

Note that $5^{2 n}-1$ is divisible by 8 using $P(n)$ and also $5^{2}-1=24$ is divisible by 8 . Thus we have proved that $P(n+1)$ is true.

We conclude that $P(n)$ is true for all $n \in N$.

