Quiz 1 MA341 Spring 2018 Name _____

Prove that $5^{2n} - 1$ is divisible by 8 for all $n \in N$.

Solution

To prove by induction, we must 1. Show it is true for n = 12. Assume true for n and prove it is true for n + 1.

Let P(n) be the statement $5^{2n} - 1$ is divisible by 8.

When $n = 1, 5^2 - 1 = 24$, which is divisible by 8. This proves P(1).

Suppose that P(n) is true, i.e., $5^{2n} - 1$ is divisible by 8.

Then $5^{2(n+1)} - 1 = 5^2 \cdot 5^{2n} - 1 = 5^2(5^{2n} - 1) + (5^2 - 1).$

Note that $5^{2n} - 1$ is divisible by 8 using P(n) and also $5^2 - 1 = 24$ is divisible by 8. Thus we have proved that P(n + 1) is true.

We conclude that P(n) is true for all $n \in N$.