Exam 1 Math 341

Name

1. Prove that $n<2^{n}$ for all $n \in N$.
2. (a) What is the definition of an upper bound of S ?
(b) If u is an upper bound of S, under what condition is u a least upper bound?
3. If $S=\left\{2-\frac{3}{n}: n \in N\right\}$, prove that 2 is a least upper bound.
4. Prove that if $\left(x_{n}\right)$ is a convergent sequence, then $\left\{x_{n}: n \in N\right\}$ is bounded.
5. (a) Define the Nested Interval Property.
(b) State the Bolzano-Weierstrass Theorem.
(c) Give the definition of a Cauchy sequence.
6. If $\lim x_{n}=x$ and $\lim y_{n}=y$, prove that $\lim \left(x_{n} y_{n}\right)=x y$.
7. Suppose that $\left(x_{n}\right)$ is a bounded increasing sequence. Prove that there is a number \tilde{x} such that $\lim x_{n}=\tilde{x}$.
8. (a)State the Squeeze Theorem.
(b) Show with all details how the Squeeze Theorem can be used to compute $\lim \frac{(-1)^{n}}{n^{2}}$.
9. (a) Use the fact that $\lim \left(1+\frac{1}{n}\right)^{n}=e$ to compute $\lim \left(1+\frac{1}{n^{2}}\right)^{3 n^{2}}$.
(b) What theorem are you using to compute this limit?
