One can show that IR satisfies the Least Upper Bound Property:

Definition. Let 5 be a nonempty subset of R.

(a) S is bounded above if there is a number UER such that S & U for all 5 & S.

U is an upper bound of S

(b) 5 is bounded below if there is a number $w \in \mathbb{R}$ such that $5 \ge w$ for all $s \in 5$.

(c) S is bounded if it is bounded above and below

If S is not bounded, then S is unbounded.

Suppose that S is nonempty.

(a) A number u is a least

upper bound of 5 if

(1) U is an upper bound of 5

and (2) If v is any upper bound of 5

then v > v

16) A number w is a greatest lower bound of S if

(1') w is a lower bound of S

and (2's if t is any lower bound of 5,

then t & w.

If a least upper bound of S exists,

we write 1.u.b. S = supremum S

= sup S

If a greatest lower bound of S exists,

we write g.l.b. S = infimum S

= inf S

The main fact about IR is that if 5 is a subset of IR that is bounded above, then there is a number U in R such that u = sup 5 Similarly if S is bounded below, then there is a WER such that W = inf 5

Note that inf S and Sup S

do not always belong to S.

Ex. Let 5= [a,b), where a < b.

 $x \in [a,b) \rightarrow a \leq x < b.$ (*)

.. b is an upper bound of [a, b)

Let v be any upper bound of S.

Suppose that $V \le a$. Then $S = \underbrace{a+b}_{2} \text{ is in } 5, \text{ but } V < 5,$

which would show v is not an upper bound of 5.

Suppose that a < V < b.

Then $5 = \frac{V+b}{2}$ is in 5, but

v 25, which shows that

V is not an upper bound of S.

It follows that v≥b, which shows that b is the least upper bound of S

Now note that the first inequality in (*) shows that a is a lower bound of 5.

.. (1') holds

Since s = a is in 5, it
follows that any lower
hound t of 5 must satisfy

t sa. Hence,

a = g.1.b of 5.

or inf S = a

t (a)

Different Definitions.

Suppose V is an upper bound of a set S:

- (1) If vis any upper bound. then usv
- (2) If Z< U, then Z is not an upper bound.
- (3) If z < u, then there exists $S_z \in S$ such that $z < S_z$ (4) If $\varepsilon > 0$, then there exists $S_z \in S$ such that $u \varepsilon < S_\varepsilon$.

If n is even, then the sequence is $1-\frac{1}{n}$, n=2,4,6,...

If n is odd, the sequence is

The sequence is contained in

[\frac{1}{2}, 2] where \frac{1}{2} and 2

are included.

u satisfies uzs, ses

which means U=2

Vis an upper bound it VZS,

i.e. Y Z 2

w satisfies wes, which means ws \frac{1}{2}. tis a lower bound if tess \frac{1}{2}.

i.e., tef

Since u=2 and v≥2, it follows that u≤v;

so supremum = 2

Similarly, w= \frac{1}{2} and t'\frac{1}{2}.

1 is an infimum if t = w.

Thus sup 5 = 2 and inf $5 = \frac{1}{2}$