Homework 1 Math 530 Due September 4, 2015

1. (a) Prove that $\left|\frac{z-w}{1-z \bar{w}}\right|<1$ if $|z|<1$ and $|w|<1$.
(b) Prove that $\left|\frac{z-w}{1-z \bar{w}}\right|=1$ if either $|z|=1$ or $|w|=1$.

What exception must be made if $|z|=|w|=1$?
2. Suppose that $f(z)=u(x, y)+i v(x, y)$ is holomorphic at each z and that $f^{\prime}(z)=0$ for all z in \mathbf{C}. Use that

$$
u_{x}+i v_{x}=v_{y}-i u_{y}=f^{\prime}(z)
$$

to show that f is a constant.
3. Prove that an absolutely convergent series of complex numbers is convergent.
4. Use the formula that the radius of convergence R of a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ satisfies

$$
R=\sup \left\{|r| ;\left|a_{n} r^{n}\right| \text { is a bounded sequence }\right\}
$$

to show that Hadamard's Formula gives the same value R.
5. (a) Find the power series (in powers of z) of $\sum_{n=0}^{\infty} \frac{4-3 z}{3-2 z}$
(b) Find the power series of $\frac{1}{2-3 z^{2}}$
(c) Find the power series of $\frac{1}{\left(2-3 z^{2}\right)^{2}}$
(d) What is the radius of convergence for each series?

