1. State and prove the Maximum-Minimum Theorem.
2. State and prove the Mean Value Theorem.
3. Suppose that f is continuous on the closed interval $I=[a, b]$, that f is differentiable on the open interval (a, b), and that $f^{\prime}(x)=0$ for $x \in(a, b)$. Show that f is constant on I.
4. State the Boundedness Theorem.
5. State the Uniform Continuity Theorem
6. State Taylor's Theorem with a formula for the Remainder
7. Evaluate $\lim _{x \rightarrow 0^{+}} \sin (x) \ln (x)$
8. Define precisely $U(f, P), L(f, P), U(f)$ and $L(f)$. In terms of these quantities, when is f Darboux integrable?
9. If f is uniformly continuous on $A \subseteq \mathbf{R}$ and $|f(x)| \geq k>0$ for all $x \in A$, show that $1 / f$ is uniformly continuous on A.
10. Let $f(x)$ be the Dirichlet function on the interval [0, 1], i.e., $f(x)=1$ if x is rational and $f(x)=0$ if x is irrational. Show that f is not Darboux integrable.
