Math 341 Spring 2018 Study Guide for Exam 2

The exam covers Lecture 14 through Lecture 28. This includes section 4.2 through section 6.3.

Statements of theorems from the textbook to memorize

1. Maximum-Minimum Theorem, p. 136
2. Mean Value Theorem, p. 173

Review problems

1. Use the Mean Value Theorem to prove that if $f:[a, b] \rightarrow \mathbb{R}$ satisfies $f^{\prime}(x)=0$ for all $x \in[a, b]$, then $f(x)$ is a constant for all $x \in[a, b]$.
2. Let $f(x)=\sqrt{x}$ for $0 \leq x<\infty$. Show f is continuous at 0 .
3. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and that $g: \mathbb{R} \rightarrow \mathbb{R}$. If f and g are both continuous on \mathbb{R}, show that $g \circ f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
4. Show that $f(x)=\sqrt{x}$ is Lipschitz on $[a, \infty)$ for any $a>0$.
5. Show if f is differentiable at x_{0}, then f is continuous at x_{0}.
6. Evaluate the following limits
(a) $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}}$
(b) $\lim _{x \rightarrow 0^{+}} x^{2 x}$
7. Show that the function $f(x)=\frac{1}{x}$ is uniformly continuous on $[1, \infty)$.
8. Use the Location of Roots Theorem to show that there is a number $c \in\left(0, \frac{\pi}{2}\right)$ that is a root of the equation $x^{2}-\cos x=0$.
9. Use the limit laws and composition laws to show that $\frac{\sqrt{2 x+\sqrt{x}}}{3+x}$ is continuous on $[0, \infty)$. You must justify your reasoning.
10. (a) What does it mean to say that a function f on a set A is uniformly continuous?
(b) Show that $f(x)=x^{2}$ on \mathbb{R} is NOT uniformly continuous by using the sequences $x_{n}=n+\frac{1}{n}$ and $y_{n}=n$.
11. If f is uniformly continuous on $A \subseteq \mathbb{R}$ and $|f(x)| \geq k>0$ for all $x \in A$, show that $\frac{1}{f}$ is uniformly continuous on A.
12. Suppose that the $\lim _{x \rightarrow c} f(x)=L$ where $L>0$ and that $\lim _{x \rightarrow c} g(x)=\infty$. Show that $\lim _{x \rightarrow c} f(x) g(x)=\infty$.
